
Object-oriented Real-time Database Design based on Description Logics

Zied Ellouze1, Nada Louati2 and Rafik Bouaziz2
1CES-ENIS, Sfax University, BP 1173, 3038, Sfax, Tunisia

2MIRACL-ISIMS, Sfax University, BP 1088, 3018, Sfax, Tunisia

Keywords: Data Model, Real-time, Database, Description Logic.

Abstract: This paper proposes a Description Logics based data model of a real-time object-oriented database. It allows
the modeling of structural and behavioral aspects related to the objects in a real-time database. This model
provides designers a data model where they can specify both temporal aspects of data and timing constraints
on transactions as well as concurrency control mechanisms.

1 INTRODUCTION

A real-time database is a time-constrained database
designed to handle not only transactions with timing
constraints, but also data with timing constraints (Ra-
mamritham, 1993). The timing constraints on data are
defined as how well the content of the database mod-
els the actual state of the real world while the timing
constraints on transactions are expressed in the form
of deadlines which indicate a certain time in the future
by which the transactions must be completed. In gen-
eral, there are two forms of data timing constraints:
absolute and relative. The absolute timing constraint
requires that a data item’s age must be within a cer-
tain interval of the current time. The relative timing
constraint represents the required correlation among
data used together (Ramamritham, 1993). Real-time
databases require also enforcement of the temporal
consistency of transactions in addition to their logi-
cal consistency. Transaction logical consistency con-
strains the values of results produced by transactions,
while transaction temporal consistency requires that
transactions be treated as real-time tasks with timing
constraints.

Conventional data models are not suitable for
time-critical applications, since there is no mecha-
nism to deal with time constraints. They are de-
signed to get a good throughput or response time.
Very few of them permit users to specify timing con-
straints. Several works have used the relational model
as a data model for real-time databases (Ramam-
ritham, 1993). Although the relational model is ad-
equate for many applications, several researchers be-
lieve that is not suitable for real-time applications that

must handle complex real-world objects with timing
constraints (Ramamritham et al., 2004). Thereby,
the real-time database community has migrated to-
wards object-oriented technology. Several research
projects have proposed object-oriented data mod-
els for real-time databases (Prichard et al., 1994),
(Lee et al., 1994), (Perkusich et al., 1995), (Taina
and Raatikainen, 1997), (Stankovic and Son, 1998),
(Idoudi et al., 2010), and (Louati et al., 2011).

The data models available to object-oriented real-
time designers vary in their representational and anal-
ysis strengths. This is mainly due to the inherent am-
biguity in the existing means of describing them (i.e.
textual and graphical). Hence, there is a dire need to
introduce formalism in order to describe them accu-
rately and allow rigorous reasoning about them. The
main problem of existing real-time object-oriented
data models is their lack of completeness and anal-
ysis. This is essentially because they tend to concen-
trate on specifying either the structural or behavioral
features of data models but not both of them. In addi-
tional, most real-time object-oriented data models are
informally defined so make error-prone and difficult
to analyze. Formal specification of real-time object-
oriented data models can enhance the understanding
of their semantics. It can be used to help designers
to implement formal analysis and verification on the
systems described by them. In this paper, we pro-
pose a Formal Real-Time Object-Oriented (F-RTOO)
data model based on Description Logics (DL). This
model provides designers a data model where they
can specify both temporal aspects of data and tim-
ing constraints on transactions as well as concurrency
control mechanisms. Additionally, it combines the

264 Ellouze Z., Louati N. and Bouaziz R..
Object-oriented Real-time Database Design based on Description Logics.
DOI: 10.5220/0004453502640271
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 264-271
ISBN: 978-989-8565-59-4
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



formal specification of structural and behavioral as-
pects of real-time object-oriented data models in one
specification.

The structure of the rest of this paper is as follows.
Section 2 discusses the related work. Section 3 pro-
vides background information on the DL. Section 4
describes our F-RTOO data model. Section 5 presents
a case study, and finally in Section 6 the conclusion is
presented.

2 RELATED WORKS

In recent years, several works on real-time databases
have been proposed to deal with data modeling issues.
Only a few of these works address real-time object-
oriented data modeling.

DiPippo and Ma (Prichard et al., 1994) describe
the RTSORAC model which qualifies the basic pa-
rameters for modeling a real-time database object-
oriented data model. It is composed of three com-
ponents: objects, relationships, and transactions.

In (Lee et al., 1994), Lee et al. describe a simple
real-time object-oriented data model with atomic ob-
jects and a class manager. Atomic objects are basic
entities that ensure atomicity of transactions. Class
manager is the major vehicle that lessens the com-
plexity involved in transaction management.

The G-CPN (Perkusich et al., 1995) model allows
the modeling of syntactical and semantical features
related to the objects in a real-time database. The se-
mantical features can be mapped to Petri net construc-
tions. G-CPN model has introduced extensions in an
object colored Petri net to model a real-time database.

The RODAIN (Taina and Raatikainen, 1997)
model is a real-time object-oriented database archi-
tecture for intelligent networks. It supports two kind
of attributes: regular and real-time. A real-time object
has predefined attributes for isolation level and access
type. It is referenced by real-time transactions that
have an explicit deadlines.

The BeeHive (Stankovic and Son, 1998) model
extends traditional object-oriented data models by in-
corporating semantic information regarding real-time,
importance, security, fault-tolerance, and QoS re-
quirements. The BeeHive object model has some sim-
ilarity in terms of the structure of objects to the RT-
SORAC object model (Prichard et al., 1994). One of
the main differences is that while RTSORAC model
holds only real-time and approximation requirements,
BeeHive model supports a rich set of types of require-
ments and their trade-offs.

In (Idoudi et al., 2010), Idoudi et al. describe
a real-time object-oriented data model where objects

contain a set of real-time attributes, a set of real-time
methods, a mailbox, and a local controller. In (Idoudi
et al., 2010), the data model offers solutions to man-
age data and transactions characteristics and concur-
rency. But, it does not describe the schedulability as-
pect.

The RTO-RTDB (Louati et al., 2011) model is a
real-time object oriented database model that encap-
sulates time-constrained data, time-constrained trans-
actions, and concurrency control mechanisms. It pro-
vides a very rich concepts for modeling both struc-
tural and behavioral features of a real-time database.
However, it is difficult to analyze and validate the
real-time database based applications it describes be-
cause of lacking precise semantics.

Table 1 presents complete analysis of different
real-time object-oriented data models presented in
this paragraph. They have mostly been described us-
ing textual (Prichard et al., 1994), (Lee et al., 1994),
(Taina and Raatikainen, 1997), (Stankovic and Son,
1998), and (Idoudi et al., 2010) or graphical (Louati
et al., 2011) notations which are not easily understood
by an inexperienced designer. This leads to complica-
tions in incorporating data model concepts effectively
into the modeling of a new application. To remediate
to this difficulty, the solution is using an expressive
notation based on DL to specify data models. This
improves the data model specification quality because
DL have very strong ability of representation and de-
duction (Baader et al., 2003).

3 A BRIEF OVERVIEW OF THE
DESCRIPTION LOGICS

DL are considered the most important unifying for-
malism for the many object-oriented representation
languages used in areas other than Knowledge Repre-
sentation. These languages are equipped with a logic-
based semantics (Baader et al., 2003).

3.1 Notational Conventions

The architecture of a knowledge representation sys-
tem based on DL is composed of two parts: TBox
and Abox. The TBox contains intensional knowl-
edge in the form of a terminology and is built through
declarations that describe general properties of con-
cepts. The ABox contains extensional knowledge that
is specific to the individuals of the domain of dis-
course. TBox and ABox are defined by a description
language. Elementary descriptions of description lan-
guage are atomic concepts and atomic roles (Baader
et al., 2003). In defining the concept name by DL, it

Object-oriented�Real-time�Database�Design�based�on�Description�Logics

265



Table 1: Tabular comparison of different object-oriented data models against RTDBs features.

Data Transactions

Data Model L
o

g
ic

al
C

o
n

si
st

en
cy

A
b

so
lu

te
Te

m
p

o
ra

lC
o

n
si

st
en

cy

R
el

at
iv

e
Te

m
p

o
ra

lC
o

n
si

st
en

cy

A
b

so
lu

te
T

im
in

g
C

o
n

st
ra

in
ts

P
er

io
d

ic
T

im
in

g
C

o
n

st
ra

in
ts

R
el

at
iv

e
T

im
in

g
C

o
n

st
ra

in
ts

S
ch

ed
u

lin
g

C
o

n
cu

rr
en

cy
C

o
n

tr
o

l

Q
u

al
ity

o
fS

er
vi

ce

F
o

rm
al

S
em

an
tic

s

RTSORAC (Prichard et al., 1994) × × × × × × ×
EOODM (Lee et al., 1994) × × × × ×
G-CPN (Perkusich et al., 1995) × × × × × ×
RODAIN (Taina and Raatikainen, 1997)× × × ×
BeeHive (Stankovic and Son, 1998) × × × × × × ×
RTO (Idoudi et al., 2010) × × × × × × ×
RTO-RTDB (Louati et al., 2011) × × × × × × ×

is started with an uppercase letter and then followed
by the lowercase letter. Roles name starts with a low-
ercase letter.

We introduce now a description language, in
which concepts and roles are formed according to the
following syntax rule:

C,D → A|; Atomic concept

⊤|; Universal concept

⊥ |; Bottom concept

¬A|; Atomic negation

C⊓D|; Intersection

C⊔D|; Union

∀R.C|; Value restriction

∃R.T|; Limited exitential quanti f ication

R1 ⊑ R2|; Role value map

3.2 Element of Object-oriented Data
Model Formalization

In this section, we first define our model of an object-
oriented database. Then we formalize it using the de-
scription language proposed in (Efrizoni et al., 2010).

An object-oriented data model is a collection of
classes and instances of these classes. Both instances
and classes are referred to as objects. A class defines a
set of attributes and a set of operations. In this model,
the inheritance of properties (i.e. attributes and opera-
tions) is allowed. A relationship between two or more
classes is represented by an association. This latter
may be a binary association, a n-ary association, an

aggregation or a composition. In the followingC(x):
denotes the namex of a class;a(x) denotes the name
x of an attribute,T(y) denote the type of an attribute,
P(x) denotes the namex of an operation of a class,
andrx denotes the namex of a role of an association.

• Class. A class is a main concept of object-oriented
data model which is used to store and manage in-
formation.

∀x,y.C(x) ⊑ ∀a(x).T(y)⊓P(x)

• Attribute. It represents the structural feature of a
class. It describes the state of an instance of an
object.

∀x,y.C(x)⊑ ∀a(x).T(y)

• Operation. It represents the behavioral feature of
a class.
∀x,y.C(x) ⊑ ∀Pf (x).y.Ri(y)⊓ (i 6 Pf (x).y 6 j)

f or i, j ∈ 1· · ·n

• Association. It expresses the way classes collabo-
rate.

A⊑ ∃r1.C1⊓∃r2.C2

⊤⊑ ∀A.C2⊓∀A .C1

x1.C1(x1)⊑ (a6 r1.A6 b)

x2.C2(x2)⊑ (c6 r2.A6 d)

• Aggregation. It can occur when a class is a col-
lection or container of other classes.

∀x1.C1(x1)⊑ (> 1A)

∀x2.C2(x2)⊑ (16 A 6 1)

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

266



• Composition. It represents an instance of a class
that become a part of instance of another class. It
indicates that sometimes an object is made up of
other objects.

∀x.C2(x) ∈C(x)⊔∀x.¬C(x) ∈C2(x)

• Generalization. It depicts that one class is identi-
fied as the super class and the others as subclasses
of it. Every instance of each subclass is also an
instance of the super class.

∀x.Ci(x)⊑C(x) f or i ∈ 1· · ·n

C⊑C1⊔C2⊔·· ·Cn

4 A FORMAL REAL-TIME
OBJECT-ORIENTED DATA
MODEL

A real-time database manipulates real-time data
and executes real-time transactions (Ramamritham,
1993). Real-time data are divided into two types: sen-
sor data and derived data. Sensor data are periodically
collected from the physical environment through sen-
sors, whereas derived data, they are computed from
sensor data. When a sensor data item changes, all
derived data items that are based on it need to be re-
computed. Real-time transactions are classified into
two categories: update transactions which are used
to update values of real-time data in order to reflect
the state of the real world and user transactions which
represents user requests (Ramamritham et al., 2004).
Update transactions are executed periodically to up-
date sensor data, or sporadically to update derived
data. User transactions arrive aperiodically. Given the
added dimension of time on data and transactions, two
of the interesting areas of study in real-time databases
are that of transactions scheduling and concurrency
control policies. Not only the schedule must meet
timing constraints of transactions, it must also main-
tain data temporal consistency.

Hence, a real-time data model should provides
support for specifying timing constraints on data and
transactions, semantics of real-time data and real-time
transactions, and scheduling and concurrency control
mechanisms. The next subsections, proposes a formal
real-time object-oriented data model, called F-RTOO,
that supports these concepts.

The F-RTOO data model includes features that
support the requirements of a real-time database into
an extended object-oriented data model. It has a main
component that models the properties of a real-time
object-oriented database which is real-time object.

Figure 1: Aircraft real-time object.

Real-time objects represent real-time database enti-
ties. Figure 1 illustrates an example of an Aircraft
real-time object for storing information about an air
traffic control system in a database.

4.1 Real-time Attribute

Data objects are classified into either non real-time
or real-time data (Ramamritham et al., 2004). A non
real-time data is a classical data that does not become
outdated due to the passage of time, whereas a real-
time data has a validity interval beyond which it be-
come useless.

The F-RTOO data model defines two types of at-
tributes: classical attributes and real-time attributes.
A classical attribute is used to store a non real-time
data, while a real-time attribute stores a real-time data.
In DL assertions a real-time attribute is stated as fol-
low:

∀x,y,RTA(x)⊆ ∀n(x).string(y)

∀x,y,RTA(x)⊆ ∀t(x).string(y)

∀x,y,RTA(x)⊆ ∀m(x).integer(y)

∀x,y,RTA(x)⊆ ∀v(x).string(y)

∀x,y,RTA(x)⊆ ∀va(x).real(y)

Object-oriented�Real-time�Database�Design�based�on�Description�Logics

267



∀x,y,RTA(x)⊆ ∀ti(x).dateTime(y)

∀x,y,RTA(x)⊆ ∀va(x).real(y)

∀x,y,RTA(x)⊆ ∀ti(x).dateTime(y)

∀x,y,RTA(x)⊆ ∀vd(x).duration(y)

∀x,y,RTA(x)⊆ ∀mde(x).real(y)

∀x,y,RTA(x)⊆ ∀uo(x).RTO(y)

∀x,y,RTA(x)⊆ ∀nv(x).integer(y)

• N (Name): is the name of the attribute.

• T (Type): is the type of the attribute which can be
integer, real, string, etc.

• M (Multiplicity): indicates how kinds of values or
objects a real-time attribute can obtain.

• V (Visibility): represents the visibility of the at-
tribute: public, protected or private.

• Va (Value): is used to store the real world attribute
value captured by the last update correspondent
method. This field is used by the system to de-
termine the logical consistency constraints of the
attribute value.

• Ti (Timestamp): is used to store the instant at
which the attribute value was last updated. The
timestamp determines the temporal consistency
constraint of the attribute value. For example, in
the Aircraft real-time object, there is a property
for storing the speed, calledspeed, to which a
sensor periodically provides readings. This up-
date is expected every 30 seconds, thus thespeed
property is considered temporally inconsistent if
the update does not occur within that time. The
timestamp value of thespeedproperty must be
utilized by the real-time database system to deter-
mine that the update operation did not happen as
expected. There are many ways to define times-
tamps (Idoudi et al., 2010). In our work, we con-
sider that the timestamp is the time when the value
is written.

• Vd (Validity duration): it indicates the amount of
time during which the attribute value is considered
valid. This field permits to determine, in associa-
tion with the timestamp, the absolute consistency
constraint of the real-time attribute. A real-time
data is considered absolutely fresh with respect to
time as long as the age of the data value is within
a given interval (Ramamritham et al., 2004). For
instance, thespeedvalue is considered valid if
the current time is earlier than the timestamp of
speedfollowed by the length of the absolute valid-
ity interval ofspeed, i.e. {speed.Ti+ speed.Vd>
currentTime}.

• Mde (Maxiumumdata error): is used to mem-
orize the absolute maximum data error tolerated
on the attribute value (Idoudi et al., 2010). This
value is the upper bound of the deviation be-
tween the current attribute value in the real-time
database and the reported one. Recently, the
demand for real-time services has increased in
most real-time database based applications where
it is desirable to execute transactions within their
deadlines. They also have to use fresh data in
order to reflect the real world state. However, it
seems to be difficult for the transactions to both
meet their real-time constraints and to keep the
database consistent. To support this kind of ap-
plications, the data error concept is introduced in
(Amirijoo et al., 2006) to indicate that data stored
in the real-time database may have some deviation
from its value in the physical world.

• Uo (Updateoperation): is used to update the value
and timestamp fields of a real-time attribute. For
example, in the Aircraft real-time object, there is
a real-time method, calledupdateSpeed(), which
periodically updates thespeedreal-time attribute.

• Nv (Number ofversions): is used to preserve real-
time attribute version history. The multi-version
attributes permits to maintain for every attribute
multiple versions for a data item. This minimizes
data access conflicts between real-time transac-
tions and reduces the deadline miss ratio. In order
to respect the real-time database size, the number
of versions of each real-time attribute is limited. It
does not have to exceed a maximum data versions
number.

Note that the fieldsN,T,M,V,and Va characterize
classical attributes as well as real-time attributes,
whereas the fieldsTi,Vd,Mde,Uo,and Nvcharacter-
ize only real-time attributes. Here an example of two
attributes in the Aircraft real-time object: the first is
a classical attribute and the second is a real-time at-
tribute.

{N = destination,T = string,M = 1,V =
private,Va= Paris}

{N = speed,T = real,M = 1,V = private,Va=
600,Ti = 01/05/2012 10 : 05 : 23,Vd= 30s,Mde=
10,Uo= updateSpeed(),Nv= 5}

Real-time data are classified into either sensor or
derived data (Ramamritham et al., 2004). Thereby,
F-RTOO data model defines two kinds of real-time
attributes: sensor attribute and derived attribute. A
sensor attribute is used to store a sensor data which is
periodically updated in order to reflect the real world
state of the environment. A derived attribute is used
to store a derived data which is sporadically updated

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

268



when a sensor attribute value, used in its computa-
tion, changes. In DL assertions a sensor and derived
attribute are stated as follow:

∀x.RTA(x)⊆ Sensor(x)⊔Derived(x)

∀x.Sensor(x)⊆ RTA(x)

∀x.Derived(x)⊆ RTA(x)

4.2 Real-time Operation

The only way that objects can be accessed by trans-
actions is to invoke the operations defined by objects.
In F-RTOO data model, each operation execution is
considered as a real-time transaction. A real-time op-
eration can be stated by means of DL such:

∀x,y,RTO(x)⊆ ∀n(x).string(y)

∀x,y,RTO(x)⊆ ∀v(x).string(y)

∀x,y,RTO(x)⊆ ∀arg(x).string(y)

∀x,y,RTO(x)⊆ ∀exc(x).string(y)

∀x,y,RTO(x)⊆ ∀op(x).string(y)

∀x,y,RTO(x)⊆ ∀mc(x).string(y)

∀x,y,RTO(x)⊆ ∀mst(x).dateTime(y)

∀x,y,RTO(x)⊆ ∀mrd(x).duration(y)

∀x,y,RTO(x)⊆ ∀oct(x).dateTime(y)

∀x,y,RTO(x)⊆ ∀rt (x).string(y)

∀x,y,RTO(x)⊆ ∀per(x).duration(y)

∀x,y,RTO(x)⊆ ∀pri(x).integer(y)

∀x,y,RTO(x)⊆ ∀cp(x).concurrencyKind(y)

• N (Name): denotes the name of the real-time
method.

• V (Visibility): indicates whether a real-time
method is public, protected, or private.

• Arg (Arguments): is a set of arguments for the
real-time method, where each argument has the
same structure as an attribute, and is used to pass
information in the method.

• Exc (Exceptions): is a set of exceptions that may
be raised by the real-time method to signal that
the method has terminated abnormally.

• Op (Operations): is a set of operations which rep-
resent the impementation of the method.

• Mc (Method constraints): is a set of methods
constraints. A method constraint is of the form
< N,OpSet,Pred,Er > where N is the name of
the method constraint, OpSet represents a subset
of the operations in Op, Pred is a boolean expres-
sion which is specified over OpSet to express ex-
ecution constraints, timing constraint and prece-
dence constraints, and Er is a enforcement rule.

The enforcement rules are used to specify the ac-
tions to take if the predicate (i.e. Pred) evaluates
to false. A complete definition of an enforcement
rule is described in the next subsection on con-
straints. Here is an example of a method con-
straint predicate in the Aircraft real-time object:

Pred : getLane().Mct < currentTime+5s

A deadline of currentTime +5s has been specified
for the completion of thegetLane()method. Note
the use of theMct property which represents the
completion time of the executable method.

• Mst (Methodstart time): indicates the execution
start time of the real-time method.

• Mrd (Method relative deadline): specifies the
deadline of a method execution.

• Mct (Methodcompletiontime): indicates the time
at which the method finishes its execution.

• Rt (Returntype): specifies which kinds of value
or object a real-time method can return.

• Per (Period): indicates the frequency of the real-
time method initiation.

• Pri (Priority): Priority specifies the priority order
of a real-time method.

• Cp (Concurrencypolicy): specifies the concur-
rency policy of a real-time method. A concur-
rency policy may be reader, writer or parallel
(Louati et al., 2011). A reader real-time method
implies that multiple calls from concurrent meth-
ods may occur simultaneously and will be exe-
cuted simultaneously if there is no writer meth-
ods using one or more data that the reader method
needs. A writer real-time method implies that
multiple calls from concurrent methods may oc-
cur simultaneously and will be treated as soon as
concurrency on data permits its execution. A par-
allel real-time method is a method whose actions
do not use any data of the database in reading
mode nor in writing mode.

Real-time transactions are classified into three cat-
egories: periodic transactions, aperiodic transac-
tions and sporadic transactions (Ramamritham et al.,
2004). Thereby, F-RTOO data model specifies three
types of operations: periodic operations, aperiodic
operations, and sporadic operations. Periodic opera-
tions update periodically sensor data. They are write-
only operations that obtain the state of the real world
and write the sensed data to the database. Sporadic
operations calculate sporadically derived data. The
access mode of the sporadic operation to derived data
is always write. Aperiodic operations do not write any
real-time data, but they can read/write non real-time

Object-oriented�Real-time�Database�Design�based�on�Description�Logics

269



data and only read real-time data. In DL assertions
periodic, aperiodic and sporadic real-time operations
are stated as follow:

∀x.RTO(x)⊆ Periodic(x)⊔Aperiodic(x)

⊔Sporadic(x)

∀x.Periodic(x)⊆ RTO(x)

∀x.Aperiodic(x)⊆ RTO(x)

∀x.Sporadic(x)⊆ RTO(x)

4.3 Real-time Class

The design of a real-time database, which is by
definition a database system, has to take into ac-
count the management of many components such
as queries, schemas, transactions, commit protocols,
concurrency control protocol, and storage manage-
ment (Stankovic et al., 1999). In order to deal with
time-constrained data, time-constrained operations,
parallelism, and concurrency property inherent to
real-time databases, we introduce the real-time class
concept. This latter specifies that instances of a class
will encapsulate real-time attributes and real-time op-
erations and a local concurrency mechanism. Because
of the dynamic nature of the real world, more than
one operations may send requests to the same real-
time class. Concurrent execution of these operations
allows several methods to run concurrently within the
same class. To handle this essential property of real-
time database systems, we associate to each real-time
class a local concurrency control mechanism, that
manages the concurrent execution of its operations.
Thus, the class receives messages (or requests) awak-
ing its local controller that checks the timing con-
straint attached to messages and selects one message
following a special scheduling algorithm. The local
controller verifies the concurrency constraints with
the already running methods of the object. Then, it
allocates a new thread to handle the message when
possible. When an operation terminates its execution,
the corresponding thread is released and concurrency
constraints are relaxed (Louati et al., 2011).

The following DL assertions state that a real-time
class is composed of: a set of real-time attributes, a
set of real-time operations, and a local controller.

∀x.LC(x) ∈ RTC(x)⊔∀x.¬RTC(x) ∈ LC(x)

∀x.RTA(x) ∈ RTC(x)⊔∀x.¬RTC(x) ∈ RTA(x)

∀x.RTO(x) ∈ RTC(x)⊔∀x.¬RTC(x) ∈ RTO(x)

5 A CASE STUDY

Throughout, this section, we will use a running ex-

Figure 2: Freeway Traffic Control System Class Diagram.

ample to prove relevance of our propositions. We il-
lustrate our proposal on a freeway traffic control sys-
tem. As depicted in the Figure 2, the freeway traffic
control system architecture consists of three entities
respectively dedicated to: represent a transport infras-
tructure road that links two conurbations (RoadLink),
depict a part of a route (RoadSegment), and repre-
sent physical entity (Vehicle). RoadSegmentandVehi-
cle represent the description of two physical elements
that are supervised by the controller. In addition, they
are characterized by one or more real-time data which
could determine theirs evolution. These real-time data
are classified into either sensor data or derived data.
In fact, each vehicle has two sensor data (i.e.speed
and length) which are periodically updated to reflect
its state and each road segment has two derived data
(i.e. trafficVolume, andtrafficOccupancy) which are
calculated from sensor data.

Definition of properties of RoadLink’s class cap-
ture attributes and operations as follows:

∀x,y.RoadLink(x)⊆ ∀linkNum(x).integer)

∀x,y.RoadLink(x)⊆ ∀PgetLinkNum().integer(y)

⊓ (6 1 PgetLinkNum())

The same manner defines attributes and operations for
each other classes (i.e. Vehicle and RoadSegment).

∀x,y.Vehicle(x)⊆ ∀vehicleNum(x).integer(y)

∀x,y.Vehicle(x)⊆ ∀speed(x).real(y)

∀x,y.Vehicle(x)⊆ ∀length(x).real(y)

∀x,y.Vehicle(x)⊆ ∀PgetSpeed().real(y)

⊓ (6 1 PgetSpeed())

∀x.Vehicle(x)⊆ ∀PupdateSpeed()

⊓ (6 1 PupdateSpeed())

∀x,y.Vehicle(x)⊆ ∀PgetLength().real(y)

⊓ (6 1 PgetLength())

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

270



∀x.Vehicle(x)⊆ ∀PupdateLength()

⊓ (6 1 PupdateLength())

∀x,y.Vehicle(x)⊆ ∀PgetVehicleNum().integer(y)

⊓ (6 1 PgetVehicleNum())r

∀x,y.RoadSegment(x)⊆ ∀startPointLocation(x).

integer(y)

∀x,y.RoadSegment(x)⊆ ∀endPointLocation(x).

integer(y)

∀x,y.RoadSegment(x)⊆ ∀segmentState(x).string(y)

∀x,y.RoadSegment(x)⊆ ∀tra f f icVolume(x).real(y)

∀x,y.RoadSegment(x)⊆ ∀tra f f icOccupancy(x).

real(y)

∀x,y.RoadSegment(x)⊆ ∀PgetSegState().string(y)

⊓ (6 1 PgetSegState())

∀x.RoadSegment(x)⊆ ∀PcomputeTra fVol()

⊓ (6 1 PcomputeTra fVol())

∀x,y.RoadSegment(x)⊆ ∀PgetTra fVol().string(y)

⊓ (6 1 PgetTra fVol())

∀x.RoadSegment(x)⊆ ∀PcomputeTra f Occu()

⊓ (6 1 PcomputeTra f Occ())

∀x,y.RoadSegment(x)⊆ ∀PgetTra f Occu().string(y)

⊓ (6 1 PgetTra f Occu())

6 CONCLUSIONS

This paper has shown the formalization of a real-time
object-oriented data model in term of specified logic
i.e Description Logics. Through this formalization,
the deductive capabilities of DL have been exploited.
Moreover, the proposed data model not only capture
the structural aspects of a real-time database features,
but also the behavioral aspects. Additionally, it pro-
vides designers a data model where they can specify
both temporal aspects of data and timing constraints
on transactions as well as concurrency control mech-
anism.

We are currently working on the implementation
of a real-time query language that supports our real-
time object-oriented data model.

REFERENCES

Amirijoo, M., Hansson, J., and Son, S. H. (2006). Speci-
fication and management of qos in real-time databases

supporting imprecise computations.IEEE Trans.
Computers, 55(3):304–319.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
and Patel-Schneider, P. F., editors (2003).The De-
scription Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press.

Efrizoni, L., Wan-Kadir, W., and Mohamad, R. (2010). For-
malization of uml class diagram using description log-
ics. InInformation Technology (ITSim), 2010 Interna-
tional Symposium in, volume 3, pages 1168–1173.

Idoudi, N., Louati, N., Duvallet, C., Sadeg, B., Bouaziz, R.,
and Gargouri, F. (2010). A framework to model real-
time databases.International Journal of Computing
and Information Sciences (IJCIS), 7(1):1–11.

Lee, J., Son, S. H., and Lee, M.-J. (1994). Issues in develop-
ing Object-Oriented Database Systems for Real-Time
Applications. InProceeding of the IEEE Workshop on
Real-Time Applications, volume 26, pages 136–140,
Washington, DC, USA. IEEE Computer Society.

Louati, N., Duvallet, C., Bouaziz, R., and Sadeg, B.
(2011). RTO-RTDB: A real-time object-oriented
database model. InIn Proceedings of the Interna-
tional Conference on Parallel and Distributed Com-
puting and Systems. ACTA Press.

Perkusich, M. L., de Fatima, M., Turnell, Q., and Perkusich,
A. (1995). Object-oriented real-time database design
based on petri nets. InIn Proceedings of the Interna-
tional Workshop on Active and Real-Time Database
Systems, pages 104–121. Springer.

Prichard, J., DiPippo, L., Packham, J., and Fay-Wolfe, V.
(1994). RTSORAC: A Real-Time Object-Oriented
Database Model. In Springer-Verlag, editor,Proc.
of the 5th Intl. Conf. on Database and Expert Sys-
tems Applications (DEXA’94), pages 601–610, Lon-
don, UK.

Ramamritham, K. (1993). Real-time databases.Distributed
and Parallel Databases, 1(2):199–226.

Ramamritham, K., Son, S. H., and DiPippo, L. C. (2004).
Real-time databases and data services.Real-Time Sys-
tems, 28(2-3):179–215.

Stankovic, J. A. and Son, S. H. (1998). Architecture and
object model for distributed object-oriented real-time
databases. InISORC, pages 414–424.

Stankovic, J. A., Son, S. H., and Hansson, J. (1999). Mis-
conceptions about real-time databases.IEEE Com-
puter, 32(6):29–36.

Taina, J. and Raatikainen, K. (1997). Rodain: a real-
time object-oriented database system for telecommu-
nications. InProceedings of the workshop on on
Databases: active and real-time, CIKM ’96, pages
10–14, New York, NY, USA. ACM.

Object-oriented�Real-time�Database�Design�based�on�Description�Logics

271


