
Using SoaML Models and Event-B Specifications for Modeling SOA
Design Patterns

Imen Tounsi1, Zied Hrichi1, Mohamed Hadj Kacem1, Ahmed Hadj Kacem1 and Khalil Drira2,3

1ReDCAD-Research unit, University of Sfax, Sfax, Tunisia
2CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

3Univ. de Toulouse, LAAS, F-31400 Toulouse, France

Keywords: SOA Design Patterns, SoaML Modeling, Formal Methods, Event-B Method, Tool Support.

Abstract: Although design patterns have become increasingly popular, most of them are presented in an informal way.
Patterns, proposed by the SOA design pattern community, are described with a proprietary informal notation,
which can raise ambiguity and may lead to their incorrect usage. Modeling SOA design patterns with a
standard formal notation avoids misunderstanding by software architects and helps endow design methods. In
this paper, we present an approach that aims, first, to model message-oriented SOA design patterns with the
SoaML language, and second to transform them to Event-B specifications. These two steps are performed
before undertaking the effective coding of a design pattern providing correct by construction pattern-based
software architectures. Our approach is enhanced with a tool supporting it. Specification results are imported
under the Rodin platform which we use to prove model consistency.

1 INTRODUCTION

The dominant architectural style for many systems is
theService-oriented architecture(SOA), a style that
is essentially based on the message exchange. This ar-
chitecture offers a model and an opportunity to solve
problems related to the communication and the inte-
gration between heterogeneous and distributed appli-
cations (Erl, 2009). However these architectures are
subject to some quality attribute failures (e.g., avail-
ability, reliability, and performance problems). De-
sign patterns, as tested solutions to common design
problems within a context, have been widely used to
solve these weaknesses.

Patterns, proposed by the SOA design pattern
community, are described with a proprietary infor-
mal notation (Erl, 2009), which can raise ambiguity
and may lead to their incorrect usage. So they require
modeling with a standard notation and then formaliza-
tion. The intent of our approach is to model and for-
malize message-oriented SOA design patterns. These
steps are performed before undertaking the effective
coding of a design pattern, so that the pattern in ques-
tion will be correct by construction. Our approach al-
lows to reuse correct SOA design patterns, hence we
can save effort on proving pattern correctness.

The main idea underlying our approach has been
introduced in (Tounsi et al., 2013b). In (Tounsi
et al., 2013a) we presented the generic formalization
of SOA design patterns using the Event-B method. In
this paper, we present transformation rules for map-
ping SoaML pattern diagrams into Event-B pattern
specifications and how they are implemented. We
proceed by proposing the SOA design patterns mod-
eling. This modeling step is proposed in order to at-
tribute a standard notation to SOA design patterns.
Then we propose the transformation of design pattern
models, according to transformation rules, into Event-
B specifications. We import the generated specifica-
tions under the Rodin platform which we use to prove
model consistency. We provide structural features of
SOA design patterns in the modeling phase as well
as in the specification phase. Structural features of
a design pattern are generally specified by assertions
on the existence of types of components in the pat-
tern. The configuration of the elements is also de-
scribed, in terms of the static relationships between
them. We illustrate our approach through a pattern
example “Event-Driven Messaging”, proposed by the
SOA design pattern community. We also present a
tool supporting our approach.

The paper is structured as follows. Section 2 gives

294 Tounsi I., Hrichi Z., Hadj Kacem M., Hadj Kacem A. and Drira K..
Using SoaML Models and Event-B Specifications for Modeling SOA Design Patterns.
DOI: 10.5220/0004453302940301
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 294-301
ISBN: 978-989-8565-60-0
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

background information of some concepts used in this
paper. Section 3 gives an overview of our approach.
Section 4 describes our tool supporting our approach.
Section 5 discusses related work. Section 6 concludes
and gives future works.

2 BACKGROUND

In following, we provide background information on
patterns, XSLT language and Event-B method.

2.1 Design Patterns

In the field of information systems, a pattern is de-
fined as a model that provides a proven solution to a
common problem individually documented in a con-
sistent format and usually as part of a larger collec-
tion (Erl, 2009). Patterns can be classified relatively
to their level of abstraction into three categories:
architectural patternsthat provide the skeleton for
the overall shape and the structure of software appli-
cations at a high-level design (Gomaa, 2004),design
patternsthat encode a proven solution to a recurring
design common problem (Ramirez and Cheng, 2009),
and implementation patternsthat provide a solution
to a given problem in programming (Beck, 2007). It
is used to generate code.

2.2 XSLT

XSLT1(eXtensible Styles Language Transformation)
is a W3C standard that supports the XML standard.
The objective of this specification is to transform
XML documents into another document format. XSL
is decomposed into two languages, a transformation
language and a formatting language. The first one can
transform an XML document into another document,
while the second one can use predefined tags to rep-
resent the visual aspect of an XML document. XSLT
apply the transformation written by XSL stylesheet to
an XML document.

2.3 Event-B

Event-B (Abrial, 2010) is a formal method for devel-
oping systems via stepwise refinement, based on first-
order logic. The method is enhanced by its supporting
Rodin Platform (Abrial et al., 2010) for analyzing and
reasoning rigorously about Event-B models. The ba-
sic concept in the Event-B development is the model
which is made of two types of components:contexts

1http ://www.w3.org/TR/xslt

andmachines. A contextdescribes the static part of a
model, whereas amachinedescribes the dynamic be-
havior of a model. Each context has a name and other
clauses like ”Constants” to declare constants, ”Sets”
to declare a new data type and ”Axioms” that denotes
the type of the constants and the various predicates
which the constants obey. It is a predicate that is as-
sumed to be true in the rest of the model.

3 APPROACH OVERVIEW

The main goal of our approach is the modeling of
message-oriented SOA design patterns with the semi-
formal SoaML2 standard language, the automatic
transformation of pattern diagrams to Event-B spec-
ifications and the formal verification of their correct-
ness. Figure 3 depicts the overall approach.

After modeling design patterns, the graphical ed-
itor generates an XML file. The plug-in transforms
this XML file, according to transformation rules ex-
pressed with the XSLT language, into Event-B spec-
ifications. These specifications will then be imported
under the Rodin theorem prover that supports the gen-
eration of Proof Obligations belonging to Event-B
models. The Rodin Platform is also used in order to
check the syntax of SOA design pattern specifications
as well as their correctness.

3.1 SOA Design Patterns Modeling

We provide a modeling solution for describing SOA
design patterns using a visual notation based on the
graphical SoaML language. Three main reasons lead
to use SoaML. First, it is a standard modeling lan-
guage defined by OMG. Second, it is used to describe
service oriented architectures. Third, diagrams used
in SoaML, allow to represent structural features as
well as behavioral features of design patterns.

The SoaML metamodel extends the UML meta-
model to support an explicit service modeling in dis-
tributed environments. This extension is perfectly ap-
plied to SOA design patterns modeling. We model
structural features of design patterns with Participant
diagram, ServiceInterface diagram, MessageType di-
agram.

In this paper, we model as example the
Event Driven Messagingpattern3 (Erl, 2009). It is
an SOA design pattern for inter-service message ex-
change. It resolves the problem of inefficient polling-
based interactions for service consumer, generated in

2http ://www.omg.org/spec/SoaML/
3http ://soapatterns.org/patterns/eventdriven messaging

Using�SoaML�Models�and�Event-B�Specifications�for�Modeling�SOA�Design�Patterns

295

EVENT Sending_Req
Where

CONSTANTS
RequestMessage
ResponseMessage

AXIOMS
Message_partition :

partition(MessageType,

EVENT Receiving_Resp
Where

CONSTANTS
RequestMessage
ResponseMessage

AXIOMS
Message_partition :

partition(MessageType,

Transformation
Rules

2.Transformation

Graphical editor 3.Generate Event-B specifications

SETS
MessageType.

CONSTANTS
RequestMessage
ResponseMessage

AXIOMS
Message_partition : partition(MessageType,

RequestMessage},{ResponseMessage})1.Edit models

XML documents

���������� 	
�����������������
����

������������ �������������
���������

������

���������� ��
���������������

�������

��������������

������������ �������������
������������
���

������

���������� ��
����� ����������

�������

��������������

������������ �������������
��!��"#���������

������

���������� 	
�����������������
����

������������ �������������
���������

������

���������� ��
���������������

�������

��������������

������������ �������������
������������
���

������

���������� ��
����� ����������

�������

��������������

������������ �������������
��!��"#

������

4. Proof Obligations

R����

User

Figure 1: The overall approach.

order to obtain information about events occurrence.
The solution proposed by this pattern is to introduce
an event manager allowing the service consumer to
set itself up as a subscriber to events associated with a
service that assumes the role of publisher. So that ser-
vice consumers are automatically notified of runtime
service events.

We specify entities of the pattern and their depen-
dencies (connections) in the Participant diagram (Fig-
ure 2) and we specify their interfaces and exchanged
messages in the ServiceInterface and MessageType
diagrams respectively (Figure 3).

The Subscriber, the Publisher and theEvent-
Managerare defined as participants because they pro-
vide and use services. As shown in Figure 2, the
Publisherprovides aneventused by theSubscriber.
When the event occurs, thePublisher automati-
cally sends the event details to theEvent-Manager,
which then broadcasts the event notification to the
Subscriber. Both thePublisherand theSubscriber
have a port typed with “Event”. thePublisheris the
provider of the service and has a Service port. The
Subscriberis a consumer of the service and uses a Re-
quest port. In this diagram, ServiceChannels are ex-
plicitly represented, they enables communication be-
tween the different participants.

« Participant »

Publisher

« Participant »

Event_Manager «ServiceChannel»

PushEM_P

« Participant »

Subscriber «ServiceChannel»

PushS_EM

« Service »

: Event_Notif

«ServiceChannel»

« Service » :

Event

« Request »

: ~ Event

«ServiceChannel»
PushP_EM

«ServiceChannel»

PushEM_S

Figure 2: Participant diagram.

In the MessageType diagram (Figure 3) three
MessageTypes are used to define information ex-
changed between thePublisher, the Subscriberand
theEvent-Manager. These messages are “SubsReq”,
“SubsResp ” and “EventInfo ”, they are used as types
for operation parameters of the service interfaces. As
shown in Figure 3, thePublisher’s port type is the

UML interface “ProviderEvent ” that has the opera-
tion “publishEvent ”. This operation has a message
style parameter typed “EventInfo ”. The Subscriber
expresses its request for the “Event” using its request
port. The type of this request port is the UML in-
terface “SubscriberEvent ”. This interface has an
operation “subscribeEvent ” with a parameter typed
“SubsReq”. The type of theEvent-Manager’s port
is the UML interface “Notification ” that has two
operations “eventNotif ” and “subsNotif ”. These
operations have two message style parameters where
the type of the parameters are the MessageTypes
“SubsResp ” and “EventInfo ”.

«MessageType»

SubsReq

«MessageType»

EventInfo

«MessageType»

SubsResp

« Interface »

Notification

+ subsNotif (snotif: SubsResp)

« Interface »

SubscriberEvent «use»

+ eventNotif (enotif: EventInfo)

«use»

« Interface »

ProviderEvent

+ subscribeEvent (rq:SubsReq)
«ServiceInterface»

~ Event

«ServiceInterface»

Event

«ServiceInterface»

Event_Notif

+ publishEvent(rs:EventInfo)

«Participant» «Participant»

«use»

Type

Type

«Participant»

Notification

Type

«Participant»

Subscriber
SubscriberEvent

«Participant»

Publisher ProviderEvent
«Participant»

Event_Manager

«Request»

: ~ Event+

subscribeEvent

«Service»

: Event

bli hE t

+

b N tif

+

«Service»

: Event_Notif

tN tif

+

subscribeEvent publishEvent subsNotifeventNotif

Figure 3: ServiceInterface and MessageType diagrams.

3.2 SOA Design Patterns
Transformation

In the SOA design patterns transformation step, we
present the transformation process of SoaML dia-
grams to Event-B language.

3.2.1 Participant Diagram Mapping

This diagram constitute the static part of the defined
pattern. It is specified in theContextpart. The trans-

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

296

formation of the Participant diagram is based on four
major rules allowing the transformation of a graphical
model into an Event-B specification.

R1. Architecture Entities Transformation Rule
This rule transforms entity types into new Event-B
entity types. Participant names and agent names are
transformed to constants. The setEntity is composed
of the set of allParticipantsand the set of allAgents.
This is specified by using a partition in theAXIOMS
clause (Entity partition). The following algorithm
shows how to transform the architecture entities.

Algorithm 1 : Architecture entities transformation rule.

1: begin

2: Write (” SETS”)

3: Write (‘Entity’)

4: Write (” CONSTANTS ”)

5: if exist Participantthen

6: Write (‘Participant’)

7: for each Participantdo
8: Write (Participant.Name)

9: end for
10: end if
11: if exist Agentthen
12: Write (‘Agent’)

13: for each Agentdo
14: Write (Agent.Name)

15: end for
16: end if
17: Write (” AXIOMS ”)

18: Write (‘Entity partition:partition(Entity’)

19: if exist Participantthen
20: Write(‘,Participant’)

21: end if
22: if exist Agentthen
23: Write(‘,Agent’)

24: end if
25: if exist Participantthen
26: Write(‘Participantpartition (Participant,’)

27: for each Participantdo
28: Write (Participant.Name)

29: end for
30: end if
31: if exist Agentthen
32: Write(‘Agent partition (Agent,’)

33: for each Agentdo
34: Write (Agent.Name)

35: end for
36: end if
37: end

R2. Connections Transformation Rule
In the SoaML modeling, a ServiceChannel is a
connection between two architecture entities. This
rule define the graphical connection with an Event-
B relation between two entities (ServiceChannel)
and transforms ServiceChannels name into con-
stants in theCONSTANTSclause. The set of Ser-
viceChannels is composed of all ServiceChannel’s

name. This is transformed formally to a partition
(ServiceChannelpartition). This rule also generates
DomainandRangeaxioms for each service channel
to define its source and its target. The following algo-
rithm shows how to transform a service channel.

Algorithm 2 : Connections transformation rule.

1: begin

2: Write (” CONSTANTS ”)

3: if exist ServiceChannelthen
4: Write (’ServiceChannel’)

5: for each ServiceChanneldo
6: Write (ServiceChannel.Name)

7: end for
8: end if
9: Write (” AXIOMS ”)

10: if exist ServiceChannelthen
11: Write(’ServiceChannelpartition:partition(ServiceChannel’)

12: for each ServiceChanneldo
13: Write (ServiceChannel.Name)

14: end for
15: Write(’ServiceChannelRelation : ServiceChannel∈ Entity ↔

Entity’)

16: for each ProviderInterfacedo
17: Write (ProviderInterface.Origine)

18: Write(’ Domain:dom’)

19: Write (({ProviderInterface.Origine}))

20: Write(’=’)

21: Write ({ProviderInterface.Destinataire})

22: end for
23: for each RequireInterfacedo
24: Write (RequireInterface.Destinataire)

25: Write(’ Range:ran’)

26: Write (({RequireInterface.Destinataire}))

27: Write(’=’)

28: Write ({RequireInterface.Origine})

29: end for
30: end if
31: end

R3. Class Descriptions Transformation Rule
This rule transforms catalog type to a new Event-B
catalog type and catalogs name into constants in the
CONSTANTSclause. The set of Catalogs is composed
of all catalogs name. This is transformed formally to
a partition (Catalog partition). This rule also trans-
forms category type to a new Event-B category type
and categories name into constants in theCONSTANTS
clause. The set of Categories is composed of all Cat-
egories name. This is transformed formally to a par-
tition (Categorypartition). The relation of contain-
ment of a Catalog with Categories is transformed to
the relationBelongsto. The link ofCategorizationis
transformed to a relation between a Category and an
Entity. The following algorithm shows how to trans-
form class descriptions.

Using�SoaML�Models�and�Event-B�Specifications�for�Modeling�SOA�Design�Patterns

297

Algorithm 3 : Class descriptions transformation rule.

1: begin

2: Write (” SETS”)

3: if exist Catalogthen
4: Write (’Catalog’)

5: end if
6: if exist Categorythen
7: Write (’Category’)

8: end if
9: Write (” CONSTANTS ”)

10: if exist Catalogthen
11: for each Catalogdo
12: Write (Catalog.Name)

13: end for
14: end if
15: if exist Categorythen
16: for each Categorydo
17: Write (Category.Name)

18: end for
19: end if
20: if exist Category and exist Catalogthen
21: Write (’BelongsTo’)

22: Write (’Categorization’)

23: end if
24: Write (” AXIOMS ”)

25: if exist Catalogthen
26: Write(’Catalogpartition:partition(Catalog,’)

27: for each Catalogdo
28: Write (Catalog.Name)

29: end for
30: end if
31: if exist Categorythen
32: Write(’Categorypartition:partition(Category,’)

33: for each Categorydo
34: Write (Category.Name)

35: end for
36: Write(’Belongsto Relation: Belongsto∈Catalog↔Category’)

37: Write(’Categorization: Categorization∈Category↔ Entity’)

38: Write (’Belongsto init:Belongsto = {’)

39: for each Categorydo
40: for each Catalogdo
41: Write (Catalog.Name)

42: Write(’ 7→’)

43: Write (Category.Name)

44: end for
45: end for
46: Write (’}’)

47: Write (’Categorizationinit:Categorization ={’)

48: for each Categorizationdo
49: Write (Categorization.TransitionToNoeud)

50: Write(’ 7→’)

51: Write (Categorization.TransitionFromNoeud)

52: end for
53: Write (’}’)

54: end if
55: end

R4. Capabilities Transformation Rule
This rule transforms capability type to a new Event-B
capability type and capability name into constants in
theCONSTANTSclause. The set of Capabilities is com-

posed of all capabilities name. This is transformed
formally into a partition (Capability partition). The
link between a Participant and a capability is trans-
formed to a relationProvide. The following algorithm
shows how to transform capabilities.

Algorithm 4 : Capabilities transformation rule.

1: begin

2: Write (” SETS”)

3: if exist Capabilitythen
4: Write (’Capability’)

5: end if
6: Write (” CONSTANTS ”)

7: if exist Capabilitythen
8: for each Capabilitydo
9: Write (Capability.Name)

10: Write (’Provide’)

11: end for
12: end if
13: Write (” AXIOMS ”)

14: if exist Capabilitythen

15: Write(’Capability partition:partition(Capability,’)

16: for each Capabilitydo
17: Write (Capability.Name)

18: end for
19: Write(’Provide Relation: Provide∈ Participant↔Capability’)

20: Write(’Capability init:Capability={’)

21: for each Realizationdo
22: Write (Realization.TransitionFromProperty)

23: Write(’ 7→’)

24: Write (Realization.TransitionToCapability)

25: end for
26: Write (’}’)

27: end if
28: end

3.2.2 MessageType Diagram Mapping

This diagram is also specified in theContextpart. The
transformation of this diagram is based on a single
rule that allows to transform the graphical model into
an Event-B specification. This rule transforms Mes-
sageType to a new Event-B message type and mes-
sages name into constants in theCONSTANTSclause.
The set of MessageType is composed of all messages
name. This is transformed formally to a partition
(Messagepartition). The following algorithm shows
how to transform MessageTypes.

3.2.3 Service Interface Diagram Mapping

This diagram is specified in the sameContext. The
transformation rule of this diagram define the relation
Can Send, which is the link between anEntity and a
MessageType. The following algorithm shows how
to transform Service Interfaces.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

298

Figure 4: SOA design patterns plug-in.

Algorithm 5 : MessageType transformation rule.

1: begin

2: Write (” SETS”)

3: if exist Messagethen
4: Write (’MessageType’)

5: end if
6: Write (” CONSTANTS ”)

7: if exist Messagethen
8: for each MessageTypedo
9: Write(MessageType.Name)

10: end for
11: end if
12: Write (” AXIOMS ”)

13: if exist Messagethen
14: Write(’Messagepartition:partition(MessageType’)

15: for each MessageTypedo
16: Write (,{ MessageType.Name})

17: end for
18: end if
19: end

4 TOOL SUPPORT

Our approach is enhanced by an Eclipse plug-
in based on its development on the Frameworks;
GMF (Graphical Modeling Framework) (Eclipse,
2010b), EMF (Eclipse Modeling Framework) (Stein-
berg et al., 2009) and GEF (Graphical Editing
Framework) (Eclipse, 2010a). It is a graphical mod-
eling tool that ensures an easy and efficient modeling
way of SOA design patterns. Several diagrams are
available in the plug-in; we can modelParticipant
diagram,Service Inter f acediagram, andMessage
Typediagram.

The SOA design patterns diagram editor is a tool
where diagrams can be created to model patterns. Fig-

Algorithm 6 : Service Interface transformation rule.

1: begin

2: Write (” CONSTANTS ”)

3: if exist Participantthen
4: Write (’Can Send’)

5: end if
6: Write (” AXIOMS ”)

7: Write(’Can SendRelation: Can Send∈ Entity↔MessageType’)

8: Write(’Can Sendinit:Can send ={’)

9: Var1← Participant.RequestPort.Name

10: Var2← ServiceInter f ace.Name

11: Var3← AssociationUse.Origine

12: for each Participantdo
13: Write(Participant.Name)

14: Write(’ 7→’)

15: if Var1=Var2 andVar1=Var3 then
16: Select(AssociationUse.Destinataire)

17: Write(Interface.OperationInterface.Name)

18: end if
19: end for
20: Write (’}’)

21: end

ure 4 shows the diagram editor of the SOA design
patterns with an illustration of the pattern example
“Event-Driven Messaging”. After modeling a design
pattern, the plug-in generates an XML specification
describing it. The generated XML specification corre-
sponding to the participant diagram presented in Fig-
ure 2, is depicted in follows.

<!-- =======Entities======= -->
<Participant ParticipantName="Subscriber">

<Port>
<RequestPort Name=": ˜ Event"/>

</Port>
</Participant>
...

<!-- =======Connexions======= -->
<RequireInterface Origine="..." Destinataire="//@Asse mblage.0"/>
<RequireInterface Origine=".../@Port.0" Destinataire= "..."/>
...

Using�SoaML�Models�and�Event-B�Specifications�for�Modeling�SOA�Design�Patterns

299

The plug-in transforms the generated XML file,
according to transformation rules expressed with the
XSLT language, into Event-B specifications. These
specifications can be imported under the Rodin plat-
form to verify their correctness. Transformation rules
described in section 3.2 are expressed with the XSLT
language.

By applying transformations rules on the gener-
ated XML specifications, we obtain Event-B specifi-
cations presented in Figure 5.

CONTEXT
EventDrivenM

SETS
Entity
MessageType

CONSTANTS
Participant
ServiceChannel

AXIOMS
Entity_partition: partition(Entity, Participant)
Participant_partition: partition(Participant, {Subscriber},
{Event_Manager}, {Publisher})
Message_partition: partition(MessageType, {SubsReq}, {SubsResp},
{EventInfo})
ServiceChannel_Relation: ServiceChannel� Entity↔ Entity
ServiceChannel_partition: partition(ServiceChannel, {PushS_EM},
{ PushEM_S}, { PushEM_P}, { PushP_EM})ServiceChannel

Subscriber
Event_Manager
Publisher
SubsReq
EventInfo
PushS_EM
Can_Send
. . .

{ PushEM_S}, { PushEM_P}, { PushP_EM})
PushS_EM_Domain:dom({PushS_EM}) = {Subscriber}
. . .
PushEM_S_Range:ran({PushEM_S}) = {Subscriber}
. . .
Can_Send_Relation:Can_Send� Entity↔ MessageType
Can_Send_init:Can_Send = {Subscriber� SubsReq, Publisher �
EventInfo, Event_Manager�SubsResp, Event_Manager�EventInfo}

END

Figure 5: Excerpt of Event-B specification results.

5 RELATED WORK

In the literature most proposed patterns are described
with a combination of textual description and a graph-
ical presentation (Gamma et al., 1995), some times
using proprietary notations (Gregor Hohpe, 2003; Erl,
2009), in order to make them easy to read and un-
derstand. However, using these descriptions makes
patterns ambiguous and may lack details. There have
been many research that specify patterns using formal
techniques (Zhu and Bayley, 2010; Blazy et al., 2003)
but research that model design patterns with semi-
formal languages are few (Mapelsden et al., 2002).

In our research work we are interested inSOA de-
sign patternsdefined by Erl (Erl, 2009). For these
patterns, there are no work that model or formally
specify them. Erl presents his patterns with an infor-
mal proprietary notation because there is no standard
modeling notation for SOA, but now OMG announces
the publication of the SoaML language (OMG, 2012).
So, in our work, we propose to model SOA design
patterns with the SoaML standard language. After
the modeling step, we propose to specify these pat-
terns formally. Similar to (Zhu and Bayley, 2010;
Kim and Carrington, 2009) we specify design patterns
using First Order Logic, but we use a different formal
method which is Event-B.

After the OMG publication of the SoaML lan-
guage, some works that provide SoaML support ap-

peared. Delegado et al. (Delgado et al., 2011) devel-
oped an Eclipse plug-in based on EMF and GMF that
implements the SoaML standard. Modeling with this
plug-in is quite heavy and we can not model a pro-
vided/required connection with SoaML. Other tools
that allow modeling service oriented architectures ac-
cording to the OMG standard exists like Modeliosoft
(Modeliosoft, 2011) and modelDriven (ModelDriven,
2009) however, these tools do not use transformation
techniques for generating formal specifications.

In this context, we proposed a tool for modeling
SOA design patterns, that is not only easy to use, spe-
cific for our diagrams, and adaptable with Rodin en-
vironment but also it allows importing and exporting
XML files of model that will be subsequently con-
verted to Event-B specifications. Moreover, we use
the XSLT language for the automatic transformation
of our model to Event-B language.

6 CONCLUSIONS

In this paper, we presented an architecture-centric ap-
proach supporting the modeling and the transforma-
tion of message-oriented SOA design patterns to for-
mal specifications. The modeling phase allows to de-
scribe SOA design patterns with a graphical standard
notation using the SoaML language. The transforma-
tion phase allows to formally specify structural fea-
tures of these patterns at a high level of abstraction.
We proposed an Eclipse plug-in that supports our ap-
proach. More precisely, it allows the modeling of
SOA design patterns and then generating the corre-
sponding XML file. Each XML file is transformed
according to transformation rules expressed with the
XSLT language into Event-B specifications. These
specifications are then imported under the Rodin plat-
form. We illustrated our approach through a pattern
example (“EventDriven Messaging”). In this pa-
per, we presented structural features of design pat-
terns, behavioral features are presented in the mod-
eling phase with sequence diagram which are then
transformed to machines in the Event-B method. Cur-
rently, we are working on defining transformation
rules in order to automate this phase.

ACKNOWLEDGEMENTS

This paper is done with the support of the Min-
istry of Higher Education and Scientific Research of
Tunisia within the Tunisian-French scientific cooper-
ation (DGRS/CNRS).

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

300

We would like to thank Hayfa Ben Abdallah for
her contribution.

REFERENCES

Abrial, J.-R. (2010).Modeling in Event-B: System and Soft-
ware Engineering. Cambridge University Press, New
York, NY, USA, 1st edition.

Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T. S.,
Mehta, F., and Voisin, L. (2010). Rodin: An Open
Toolset for Modelling and Reasoning in Event-B.Int.
J. Softw. Tools Technol. Transf., 12(6):447–466.

Beck, K. (2007). Implementation Patterns. Addison Wes-
ley; 1 edition (23 Oct 2007).

Blazy, S., Gervais, F., and Laleau, R. (2003). Reuse of spec-
ification patterns with the B method. InProceedings
of the 3rd international conference on Formal spec-
ification and development in Z and B, ZB’03, pages
40–57, Berlin, Heidelberg. Springer-Verlag.

Delgado, A., Laura, G., Sofia, L., Andrs, P., FranciscoRuiz,
I., and Garcia, R. (2011). SoaML Eclipse plug-in para
modelado de servicios. Technical report, Technical
report.

Eclipse (2010a). Graphical Editing Framework. http://
www.eclipse.org/gef/.

Eclipse (2010b). Graphical Modeling Framework.
http://www.eclipse.org/modeling/gmf/.

Erl, T. w. a. c. (2009).SOA Design Patterns (The Prentice
Hall Service-Oriented Computing Series from Thomas
Erl). Prentice Hall PTR, 1 edition.

Gamma, E., Helm, R., Johnson, R. E., and Vlissides,
J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA.

Gomaa, H. (2004).Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software Ar-
chitectures (The Addison-Wesley Object Technology
Series). Addison-Wesley Professional.

Gregor Hohpe, B. W. (2003).Enterprise Integration Pat-
terns - Designing, Building, and Deploying Messag-
ing Solutions. Addison Wesley.

Kim, S.-K. and Carrington, D. A. (2009). A formalism to
describe design patterns based on role concepts.For-
mal Asp. Comput., 21(5):397–420.

Mapelsden, D., Hosking, J., and Grundy, J. (2002). Design
pattern modelling and instantiation using DPML. In
Proceedings of the 40th International Conference on
Tools Pacific: Objects for internet, mobile and embed-
ded applications, CRPIT’02, pages 3–11. Australian
Computer Society, Inc.

ModelDriven, C. (2009). ModelDriven. http://portal.
modeldriven.org/.

Modeliosoft (2011). Modelio: The open source modeling
environement. http://modeliosoft.org/.

OMG (2012). Service oriented architecture Modeling Lan-
guage (SoaML) Specification. Technical report.

Ramirez, A. J. and Cheng, B. H. (2009). Developing and
applying design patterns for dynamically adaptive sys-
tems. Technical Report MSU-CSE-09-8, Department

of Computer Science, Michigan State University, East
Lansing, Michigan.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition.

Tounsi, I., Hadj Kacem, M., Hadj Kacem, A., and Drira, K.
(2013a). An Approach for Modeling and Formaliz-
ing SOA Design Patterns. In22nd IEEE International
Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises, WETICE 2013, Ham-
mamet, Tunisia, June 17-20, 2013. To appear.

Tounsi, I., Hadj Kacem, M., Hadj Kacem, A., Drira, K.,
and Mezghani, E. (2013b). Towards an Approach for
Modeling and Formalizing SOA Design Patterns with
Event-B. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC 2013, pages
1937–1938, Coimbra, Portugal. ACM.

Zhu, H. and Bayley, I. (2010). Laws of pattern composition.
In Proceedings of the 12th international conference on
Formal engineering methods and software engineer-
ing, ICFEM’10, pages 630–645, Berlin, Heidelberg.
Springer-Verlag.

Using�SoaML�Models�and�Event-B�Specifications�for�Modeling�SOA�Design�Patterns

301

