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Abstract: This paper addresses the linearization process of an autonomous mobile robot utilizing the second order 
Sterling polynomial interpolation specifically used for Unscented HybridSLAM algorithm. It describes the 
implementation of the linearization method to estimate the posterior mean and covariance of the system. 
The major interest is to apply linearized equations for a simultaneous localization and mapping case in a 
non-domestic environment with a random distribution of landmarks. Using computer simulations, 
Unscented HybridSLAM and the associated theoretical interpolation is examined for a double-loop scenario 
and the efficacy of the Unscented HybridSLAM is validated. 

1 INTRODUCTION 

The main task of a feature-based SLAM algorithm is 
to estimate the path of the robot and map of the 
environment as accurate as possible. There are many 
methods in which the robot uses different sensors to 
measure positions of landmarks as well as pose of 
the robot (Williams et al., 2002). Sensor readings are 
analyzed in these methods to extract data from the 
active or passive features in the environment to 
match it with a-priori known information in order to 
determine the current position of the robot. Usually, 
the task of extracting and matching data with a-
priori information is easy for a domestic 
environment in which landmarks are distributed 
evenly. If the robot has a notation of evenly 
distribution of landmarks, the extracting of such data 
would be rather easier. For some SLAM cases in 
which the robot is equipped with restricted sensors, a 
uniform distribution of landmarks would 
considerably reduce the ambiguity of data 
association in the environment (Sasiadek et al., 
2008). The advantage in such cases would be the 
elimination of data extracted from wrongly observed 
landmarks. Since the robot is aware of a uniform set 
of landmarks, sensor readings that result more than a 
specific threshold would be automatically deleted 
from the estimation process as a result of the 
Maximum Likelihood Rule (Thrun et al., 2004). 

2 STERLING POLYNOMIAL 
INTERPOLATION 

The formulation of the second order Sterling 
Polynomial Interpolation (SPI) is the basis of 
derivation of the Divided Deference Filter (DDF) 
and the Central Difference Filter (CDF) (Norgard et 
al., 2000). To formulate the equations of the system 
in a linear form, the second order SPI will be 
discussed in this section to indicate how a non-linear 
system can be approximated in a linear form. Then, 
the mean and covariance of the system in the 
posterior state will be discussed. Based on Taylor 
series of a non-linear function in [5], a random 
variable x around a statistical point x  as its mean, 
can be expressed by 
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The SPI formula (Julier, Uhlmann, 2004) uses a 
finite number of functional evaluations to 
approximate the above non-linear function with 
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 as the second order central 

divided difference operators acting on h(x),   is the 
interval length or central difference step size and 
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x is the prior mean of x around which the expansion 
is done. The resulting formula can be expressed as  
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In some cases (Dahlquist and Bjorck, 1974), the SPI 
formula can be interpreted as the Taylor series. If 
this formula is extended to the multi dimensional 
case, the function h(x) may be obtained by first 
stochastically decoupling the prior random variable 
x by the linear transformation as  

xSy 1
x
  (5)

)(h)(h)(h
~

xySy  x
 (6)

where 
xS is called Cholesky factor (Smith, Self, and 

Cheesman, 1974) of the covariance matrix Px of x 

such that Px=SxS
T
x . It should be noted that Taylor 

series expansion of h(.) and (.)
~
h  is identical if the 

expected value of vector x is E[x] and the covariance 
of the system is the expected value of Px = 
E[ )( xx  )( xx  T ], the transformation stochastically 

decouples variables in x so that the interval 
components of y becomes mutually uncorrelated. 

Py = E[ )( yy  )( yy 
T ] = I (7)

Assuming that L is the dimension of x and y 

with 
iy i)( yy   as the ith component of yy  (i= 

1, … , L), 
ie is the ith unit vector, 

id is the partial 

first order difference, 2
id  is the partial second order 

difference, and 
im  is the mean operator (Monjazeb 

et al. , 2012). Therefore,  
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using equations (5) and (6) and considering that 

ixs is the ith column of the Cholesky factor of 

covariance matrix of x we can induce  
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Set of vectors defined in equation (13) is equivalent 
so that that the UKF generates its set of sigma-points 
with only the difference in the value of the 
weighting term (Julier and Uhlmann, 2001). 

3 POSTERIOR MEAN  
AND COVARIANCE 
ESTIMATION 

The observation function can be expressed through a 
non-linear function h(.) and with considering non-
linear transformation of an L dimensional random 
variable x with covariance Px and mean x  as follows  
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The posterior mean of y  and its covariance and 

cross covariance are defined as 
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Assuming that  y )( yy   is a zero-mean unity 

variance random variable which is symmetric 
(Norgard et al., 2000) as defined in equation (5), the 
mean is approximated as  
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By rewriting the posterior mean in terms of motion 
vector (Brooks and Bailey, 2009) we will have  
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Using the identity 
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From equation (15), the second order approximation 
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 y )( yy   is symmetric, therefore,  all 

resulting odd-order expected moments have zero 
value. Since the number of terms in this calculation 
grows rapidly with the dimension of y, the inclusion 
of such terms leads the computation highly complex. 
As a result all components of the resulting fourth 

order term, E[ 
4

1 ( h
~~ 2

yΔD ) ( h
~~ 2

yΔD ) T ], that contains 

cross differences in the expansion of equation (28) 
are discarded. The extra effort worthwhile is not 
considered since it is not possible to capture all 
fourth order moments (Monjazeb, Sasiadek, and 

Necsulescu, 2011). The approximation of the 
covariance and cross-covariance matrices are 
expressed as below. For the details refer to (Norgard 
et al., 2000).  

In equation (30) the odd-order moment terms are 
all zero since )( kk yy  is symmetric. The optimal 

setting of the central difference interval 
parameter,  , is dictated by the prior distribution of 

xSy 1
x
 . For Gaussian priors, the optimal value of 

h is thus h = 3 . For more details see (Norgard et 
al., 2000).  
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4 SIMULATIONS AND RESULTS 

4.1 Landmark Estimation Threshold 

Figure 1-a shows a path in an environment  with  a 
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non-uniform distribution of landmarks. Figure 1-b 
depicts the range of position estimation of landmark 
at x=30m and y=20m. The error in this case 
indicates that the estimated location of the landmark 
is within ±0.40m. In this particular scenario, the 
level of data ambiguity does not arise exponentially 
when the distribution of landmarks change from 
uniform to random. Figure 2 compares the 
ambiguity of data with the use of EKF-SLAM as 
well as using 3000 particles resulted by FastSLAM, 
HybridSLAM, and Unscented HybridSLAM. 
Hundreds of dots that make different formations 
around in the range are depicted in this figure for 
each specific algorithm. The threshold range (oval) 
is obtained using a standard EKF under Gaussian 
conditions. The true position of the landmark is at 
x=30m and y=20m. The banana shape in figure 2-a, 
shows the estimation result using the first order 
Taylor series in EKF under non-Gaussian conditions 
which appears to be highly inaccurate.  

The banana shape in figure 2-b, illustrates a 
reduction of error in the location estimation of the 
landmark using FastSLAM and as a result less 
ambiguity in data. However, estimated points do not 
fit in the standard oval and there are about 60% of 
estimated points off the standard threshold. 
HybridSLAM has relatively less ambiguity in data 
association as shown in figure 2-c. As shown in the 
picture, there are only 30% of points outside the 
range. Moreover, the estimation dots are mostly 
inside the standard range. Nonetheless, it is still far 
from the standard threshold and may not be an 
acceptable result for SLAM applications. The 
estimation of the landmark with Unscented Kalman 
Filter creates an oval shape around the true location 
of the landmark and is the one with the least 
ambiguity in data association. As demonstrated in 
figure 2-d, about 15% of estimated points are outside 
the standard range which proves that HS has the 
most acceptable result amongst all other algorithms. 
As a result, UHS is the only algorithm which is a 
recursive filter based on sterling approximation and 
has the least tendency to diverge. Figures 3 to 5 
demonstrate the performance of Unscented 
HybridSLAM for the scenario depicted in figure 1. 
In figure 5 the location estimation error of landmark 
(x=10, y=0) is approximately 0.2m. In figure 6 the 
error of location estimation of landmark (x=30, 
y=40) is approximately 0.25m. 

4.2 Double Loop Closing Scenario 

In this section, simulation results of a double loop  
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(b) 

Figure 1: Random Distribution of Landmarks a) non-
uniform distribution of landmarks in the environment. b) 
estimated position of the landmark located at (x=30, 
y=20).  

scenario using Unscented HybridSLAM algorithm 
are presented. Here, the double loop closing case is 
exemplified in order to analyze the performance of 
the algorithm while the robot is travelling across 
more complex terrain. Figure 7 shows a map of the 
environment that contains an uneven distribution of 
landmarks. The figure also shows the true path of 
the robot. The speed of the mobile robot is assumed 
3.5 m/s. The robot completes the whole loop in 
approximately 2800 seconds. Number of particles 
used in this experiment is 500. In figure 7 the true 
map of the environment and observation results 
before closing the loop are depicted. The vehicle 
starts at the centre of the test area (x=0, y=0) and 
travels counter clock wise. During the navigation 
process landmarks are observed and the uncertainty 
increases slightly. The uncertainty in the 
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observations is at the largest value on the third part 
of path. Figure 8 demonstrates the actual error and 
standard deviations of the process when the robot is 
at the third part of the path. Simulation results 
illustrate the actual location error along x and y axes 
respectively. Dashed lines represent the 1-sigma 
estimated uncertainty. The simulated result indicates 
that UHS is a consistent method with the actual 
error. 

Figure 9 shows the evolution of the uncertainty 
for 4 out of 6 landmarks located in the smaller loop 
at the beginning of the process. All solid lines 
represent the deviations and dashed lines represent 
the location estimation error. Comparing the error 
between actual landmarks positions and those 
estimated with the 2-sigma deviations indicate that 
the UHS algorithm is consistent, specifically with 
respect to landmarks location error. As expected, the 
actual landmarks error and uncertainty have been 
reduced. Two out of six landmarks were not 
observed due to the scanner range limitations. Figure 
10 shows the result in regard to the orientation 
deviation and absolute error right after the loop is 
closed and indicates that the map becomes more 
correlated at the end of the first run. Figure 11 
depicts the situation in which the loop is closed and 
the robot is at one third of the path again. The robot 
is at point (x=-20, y=34) and heading to complete 
the second loop. The uncertainty in the observation 
of landmarks at this point is considerably reduced, 
meaning that the outcome of loop closing is 
successful and the filter converges. Moreover, all 
observable landmarks have been estimated correctly 
following the completion of the first run. Figure 12 
demonstrates absolute error and deviations along x 
and y axes, the orientation, and for six landmarks 
inside the internal loop after the robot completes the 
loop and is at one third of its path during completion 
of the second loop. The evolution of the uncertainty 
for all six landmarks in the map indicate that the 
map correlation in maintained and leads the final 
map to be consistent. These results show that the 
estimated uncertainty is consistent with the actual 
error along both axes and the orientation of the 
vehicle. The orientation error is around 0.02 radians 
which confirms Unscented HybridSLAM algorithm 
consistency.  
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 (d) 

Figure 2: Estimated position of the landmarks a) EKF-
SLAM under non-Gaussian conditions b) FastSLAM c) 
HybridSLAM d) Unscented HybridSLAM. 
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Figure 3: Orientation absolute error and deviation.  
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(b) 

Figure 4: Deviation along a) x axis b) y axis. 
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Figure 5: Landmarks deviation (x=10 , y=0) and (x=20 , 
y=0) using 3000 particles. 
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Figure 6: landmarks deviation (x=30 , y=40) and (x=12 , 
y=48) using 3000 particles.  
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Figure 7: True map of the environment with 94 observable 
landmarks.  
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Figure 8: Absolute error and deviations.  
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Figure 9: Landmark deviation and absolute error (a double 
loop case) using 500 particles. 
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Figure 10: Orientation Absolute error and deviation 
(double loop case) using 500 particles. 
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Figure 11: After the completion of the loop. 
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Figure 12: Landmark deviation after closing the loop. 

6 CONCLUSIONS 

The major shortcoming of most simultaneous 
localization and mapping algorithms is their 
limitation to the first order accuracy of propagated 
the mean and covariance as a result of first order 
truncated Taylor series linearization technique. 
Unscented HybridSLAM can address this issue with 
the use of a deterministic sampling approach to 
approximate the optimal gain and prediction terms in 
a linear Bayesian form. Unscented HybridSLAM, 
with its derivative-free Gaussian random variable 
propagation technique, is able to calculate the 
posterior mean and covariance of the system to the 
second order of Taylor series. In order to show how 
the model robot dynamics can be approximated, a 
derivative-free technique based on Sterling’s 
polynomial interpolation formula was derived and 
presented in this paper. Derived equations were 
linearized due to the high non-linearity of the 
system. The second order Sterling Polynomial 
Interpolation was employed to approximate a non-
linear function with first and second order central 
divided difference operators acting on the 
observation function expressed in a non-linear form. 
Simulation results indicated that with the second 
order Sterling polynomial linearization, Unscented 
HybridSLAM gained enough accuracy and stability 
in performance for double-loop scenarios in a non-
domestic environment. 
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