Internet of Things Aware WS-BPEL Business Process

Dulce Domingos, Francisco Martins and Carlos Candido
LaSIGE - Faculty of Science, Lisbon University, Campo Grande, Lisbon, Portugal

Keywords:

Abstract:

Internet of Things, Business Process, WS-BPEL.

Business process can benefit from the deployment of the Internet of Things, since they can use sensor context

information to optimize their execution and to react to emergent situations in real-time. Nowadays, the WS-
BPEL is the de-facto standard language used to define processes through the composition of web services.
However, as this language is based on the service orchestration paradigm, it complicates the way process can
use context information. This paper presents a WS-BPEL extension that includes context variables. These vari-
ables maintain sensor values. Their updates are done automatically by using the publish/subscribe paradigm.
In addition, to support more reactive behaviours, this extension also includes the when-then construct. To
realize this extension, we use the language transformation mechanisms, so it can be as much independent as

possible from the process execution engine.

1 INTRODUCTION

The Internet of Things (IoT) aims at bridging the
gap between the physical world and its representation
within information systems. It will definitely have a
deep impact on business processes, since they can use
the context information 10T provides to optimize their
execution and to adapt to environment changes, in real
time.

The WS-BPEL (OASIS, 2007) is a OASIS stan-
dard used to define processes as web services compo-
sitions, i.e., orchestrations of web services. To facil-
itate the 10T integration into business processes, re-
cent works provide the information and functionali-
ties of physical objects as web services. These web
services can be implemented directly in sensors or
through middleware (Zeng et al., 2011). The service-
oriented approach has the advantage of facilitating in-
teroperability as well as it also encapsulates hetero-
geneity and specificities of physical objects. As the
WS-BPEL is based on service orchestration, the sen-
sor information that web services provide can be eas-
ily integrated into processes by using a synchronous
request/reply paradigm.

However, with this paradigm, if a process needs
to have updated information about environment
changes, it has to get sensors information periodically,
overloading the process execution engine and increas-
ing the number of exchanged messages between the
sensor network and the execution engine.

Domingos D., Martins F. and Céandido C..
Internet of Things Aware WS-BPEL Business Process.
DOI: 10.5220/0004449905050512

The work we present in this paper aims at simpli-
fying the use of updated sensor context information in
business processes and at defining more reactive pro-
cesses. We define a WS-BPEL extension to include
context variables, which are update asynchronously
through the publisher/subscriber paradigm, according
to the WS-Natification standard. We support context
variable with a language transformation. This option
has the advantage of being independent from the pro-
cess execution engine.

In addition, our WS-BPEL extension also include
the when-then construct. The when condition can in-
clude context variables. We also support this con-
struct with a language transformation. However, our
implementation depends on an auxiliary service that
detects the modification of variable values. In our pro-
totype, we use Apache ODE listeners (Apache ODE,
2013).

We present a motivating scenario in the next sec-
tion. Section 3 resumes the standards we use in this
work. We describe related work in section 4 and our
WS-BPEL extension in section 5. The last section in-
cludes conclusions and future work.

2 MOTIVATING SCENARIO

Our motivating scenario is based on a common busi-
ness application: the transportation of goods.
A distribution company receives a container of

505

In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 505-512

ISBN: 978-989-8565-60-0

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

ICEIS 2013 - 15th International Conference on Enterprise Information Systems

strawberries on a pier discharge. After unloading, the
container is placed on a truck and transported to the
distribution center, from where they are distributed to
retail stores. The container has temperature sensors
and they are used to monitor the strawberries state.
During transportation, the temperature inside the con-
tainer raises above the value that guarantees strawber-
ries quality. If the company maintains the destination
of strawberries, they will reach consumers in bad con-
ditions. To avoid this waste, when they get the infor-
mation about the raise of temperature, they change the
container destination and it is forwarded to a closer
distribution center.

In this use case scenario, we illustrate the benefits
of monitoring context information, i.e., the tempera-
ture of the container, and consequently, the possibil-
ity to change the process to react to context modifica-
tions.

To include this behaviour into a WS-BPEL pro-
cess definition, the modeler has to define the interac-
tion with sensors, deviating his focus from the main
process logic.

3 CONCEPTS

In this section we present an overview of WS-BPEL.
Before that, we present the other standards we use in
this work.

3.1 Web Services Addressing

Web Services Addressing (WS-Addressing) (Box and
et al., 2004) defines transport-neutral mechanisms
that allow web services to communicate addressing
information. This specification defines elements to
uniquely identify web services endpoints using Ex-
tensible Markup Language (XML). One of the ele-
ments is the EndPointReference (EPR), whose field
address represents the web service address. Be-
yond this field, an EPR offers optional fields (such as
the ReferenceParameters), for instance, to distinguish
EPRs with the same address.

3.2 Web Services Description Language

Web Service Description Language (WSDL) (Chris-
tensen et al., 2001) is a XML-based language used
to describe the functionalities that web services offer.
A WSDL web service description includes its name,
address (EPR), the service binding (defines the proto-
cols), operations available, exchanged messages, and
possible faults. It contains all the information needed
to contact a web service.

506

3.3 Web Services Notification

Web Services Notification (WSN) (OASIS, 2006) de-
fines a set of specifications that aim at defining how
web services interact using notifications or events.
The communication uses the publisher/subscriber
paradigm, where an entity can publish information to
others without having to know them in advance. The
specifications provide WSDL interfaces. We point out
the interfaces for two services: the publisher service
(NotificationProducer) and the service that receives
notifications (NotificationConsumer). They specify
the_ minimum operations that each service must pro-
vide: the publisher service has to provide the sub-
scribe and get-CurrentMessage operations, and the
consumer service has to provide the operation to re-
ceive notifications, the notify operation. When invok-
ing the subscribe operation, the subscriber must de-
fine, among other things, the EPR to where the notifi-
cations should be sent.

3.4 - \Web Services Business Process
Execution Language

Web Services Business Process Execution Language
(WS-BPEL) (OASIS, 2007) is the OASIS standard
executable language for defining business processes
through web services orchestration. A business pro-
cess definition includes two elements: a WSDL file
that describes the business process functionalities
(web services) with their messages data structures,
services addresses, among others, and a WS-BPEL
file that defines the business process logic.

The WS-BPEL includes different types of activi-
ties, such as flow control activities (If, While, Scope,
Flow), communication activities (Receive, Reply, In-
voke), assign values activities (Assign), fault handlers
(Throw, Rethrow), to name a few. We can declare vari-
ables of any primitive type, complex type (consisting
of several primitive data types), and messages. Mes-
sage variables are used almost exclusively in commu-
nication activities. Variables can be global or local, if
declared within a Scope.

Processes in WS-BPEL export and import func-
tionalities by using web services. Web services are
modeled as partnerLinks. Every partnerLink is char-
acterized by a partnerLinkType, which is defined in
the WSDL definition. A partnerLinkType specifies
the role and the type of a partner. An input commu-
nication activity is associated with the MyRole and an
output communication activity is associated with the
PartnerRole.

In order to distinguish process instances, WS-
BPEL provides the Correlation mechanism. A corre-

lationSet is defined by 1) the primitive data type that
will be used and 2) the rule set (one per message type).
The correlationSet is associated with communication
activities. Each correlationSet can only be initialized
once and, if we use it in an Invoke, we have to define
when the Correlation is established: in the sending
operation, in response, or in both. The Correlation-
Sets property defines, through XPATH, the message
elements exchanged by processes that identifies each
conversation (i.e., each process instance).

The WS-BPEL standard supports extensibility, by
allowing namespace-qualified attributes to appear in
any WS-BPEL element and by allowing elements
from other namespaces to appear within WS-BPEL
defined elements. In addition, WS-BPEL provides
two explicit extension constructs: extensionAssign-
Operation and extensionActivity.

All extensions used in a process must be declared.
This statement is made by inserting into the Exten-
sions construct language the namespaces associated
with the extensions and the MustUnderstand attribute
with the value yes or no, which states whether the pro-
cess execution engine has to support the extension.

There are two different options to realize an ex-
tension (Kopp et al., 2011). With a "BPEL Language
Transformation”, extension constructs are translated
into standard BPEL constructs. The generated stan-
dard BPEL code can be deployed on a process execu-
tion engine that ignores the extension. With the other
option, the "BPEL runtime engine”, the extension is
realized by changing the process execution engine in
order to support the additional functionalities.

3.5 XSL Transformations

Extensible Stylesheet Language Transformations
(XSLT) (Clark et al., 2007) is a specification that de-
fines the syntax and semantics of a language to trans-
form and render XML documents. XSLT is designed
for use as part of the Extensible Stylesheet Language
(XSL), which is a style language for XML. XSL in-
cludes an XML vocabulary to specify formatting and
uses XSLT to describe the document transformation.

4 RELATED WORK

In our work, we use context with the same meaning
as George et al. (George and Ward, 2008; George,
2008). These authors define context as an environ-
ment state, which is external to the process, whose
value can change independently of the process lifecy-
cle, and can influence process execution.

Internet of Things Aware WS-BPEL Business Process

Traditionally, context information is obtained ac-
cording to a synchronous request/response paradigm,
and business processes use it in predefined points.
They use context information to: (i) determine the ser-
vices that compose processes (Yu and Su, 2009), (ii)
choose between multiple implementations for a spe-
cific service (Ranganathan and McFaddin, 2004), or
(iii) determine whether a service should participate in
future compositions (Karastoyanova et al., 2005).

In (Wieland et al., 2007), the authors propose an
extension to WS-BPEL, named Context4BPEL, in or-
der to explicitly model how context influences work-
flows. The Context4BPEL is defined according to the
WS-BPEL extension mechanisms. This extension in-
cludes mechanisms to: (1) manage context events to
allow the asynchronous reception of events; (2) query
context data, and (3) evaluate transition conditions
based on context data. However, Context4BPEL is
realized as a "BPEL Runtime Extension” and conse-
quently also needs that the process execution engine
supports it. In addition, the context information man-
agement depends on the Nexus platform.

In (Wieland et al., 2009), the authors propose
a WS-BPEL extension that includes reference vari-
ables. With this kind of variables, the services can
exchange pointers to variables instead of their val-
ues. Pointers are represented with EPRs. Accord-
ing to the value of an attribute of the extension, ref-
erences are evaluated (1) upon activation of Scope,
(2) before variables are used, (3) periodically, or (4)
through an event sent from a external service. This ex-
tension is realized as a "BPEL Language Transforma-
tion”, replacing references with WS-BPEL variables,
inserting links to partners and interaction activities.
The type (4) of references evaluation is similar to our
work: the transformation adds a constructor onEvent
to the process definition. However, these authors do
not state how the external service addresses the event
to the onEvent web service. Additionally, references
evaluation depends on the RRS Service (Reference
Resolution Service), a specific service available on
the platform the authors propose.

George et al. (George and Ward, 2008; George,
2008) also propose a solution based on context vari-
ables. These authors extend WS-BPEL by adding
new attributes to variables. However, the process def-
inition must also contain explicitly the Invoke oper-
ation to realize the subscription. To realize the ex-
tension, they use a "BPEL Runtime Extension” op-
tion, by changing the process execution engine, and
they distinguish process instances through the Muse
Apache platform (Apache Muse, 2013).

507

ICEIS 2013 - 15th International Conference on Enterprise Information Systems

5 1oT WS-BPEL EXTENSION

In this section we present how we extend the WS-
BPEL with context variables and with the when-then
construct. We also describe how we realize the exten-
sion and we present an overview of our prototype.

5.1 Context Variables - Language
Extension

Our main goal is to simplify the access to context
information within WS-BPEL processes through the
new concept of context variable. This way, each vari-
able represent the current value of a specific sensor.
As the language already provides a constructor for
variables, we decided to define context variables by
adding new attributes to the constructor. The new
attributes represent the minimum information neces-
sary to realize the subscribe operation according to
the WS-Notifications standard, and, consequently, the
minimum information required to identify a sensor
through a web service.

The following example illustrates the definition of
a context variable named tempVar, which maintains
the value of a sensor. The web service that provides
this value is identified by the attribute publisherEPR
with the topic Temperature.

Example of a variable context definition:
<variables>

<variable name="tempVar" Type="xsd:anyURI"
iotx:topic="Temperature"
iotx:publisherEPR="http://192.168.1.43:8081/
pubService"/>
</variables>

In addition, the extension has to be defined in the
process. In the following we present the extension
definition, and its namespace and prefix.

Example of the extension definition:
<bpel :process name="myProcess"
xmIns:iotx="http://iot.extensions">
<extensions>

<extension namespace="http://iot._extensions"

mustUnderstand="yes"/>
</extensions>

;}Bpel:process>

In the next section we describe the realization of
this part of our extension.

508

5.2 Context Variables: Language
Transformation

As previously mentioned, WS-BPEL extensions can
be realized as a runtime extension or as a model trans-
formation. We realize the context variable part of
our WS-BPEL extension with a model transforma-
tion. This option has the advantage of making it inde-
pendent of the process execution engines. However,
as the model transformation operation adds new ac-
tivities, variables, etc., the process that is executed do
not match exactly the process the modeler defined.

In the following, we detail the transformation we
realize. We use the WS-Notification standard in the
communication between processes instances and sen-
sors. This transformation includes editing the WS-
BPEL file and creating a WSDL file.

5.2.1 Editing the WS-BPEL File

Firstly, we remove the extension attributes from the
context variables. These variables are now WS-BPEL
standard variables of type xsd: anyURI.

Next, we change the main Sequence of the pro-
cess by inserting a Flow activity after the first Receive
activity, named Start. Inside the Flow activity, we de-
fine a Sequence activity to include the original pro-
cess definition and a Sequence activity for each con-
text variable. This way, Sequence activities that re-
ceive notifications run in parallel with the Sequence
activity that has the original process definition.

The Sequence activities of each context variable
include two main operations: the subscription opera-
tion and the reception of notifications.

Subscription Operation. The subscription operation
is done with an Invoke activity. This Invoke activity
calls the publisher EPR defined in the context vari-
able. As the subscription operation is a two-way op-
eration, we define two variables: the inputVariable
and the outputVariable. Before the Invoke activity,
we use an Assign activity to initialize the message the
Invoke sends to the publisher. We format this mes-
sage according to the WS-notification standard. The
message is initialized with the topic declared in the
context variable and the EPR to where the publisher
sends notifications. The EPR is generated by concate-
nating the process name with the name of the context
variable. The output variable is initialized in the In-
voke response. As we initialize the Correlation in the
Invoke response, we declare its initialization in the re-
sponse. Below we show the subscription message and
the Invoke activity.

Example of subscription message (Subscribe):

<wsnt:Subscribe ...>
<wsnt:ConsumerReference>
<wsa:Address ... >
http://192.168.1.71:8080/0de/processes/
myProcesstempVar
</wsa:Address>
</wsnt:ConsumerReference>
<wsnt:Filter>
<wsnt:TopicExpression ...
</wsnt:TopicExpression>
</wsnt:Filter>
</wsnt:Subscribe>

> Temperature

Invoke to perform the subscription:

<bpel :invoke name="Invoke"
partnerLink="pubSubPartnerLink"
operation="Subscribe"
portType="wsntw:NotificationProducer"
inputVariable="subscribeRequest"
outputVariable="subscribeResponse'>
<bpel:correlations>
<bpel:correlation set="notifyCorrelationSet"
initiate="yes"
pattern="response' />
</bpel:correlations>
</bpel : invoke>

Operation to Receive Notifications. Processes re-
ceive notifications through a Receive activity (i.e., an
inbound message activity). This activity uses a vari-
able to save the notifications and the Correlation. In
the following we illustrate the Receive activity.

Operation to receive notifications:

<bpel:receive name="Receive"
partnerLink="pubSubPartnerLink"
operation="Notify"
portType="wsntw:NotificationConsumer"
variable="NotificationMsg'>
<bpel:correlations>
<bpel:correlation set="notifyCorrelationSet"
initiate="no" />
</bpel:correlations>
</bpel:receive>

Finally, after the Receive activity, we add an As-
sign activity to copy the value of the notification mes-
sage to the context variable, as we present in the fol-
lowing.

Assign operation that updates the context variable:

<bpel:assign validate="no" name="updateVar'>
<bpel :copy>
<bpel :from part="Notify"
variable="NotificationMsg">
<bpel:query querylLanguage="urn:oasis:
names:tc:wsbpel:2.0:sublang:xpathl.0">
wsnt:NotificationMessage/wsnt:Message
</bpel :query>

Internet of Things Aware WS-BPEL Business Process

</bpel : from>
<bpel:to variable="tempVar" />
</bpel :copy>
</bpel:assign>

All process instances use the same port to receive
notifications. To distinguish instances, we use the
Correlation. In the following we describe how we
use the Correlation to guarantee that each subscriber
(process instance) receives its notifications.

As each context variable maps to a different sub-
scription, we define a correlationSet for each context
variable. We use the Correlation with two messages
(SubscriptionResponse and Notify). Thus we define
two rules and we use them in all the correlationSets.
The rules states that, for each message, the correla-
tions use the field ReferenceParameters of the ele-
ment SubscriptionReference. The data type has to
be the same as the field ReferenceParameters, i.e.,
anyURI (any type). We use the Correlation in the In-
voke response, where the correlationSet is initialized,
and in the Receive.

5.2.2 - Adding WSDL Files

Each context variable is related with two services:
the subscribe service and the service to where noti-
fications are sent (the consumer service). We define
these services in an additional WSDL file, which the
transformed WS-BPEL process imports. This way,
we avoid modifying the original WSDL file. We get
the address of the subscribe service directly from the
definition of the context variable, and we generate the
address of the consumer service by concatenating the
process name with the name of the context variable.
We import the operations of each service from the
WSDL files of the WS-Notification standard. This
WSDL file also includes the Correlation properties
we use in the WS-BPEL transformation.

5.3 When-then: Language Extension

We define the when-then as a top level construct. It
is not an activity. As event handlers, when-then con-
structs are installed in parallel with each other. This
construct has a condition and an activity, which is ex-
ecuted once, when the condition becomes true. In
the following we present the when-then syntax and
an example. In this example, we illustrate the use of
a when-then construct that executes a Sequence with
two empty activities when the value of tempVar is
greater than 35.

The when-then syntax:

<iotx: when standard-attributes>
<bpel:condition expressionLanguage="anyURI"?>

509

ICEIS 2013 - 15th International Conference on Enterprise Information Systems

bool-expr
</bpel:condition>
activity
</iotx:when>

A when-then example:

<process name="myProcess'>

<iotx:when name="testeWhen'>
<bpel:condition>$tempvar > 35</bpel:condition>
<sequence name="'teste'>
<empty name="emptyl"> </empty>
<empty name="empty2"> </empty>
</sequence>
</iotx:when>

</process>

5.4 When-then: Language
Transformation

We also realize this part of the extension with a lan-
guage transformation approach. However, we use an
auxiliary web service to detect the modification of
variable values, avoiding busy waiting. In our im-
plementation, these web services use the Listeners of
Apache ODE.

In the following we detail the language transfor-
mation, which includes editing the WS-BPEL file and
creating a WSDL file. Before that we describe the
auxiliary web service.

5.4.1 The Auxiliary Web Service

The auxiliary web service monitors the value of when
conditions. It provides the RegisterWhen operation
that clients use to register the conditions they want
that this service monitors. This service uses an ODE
Listener to be informed when the value of a variable
has been modified. In this situation, it evaluates con-
ditions, and, when they become true, it sends a Un-
lockWhen to the respective process instance.

5.4.2 Editing the WS-BPEL File

Firstly we remove the when-then construct. To ex-
ecute the when-then code in parallel with the main
process logic, we add a Flow activity. We point out
that the final WS-BPEL process definition only has
an additional Flow activity with all the code added to
support context variables and when-then constructs.
For each when-then, we add:

two message variables used with web service in-
teractions,

the PartnerLink and its roles,

510

the CorrelationSet, and
the Sequence activity.

The first operation of the Sequence activity is the As-
sign. We use the Assign operation to initialize the
message we use to invoke the register operation in the
auxiliary web service. This message has the condi-
tion, the EPR used to receive the message notifying
that the when condition becomes true, and the identi-
fication of the process instance.

We illustrate this Assign operation in the follow-

ing.

Inicialization of the message used to invoke the web service
that monitors the when condition:

<assign validate="no"
name="testeWhenSubscriptionCreation">
<C0py>
<from>
<literal xml:space="preserve'>
<when:RegisterWhenRequestElement>
<when:WhenProcessReference>
<wsa:Address ...>
http://localhost:8080/0de/processes/
SubscribertesteWhen
</wsa:Address>
</when:WhenProcessReference>
<when:Condition>$tempVar > 35
</when:Condition>
<when: Instanceld> -1 </when:Instanceld>
</when:RegisterWhenRequestElement>
</literal>
</from>
<to variable="testeWhenWhenRequest"
part="registerWhenRequest"/>
</copy>
<C0py>
<from> $ode:pid </from>
<to variable="testeWhenWhenRequest"
part="registerWhenRequest'>
<query ...> when:Instanceld </query>
</to>
</copy>
</assign>
After the Assign operation, we add an Invoke ac-
tivity to call the RegisterWhen operation and a Re-
ceive activity. This activity is associated with the Un-
lockWhen operation, and, as it is a blocking activity,
it will not continue until the process instance receives
a message notifying that the conditions has become
true. Both activities use the CorrelationSet, which
distinguishes processes instances through their iden-
tification (Instanceld). Finally, after the Receive, the
Sequence has the original activities of the when-then
construct.

5.4.3 Adding WSDL Files

The WSDL files include two web services interfaces:

Internet of Things Aware WS-BPEL Business Process

Processdefinition

fodeltransformation

Execution engine

Eclipse IDE + WS3-BPEL Designer Saxon Apache ODE
Processdefinition Processdefinition
usingthe using
WS-BPEL extension standard Ws-BPEL

Figure 1: The prototype and its tools.

the auxiliary web service

the web service that corresponds to the Receive
activity used to wait for the message notifying that
the conditions has become true. The EPR of this
web service is generated by concatenating the pro-
cess name with the name of the when-then con-
struct.

In addition, it includes the messages, the PartnerLink-
Type, and the correlation rules.

5.5 Prototype

We develop the prototype with the following tools:

Eclipse EE + BPEL Designer plugin - modeling
tool (Eclipse IDE, 2013; BPEL Designer Project,
2013),

Saxon Home Edition - XLST Processor (Saxon
Home Edition, 2013),

Apache ODE - WS-BPEL execution en-
gine(Apache ODE, 2013), and

Apache Tomcat (Apache TomCat, 2013).

Figure 1 illustrates our toolchain prototype and
how it performs model transformations.

6 CONCLUSIONS AND FUTURE
WORK

Business processes can benefit significantly from the
IoT information. The work we present in this pa-
per aims at simplifying the access to this informa-
tion within WS-BPEL processes. Through a WS-
BPEL extension, processes can include context vari-
ables, whose value is updated transparently and asyn-
chronously: the extension is responsible for the op-
erations required to perform the communication be-
tween process instances and sensors, allowing process
modelers to focus on business logic. We realize the
extension through a language transformation mecha-
nisms, allowing it to be as independent as possible
from the process execution engine.

Future work includes maturing the prototype to
add more validations in the language transformation,
to support context variables defined inside Scopes,

and to provide an extension to the Eclipse WS-BPEL
Designer plugin, the tool we use to model processes.

ACKNOWLEDGEMENTS

This work was partially supported by the FCT through
the PATI project (PTDC/EIAEIA/103751/2008) and
the LaSIGE multi annual funding.

REFERENCES

Apache Muse (2013).. URL: http://ws.apache.org/muse/
Page visited on February 10th, 2013.

Apache ODE (2013). URL: http://ode.apache.org/ Page vis-
ited on February 10th, 2013.

Apache TomCat (2013). URL: http://tomcat.apache.org/
Page visited on February 10th, 2013.

Box, D. and et al. (2004). Web services address-
ing (ws-addressing). IBM, W3C. URL: http://
www.w3.0rg/Submission/ws-addressing/.

BPEL Designer Project (2013). URL:
http://www.eclipse.org/bpel/ Page visited on February
10th, 2013.

Christensen, E., Curbera, F., Meredith, G., and Weer-
awarana, S. (2001). Web service definition language.
Microsoft, IBM.

Clark, J., Deach, S., and Kay, M. (2007). Xsl transforma-
tions. Saxonica, Adobe.

Eclipse IDE (2013). Eclipse IDE for Java EE Developers.
URL: http://www.eclipse.org/ Page visited on Febru-
ary 10th, 2013.

George, A. (2008). Providing context in ws-bpel processes.
Technical report, Journal of the Electrochemical Soci-
ety.

George, A. A.and Ward, P. A. S. (2008). An architecture for
providing context in ws-bpel processes. In Proceed-
ings of the 2008 conference of the center for advanced
studies on collaborative research: meeting of minds,
CASCON ’08, pages 22:289-22:303, New York, NY,
USA. ACM.

Karastoyanova, D., Houspanossian, A., Cilia, M., Ley-
mann, F., and Buchmann, A. (2005). Extending
bpel for run time adaptability. In Proceedings of the
Ninth IEEE International EDOC Enterprise Comput-
ing Conference, EDOC ’05, pages 15-26, Washing-
ton, DC, USA. IEEE Computer Society.

Kopp, O., Grlach, K., Karastoyanova, D., Leymann, F.,
Reiter, M., Schumm, D., Sonntag, M., Strauch, S.,

511

ICEIS 2013 - 15th International Conference on Enterprise Information Systems

Unger, T., Wieland, M., and Khalaf, R. (2011). A
classification of bpel extensions. Journal of Systems
Integration, 2(4):3-28.

OASIS (2006). Web services notification (ws-
notification) version 1.3. OASIS. URL: https://
WWW.0asis-open.org/committees/wsn/.

OASIS (2007). Web services business process execution
language version 2.0. Organization for the Advance-
ment of Structured Information Standards.

Ranganathan, A. and McFaddin, S. (2004). Using work-
flows to coordinate web services in pervasive com-
puting environments. In Proceedings of the IEEE In-
ternational Conference on Web Services, ICWS 04,
pages 288—, Washington, DC, USA. IEEE Computer
Society.

Saxon Home Edition (2013). URL: http://saxon.
sourceforge.net/ Page visited on February 10th, 2013.

Wieland, M., Gérlach, K., Schumm, D., and Leymann, F.
(2009). Towards reference passing in web service
and workflow-based applications. In Proceedings of
the 13th IEEE international conference on Enterprise
Distributed Object Computing, EDOC’09, pages 89—
98, Piscataway, NJ, USA. IEEE Press.

Wieland, M., Kopp, O., Nicklas, D., and Leymann, F.
(2007). Towards context-aware workflows. In CAISE
07 Proceedings of the Workshops and Daoctoral Con-
sortium. Citeseer.

Yu, L. and Su, S. (2009). Adopting context awareness in
service composition. In Proceedings of the First Asia-
Pacific Symposium on Internetware, Internetware ’09,
pages 11:1-11:10, New York, NY, USA. ACM.

Zeng, D., Guo, S., and Cheng, Z. (2011). The web of things:
A survey (invited paper). Journal of Communications,
6(6).

512

