
A Decision-Guided Energy Framework for Optimal Power, Heating, 
and Cooling Capacity Investment 

Chun-Kit Ngan1, Alexander Brodsky1, Nathan Egge1 and Erik Backus2 
1Department of Computer Science, George Mason University, 4400 University Drive, Fairfax, VA 22030, U.S.A. 

2Facilities Management Department, George Mason University, 4400 University Drive, Fairfax, VA 22030, U.S.A. 

Keywords: Decision Guidance, Energy Investment, Optimization Model. 

Abstract: We propose a Decision-Guided Energy Investment (DGEI) Framework to optimize power, heating, and 
cooling capacity. The DGEI framework is designed to support energy managers to (1) use the analytical and 
graphical methodology to determine the best investment option that satisfies the designed evaluation 
parameters, such as return on investment (ROI) and greenhouse gas (GHG) emissions; (2) develop a DGEI 
optimization model to solve energy investment problems that the operating expenses are minimal in each 
considered investment option; (3) implement the DGEI optimization model using the IBM Optimization 
Programming Language (OPL) with historical and projected energy demand data, i.e., electricity, heating, 
and cooling, to solve energy investment optimization problems; and (4) conduct an experimental case study 
for a university campus microgrid and utilize the DGEI optimization model and its OPL implementations, 
as well as the analytical and graphical methodology to make an investment decision and to measure trade-
offs among cost savings, investment costs, maintenance expenditures, replacement charges, operating 
expenses, GHG emissions, and ROI for all the considered options. 

1 INTRODUCTION 

Sustainable enterprise development has been 
considered a significant and competitive strategy of 
corporate growth in manufacturing and service 
organizations. A significant part of sustainable 
development involves new technologies for local 
electricity, heating, and cooling generation. Making 
optimal decisions on planning and investment of 
these technologies to support commercial and 
industrial facilities is an involved problem because 
of complex operational dependencies of these 
technologies.  This is exactly the focus of this paper.  

Currently, the existing approaches to support the 
optimization of energy plants can be divided into 
two categories: (1) optimal operation of an energy 
system and (2) a better plant-process design 
(Broccard et al., 2010). The former category is 
related to the optimized scheduling of an electric 
power plant. Some researchers, such as Bojic and 
Stojanovic (Bojić and Stojanović, 1998), proposed 
an optimization procedure based on a MILP solver 
(SAS Institute, 2012) to provide an operation 
diagram which allows users to find an optimum 
composition of energy consumption that minimizes 

the operating expenses of an energy system 
(Brodsky and Wang, 2008); (Brodsky et al., 2009); 
(Brodsky et al., 2011). The latter approach includes 
the analysis of simulations carried out to determine 
the most suitable matching between a plant and its 
loads that could increase the plant power output. 
Some researchers, e.g., Savola et al., (Savola and 
Keppo, 1997) did extensive research to propose an 
off-design simulation and mathematical modelling 
of the operation at part loads and a Mixed-Integer 
Non-Linear Programming (MINLP) optimization 
model for increasing power production (Savola and 
Fogelholm, 2007); (Tuula Savola et al., 2007).  

However, neither of the above approaches 
considers optimizing the complex interactions 
between the existing components and the newly 
added energy equipment that would result in a 
higher operating cost, such as the charges on 
electricity and gas consumptions, as well as 
significant environmental impacts, i.e., greenhouse 
gas (GHG) emissions, e.g., carbon dioxide (CO2) 
and mono-nitrogen oxide (NOx). Without 
considering such interactions for every time interval 
over an investment time horizon, it would be 
impossible to make optimal recommendations on 
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energy planning and investment.  
Thus this paper focuses on addressing the above 

shortcomings. More specifically, the contributions of 
this paper are as follows. First, we propose a 
Decision-Guided Energy Investment (DGEI) 
Framework shown in Figure 1. Given electricity, 
heating, and cooling generation processes, utility 
contracts, historical and projected demand, facility 
expansions, and Quality of Service (QoS) 
requirements, the DGEI framework is designed to 
recommend optimal settings of decision control 
variables. These decision control variables include 
the amount of electricity, heating, and cooling that is 
generated by the supply of water and gas, which is 
inputted to each deployed component in every time 
interval. The goal of the DGEI framework is to learn 
optimal values of those decision control variables in 
order to minimize the total operating cost within the 
required quality of service and within the bound for 
GHG emissions, as well as to take into account all 
components’ interactions. Second, to support the 
DGEI framework, we develop a DGEI optimization 
model, i.e., a MILP formulation construct, to solve 
the adjusted cost minimization problem. 
Furthermore, we implement the DGEI optimization 
model by using the IBM Optimization Programming 
Language (OPL) (Hentenryck, 1999); (The IBM 
Corporation, 2012). Third, we propose an analytical 
and graphical methodology to determine the best 
available investment option based upon the 
evaluation parameters shown in Figure 1. The 
parameters include investment costs, maintenance 
expenditures, replacement charges, operating 
expenses, cost savings, return on investment (ROI), 
and GHG emissions. Finally, we use the 
methodology and the DGEI framework to conduct 
an experimental case study on the microgrid at the 
Fairfax campus of George Mason University 
(GMU). This study has been conducted and used by 
the GMU Facilities Management Department (FMD) 
to make actual investment decisions. 
 

 

Figure 1: Decision-Guided Energy Investment (DGEI) 
Framework. 

The rest of the paper is organized as follows. 
Using the GMU Fairfax campus microgrid as an 
example, we describe its energy investment problem 
in Section 2. We explain our DGEI framework and 
optimization model in Section 3 and demonstrate the 
OPL implementation in Section 4. In Section 5, we 
present the analytical and graphical methodology to 
determine an optimal investment option. In Section 
6, we conduct the experimental analysis on the 
GMU energy investment case and illustrate the 
relationships among the investment costs, ROI, and 
GHG emissions of the various options in tabular and 
graphical formats. We also explain and draw the 
conclusion for the investment options from the 
graphs and tables in detail on the GMU energy 
investment problem. In Section 7, we conclude and 
briefly outline the future work. 

2 PROBLEM DESCRIPTION 
OF REAL CASE STUDY 

Consider the real case study at GMU, in which the 
GMU Facilities Management Department (FMD) is 
planning to extend and or expand the existing energy 
equipment in order to meet the current and future 
demand of electricity, heating, and cooling across 
the expanding Fairfax campus in Virginia. Presently, 
the GMU existing energy facilities at the Fairfax 
campus operate a centralized heating and cooling 
plant (CHCP) system and utilize the electricity 
purchased from the Dominion Virginia Power 
Company (DVPC) to satisfy all the energy demand. 
Over the past 10 years, the campus has experienced 
a significant growth on a square-foot basis in terms 
of land use. Since the campus continues its 
expansion at a rapid rate, the existing CHCP system 
and the electricity consumption have reached a 
saturated point where the current capacity and 
facilities will not be able to satisfy the future energy 
demand, i.e., electricity, heating, and cooling. For 
these reasons, a study has been conducted to 
determine the best available investment option, e.g., 
a new cogeneration (CoGen) plant, with regards to a 
possible methodology to meet the current and future 
electricity, heating, and cooling demand, while also 
addressing the optimal operations of the newly 
added facility with the existing energy equipment. 

The diagram in Figure 2 depicts the GMU energy 
generation process which supplies heating, cooling, 
and electricity to the entire Fairfax campus. The 
GMU energy facilities have a CHCP system to 
supply the hot and cold water (see the red and blue 
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resources) which are distributed across the facilities 
to the campus buildings to meet the heating and 
cooling demand (see the upper two sub-processes on 
the right), i.e., heating and air-conditioning to the 
buildings. To supply the heating and cooling to the 
campus buildings, the CHCP system needs the 
inputs, i.e., natural gas (see the yellow resource on 
the left), water (see the light blue resource on the 
left), and electric power (see the green resource on 
the left). These resources come from the gas supply, 
i.e., Washington Gas Light Company (WGLC), the 
water supply, i.e., Fairfax County Water Authority 
(FCWA), and the electricity supply, i.e., Dominion 
Virginia Power Company (DVPC), correspondingly. 
In addition, the facilities also need to satisfy the 
electricity demand across the entire campus, where 
the electricity demand is beyond the demand from 
the CHCP consumption. Any excessive electric 
power supply can also be resold to the DVPC (see 
the electricity resell on the right). Furthermore, the 
facilities also commit a curtailment demand (see the 
curtailment demand on the right) to the energy 
curtailment program through EnergyConnect (EC), 
Inc. Both the electricity resell and the curtailment 
commitment can bring certain revenues and savings 
to offset the overall operational costs on a monthly 
basis and the capital expenditures in the long run. 
The facilities also generate greenhouse gas (GHG) 
emissions, such as carbon dioxide (CO2) (see the 
black resource at the bottom right). 

Given the expansion of the GMU Fairfax 
campus, in addition to the increasing electricity 
demand, the heating and cooling demand is also 
expected to increase. The CHCP system will not 
have enough capacity to meet the future need. The 
GMU plan is to employ a procurement strategy, i.e., 
the deployment of the best available investment 
option, which will satisfy projected demand and 
minimize investment costs, maintenance 
expenditures, replacement charges, operating 
expenses, and GHG emissions, as well as maximize 
cost savings and return on investment (ROI) at the 
same time. The FMD managers are now considering 
some viable options. One of the considerable options 
is to integrate a new cogeneration (CoGen) plant 
(see the lower sub-process in the middle), i.e., the 
Combined Heating and Power (CHP) Plant (Biezma 
and San Cristobal, 2006); (Broccard, et al., 2010), 
into the existing facilities shown in Figure 2. The 
new CoGen plant has turbines to generate electricity 
to complement the electricity demand, uses the 
generated heat as a by-product to complement the 
heating demand, and collaborates with the ammonia 
process technology (American Electric Power Inc., 

2012) to supply the cooling demand. Now, the 
challenging question is how to analytically 
determine the best investment option that satisfies all 
the energy demand, i.e., electricity, heating, and 
cooling, at the lowest operating costs. 
 

 

Figure 2: Prospective Heating, Cooling, and Electric 
Power Facilities at the GMU Fairfax campus. 

3 DECISION-GUIDED ENERGY 
INVESTMENT (DGEI) 
FRAMEWORK 
AND OPTIMIZATION MODEL 

To answer the above question, we propose the DGEI 
framework depicted in Figure 1. This framework is 
composed of six energy-investment libraries, i.e., 
Energy Generation Process (EGP), Energy 
Contractual Utility (ECU), Energy Historical 
Demand (EHD), Energy Future Demand (EFD), 
Energy Facility Expansion (EFE), Quality of Service 
(QoS) requirements, and a DGEI optimizer. The 
EGP is an extensible library that enables domain 
experts to construct an energy generation process to 
supply electricity, heating, and cooling. The ECU is 
a library that contains energy contractual terms for 
calculating bill utilities, e.g., an electricity bill, a 
water bill, and a gas bill. The EHD and EFD are the 
libraries that store historical and projected energy 
demand respectively. The EFE library archives the 
facility expansion of an organization in terms of 
square-footage increase. The QoS library stores the 
QoS requirements that the energy facilities of an 
organization need to meet, e.g., the maximal power 
interruptions allowed per monthly pay period in an 
organization. The DGEI optimizer supports energy 
managers to utilize all the libraries, i.e., EGP, ECU, 
EHD, EFD, EFE, and QoS, as inputs to the decision 
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optimization process, which minimizes operating 
expenses and maximize cost savings. This decision 
optimization process not only optimizes the 
interactions between the existing and the 
considerable energy facility options but also 
minimizes the environmental impacts on the 
surroundings, i.e., minimizing the GHG emissions. 
In addition to the GHG emissions, energy managers 
also utilize (1) return on investment (ROI), i.e., the 
gain return efficiency among different investments, 
(2) the investment costs, i.e., an amount spent to 
acquire a long-term asset, and (3) equipment 
expenses, i.e., maintenance expenditures plus 
replacement charges, to evaluate all the available 
investments and then to determine the best option. 

To solve an energy investment optimization 
problem in terms of minimizing the operating cost 
and the GHG emissions is to formulate a DGEI 
optimization model. This model optimally learns 
decision control variables, which require several 
input data sets, i.e., the historical and projected 
electricity, heating, and cooling demand over a time 
horizon, the electric and gas contractual utility, the 
operational parameters and capacity constraints of 
the existing and the new electric power plants, as 
well as the energy aggregation of the supply and 
demand, e.g., electricity, gas, heating, and cooling, 
to minimize the entire operating expenses. Using the 
GMU energy investment optimization problem over 
the 10-year time horizon as an example, we explain 
the above terminologies used in this case study in 
the following subsections. 

3.1 Electricity, Heating, and Cooling 
Demand over a Time Horizon 

The electricity, heating, and cooling demand over a 
time horizon is the input, including the usage of the 
historical and projected quantities, which are 
provided from the GMU Facilities Management 
Department, to the DGEI optimization model that 
requires the domain users to define all (i.e., past plus 
future), past, and future power intervals over the 10-
year time horizon.  
 AllPowerIntervals is a set of all powerIntervals, 

where each powerInterval is a tuple which includes 
several attributes, i.e., pInterval, payPeriod, year, 
month, day, hour, and weekDay. We use negative 
and zero integers to represent the past time horizon 
and positive integers to denote the future time 
horizon. For example, pInterval is an hourly time 
interval of the energy demand, where -8759 ≤ 
pInterval ≤ 78840. payPeriod is a monthly pay 
period of the energy demand, where -11 ≤ 

payPeriod ≤ 108. Other attributes’ intervals 
include 2011 ≤ year ≤ 2020, 1 ≤ month ≤ 12, 1 ≤ 
day ≤ 31, 0 ≤ hour ≤ 23, and 0 ≤ weekDay ≤ 6. 
 PastPowerIntervals is a set of past powerIntervals 

of tuples, where -8759 ≤ pInterval ≤ 0, -11 ≤ 
payPeriod ≤ 0, year = 2011, 1 ≤ month ≤ 12, 1 ≤ 
day ≤ 31, 0 ≤ hour ≤ 23, and 0 ≤ weekDay ≤ 6.  
 FuturePowerIntervals is a set of future 

powerIntervals of tuples, where 1 ≤ pInterval ≤ 
78840, 1 ≤ payPeriod ≤ 108, 2012 ≤ year ≤ 2020, 1 
≤ month ≤ 12, 1 ≤ day ≤ 31, 0 ≤ hour ≤ 23, and 0 ≤ 
weekDay ≤ 6.  

 

After declaring the power intervals, the quantities 
of electricity, heating, and cooling demand can be 
stored in their arrays over their power intervals. 
These three quantities of demand are provided by 
the GMU Facilities Management Department. 
 demandKw[AllPowerIntervals] ≥ 0 is an array of 

electricity demand over the AllPowerIntervals. 
This array stores both the historical and the 
projected demand over the PastPowerIntervals and 
the FuturePowerIntervals respectively. 
 demandHeat[FuturePowerIntervals] ≥ 0 is an array 

of projected heating demand over the 
FuturePowerIntervals.  
 demandCool[FuturePowerIntervals] ≥ 0 is an array 

of projected cooling demand over the 
FuturePowerIntervals. 

3.2 Electric and Gas Contractual 
Utility 

To determine the total operating cost, we need to 
compute the consumption expenses of electricity and 
gas supply according to their utility contracts.  

The consumption expenses of electricity include 
both the peak demand charge and the total power 
consumption charge that are explained in detail as 
follows. 

3.2.1 Peak Demand Charge 

For the electricity supply, 
utilityKw[AllPowerIntervals] ≥ 0 is an array of 
electricity supplied from the DVPC over the 
AllPowerIntervals. 

historicUtilityKw[i] is an array of past electricity 
demand from the GMU, i.e., 
historicUtilityKw[i] = demandKw[i], 
which satisfies the constraint, i.e., utilityKw[i] 
== historicUtilityKw[i], where i ∈ 
PastPowerIntervals. This constraint is to assure that 
the electricity consumed by the GMU in the past 
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year, i.e., 2011, is equivalent to the supply from the 
DVPC.  

payPeriodSupplyDemand[p] is the peak demand 
usage per future pay period (p). This peak demand 
usage meets the below contractual constraints (C1 
and C2) and is determined based upon the highest of 
either (C1) or (C2): 

C1: The highest average kilowatt measured in 
any hourly time interval of the current billing month 
during the on-peak hours of either between 10 a.m. 
and 10 p.m. from Monday to Friday for the billing 
months of June through September or between 7 
a.m. and 10 p.m. from Monday to Friday for all 
other billing months. 

C2: 90% of the highest kilowatt of demand at the 
same location as determined under (C1) above 
during the billing months of June through September 
of the preceding eleven billing months.  

The logic constraints of both C1 and C2 can be 
expressed as follows: 

if (i.payPeriod == p ∧ i.weekDay ≥ 1 
∧ i.weekDay ≤ 5 ∧ ((i.month ≥ 6 ∧ 
i.month ≤ 9 ∧ i.hour ≥ 10 ∧ i.hour ≤ 
22) ∨ (i.month ≤ 5 ∧ i.month ≥ 10 ∧ 
i.hour ≥ 7 ∧ i.hour ≤ 22)))  

payPeriodSupplyDemand[p] ≥ 
utilitykW[i] 

else if (i.month ≥ 6 ∧ i.month ≤ 9 ∧ 
i.payPeriod ≥ p – 11 ∧ i.payPeriod ≤ p 
∧ i.weekPay ≥ 1∧ i.weekDay ≤ 5 ∧ i.hour 
≥ 10 ∧ i.hour ≤ 22)  

payPeriodSupplyDemand[p] ≥ 0.9 * 
utilitykW[i];, where i ∈  

AllPowerIntervals, p ∈ FuturePayPeriods, and 1 ≤ 
FuturePayPeriods ≤ 108. Using these logic 
constraints, we can determine the optimal peak 
demand usage per future pay period, which 
consumes more than the expected electricity supply 
per powerInterval from the DVPC. 

generationDemandCharge[p], i.e., 
generationDemandCharge[p] = 8.124 * 
payPeriodSupplyDemand[p];, is the Electricity 
Supply (ES) service charge, i.e., the peak demand 
charge, where p ∈ FuturePayPeriods, and 8.124 is 
the dollar charge per kW. 

3.2.2 Total Power Consumption Charge 

payPeriodKwh[p] is the total power consumption 
per future pay period, i.e., payPeriodKwh[p] = 
∑utilitykW[i];, where i ∈ AllPowerIntervals, p 
∈ FuturePayPeriods, and i.payPeriod = p. 

payPeriodKwhCharge[p] is the total kWh charge 
per future pay period, i.e., payPeriodKwhCharge[p] 

≥ 0, which satisfies the below contractual 
constraints: 

if (payPeriodKwh[p] ≤ 24000) 
payPeriodKwhCharge[p] = 0.01174 * 
payPeriodKwh[p] 

else if (payPeriodKwh[p] ≤ 210000) 
payPeriodKwhCharge[p] = 0.01174 * 
24000 + 0.00606 * 
(payPeriodKwh[p] – 24000) 

else  
payPeriodKwhCharge[p] = 0.01174 * 
24000 + 0.00606 * 186000 + 
0.00244 * (payPeriodKwh[p] – 
210000);, where p ∈ FuturePayPeriods,  

0.01174 is the dollar charge of the first 24000 kWh 
consumed, 0.00606 is the dollar charge of the next 
186000 kWh consumed, and 0.00244 is the dollar 
charge of the additional kWh consumed. Note that if 
payPeriodSupplyDemand[p] is 1000 kW or more, 
210 kWh for each peak demand usage over 1000 kW 
is added to the total power consumption to calculate 
payPeriodKwhCharge[p]. 

3.2.3 Total Electricity Cost 

The total electricity cost per future pay period is the 
sum of payPeriodKwhCharge[p] and 
generationDemandCharge[p], i.e., 
electricCostPerFuturePayPeriod = 
(payPeriodKwhCharge[p] + 
generationDemandCharge[p]);, where p ∈ 
FuturePayPeriods.  

Table 1: Descriptions for the Constant Values in the DGEI 
Optimization Model of the GMU Energy Investment 
Problem. 

Constant Description 

0.9 

Percentage of the highest kW of demand 
during the billing months of June through 

September of the preceding 11 billing 
months 

8.124 
Amount ($) of Electricity Supply (ES) 

demand charged per kW 
24000 First ES kWh 

0.01174 
Amount ($) of the first 24000 ES kWh 

charged per kWh 
186000 Next ES kWh 

0.00606 
Amount ($) of the next 186000 ES kWh 

charged per kWh 

210000 
Sum of the first ES kWh and the next ES 

kWh 

0.00244 
Amount ($) of the additional ES kWh 

charged per kWh 

210 
kWh for each ES kW of demand over 1000 

kW 
 

The total electricity cost of all the 
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FuturePayPeriods is the aggregations of all the total 
electricity costs per future pay period, i.e., 
electricCost = ∑(payPeriodKwhCharge[p] 
+ generationDemandCharge[p]);, where p ∈ 
FuturePayPeriods. 

Table 1 summarizes the descriptions of all the 
constant values from the electric utility contract used 
in the DGEI optimization model for the GMU 
energy investment problem. 

3.2.4 Total Gas Consumption Charge 

Regarding the gas supply, 
utilityGas[FuturePowerIntervals] ≥ 0 is an array of 
gas supplied from the WGLC over the 
FuturePowerIntervals. The total gas cost of all the 
FuturePowerIntervals is the aggregations of all the 
total gas utility per future power interval, i.e., 
gasCost = (∑(utilityGas[i]/btuPerDth)) 
* gasPricePerDth;, where i ∈ 
FuturePowerIntervals, btuPerDth = 1000000 BTU, 
which is the amount of energy per decatherm, and 
gasPricePerDth = $6.5, which is the gas charge per 
decatherm. 

3.2.5 Total Operating Cost 

The total operating cost is the sum of the total 
electricity cost of all the future pay periods and the 
total gas cost of all the future power intervals, i.e., 
totalCost = electricCost + gasCost;. 

3.3 Operational Parameters 
and Capacity Constraints 
of the CHCP and the Cogen Plant 

In addition to the supply and demand of gas and 
electricity, the operational parameters and the 
capacity constraints of the CHCP and the CoGen 
plant are also considered. 

3.3.1 The CHCP Plant 

For the CHCP plant, 
gasIntoCHCP[FuturePowerIntervals] ≥ 0 is an array 
of natural gas input to the CHCP over the 
FuturePowerIntervals to generate the heat supply. 
kwIntoCHCP[FuturePowerIntervals] ≥ 0 is an array 
of power input to the CHCP over the 
FuturePowerIntervals to generate the cool supply. 
heatOutCHCP[FuturePowerIntervals] ≥ 0 is an array 
of heat output from the CHCP over the 
FuturePowerIntervals to satisfy the partial heating 
demand. coolOutCHCP[FuturePowerIntervals] ≥ 0 
is an array of cool output from the CHCP over the 

FuturePowerIntervals to satisfy the partial cooling 
demand. The CHCP constraints include: 
 heatOutCHCP[i] * gasPerHeatUnit ≤ 
gasIntoCHCP[i];, i.e., the amount of gas 
consumed to generate the heat cannot be more than 
that of the gas input; 
 coolOutCHCP[i] * kwhPerCoolUnit ≤ 
kwIntoCHCP[i];, i.e., the amount of electric 
power consumed to generate the cool cannot be 
more than that of the power input; 
 heatOutCHCP[i] ≤ chcpMaxHeatPerHr;, i.e., 

the amount of heat generated cannot be more than 
the maximal heat output of the CHCP; and 
 coolOutCHCP[i] ≤ chcpMaxCoolPerHr;, i.e., 

the amount of cool generated cannot be more than 
the maximal cool output of the CHCP, where i ∈ 
FuturePowerIntervals, gasPerHeatUnit = (1 / 0.78), 
and kwhPerCoolUnit = (1 / 0.94). 

3.3.2 The CoGen Plant 

For the CoGen plant, 
gasIntoCogen[FuturePowerIntervals] ≥ 0 is an array 
of gas input to the CoGen plant over the 
FuturePowerIntervals to generate the power supply. 
kwOutCogen[FuturePowerIntervals] ≥ 0 is an array 
of power output from the CoGen plant over the 
FuturePowerIntervals to satisfy the partial electricity 
demand. heatOutCogen[FuturePowerIntervals] ≥ 0 is 
an array of heat output from the CoGen plant over 
the FuturePowerIntervals to satisfy the partial 
heating demand. 
coolOutCogen[FuturePowerIntervals] ≥ 0 is an array 
of cool output from the CoGen plant over the 
FuturePowerIntervals to satisfy the partial cooling 
demand. The constraints of the CoGen plant include:  
 kwOutCogen[i] * cogenGasPerKwh ≤ 
gasIntoCogen[i];, i.e., the amount of gas 
consumed to generate the power cannot be more 
than that of the gas input; 
 kwOutCogen[i] ≤ cogenMaxKw;, i.e., the 

amount of power generated cannot be more than 
the maximal electricity output of the CoGen plant; 
 heatOutCogen[i] ≤ cogenHeatPerKwh * 
kwOutCogen[i];, i.e., the amount of heat 
generated cannot be more than the maximal heat 
supply that is restricted by the power output of the 
CoGen plant; 
 heatOutCogen[i] ≤ cogenMaxHeatPerHr * 
(kwOutCogen[i]/cogenMaxKw);, i.e., the 
amount of heat generated cannot be more than the 
maximal heat output of the CoGen plant; 
 coolOutCogen[i] ≤ (cogenMaxHeatPerHr * 
(kwOutCogen[i]/cogenMaxKw) - 
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heatOutCogen[i]) * 
cogenHeatToCoolRatio;, i.e., the amount of 
cool generated cannot be more than the maximal 
cool supply that is restricted by the power and heat 
output of the CoGen plant; and 
 coolOutCogen[i] ≤ cogenMaxCoolPerHr;, 

i.e., the amount of cool generated cannot be more 
than the maximal cool output of the CoGen plant,  

where i ∈ FuturePowerIntervals, cogenMaxKw = 
7200 kW is the maximal power output, 
cogenHeatPerKwh = 10300 kWh is the amount of 
heat generated per kWh, cogenHeatToCoolRatio = 
cogenMaxCoolPerHr/cogenMaxHeatPerHr is the 
ratio of converting heat to cool supply, 
cogenMaxHeatPerHr = 40000000 BTU is the 
maximal heat supply of the CoGen plant per hour, 
cogenMaxCoolPerHr = 2400 Tons is the maximal 
cool supply of the CoGen plant per hour, 
cogenGasPerKwh = 
gasBTUPerGallon/kWhPerGallon/cogenGasToKwh
Efficiency is the amount of natural gas consumed 
per kWh, for gasBTUPerGallon = 114000 BTU is 
the amount of energy generated per gallon of gas, 
kwhPerGallon = 33.41 is the amount of kWh 
generated per gallon of gas, and 
cogenGasToKwhEfficiency = 0.33 is the efficiency 
of the CoGen plant to generate power from natural 
gas. 

3.4 Energy Aggregations of Supply 
and Demand 

The aggregations of energy supply and demand 
within the entire energy system include:  
 kwIntoCHCP[i] + demandKw[i] ≤ 
utilityKw[i] + kwOutCogen[i];, i.e., the 
amount of power input to the CHCP and the power 
demand from the GMU cannot exceed the amount 
of power supply provided from the DVPC and the 
power output generated from the CoGen plant, 
where i ∈ FuturePowerIntervals.  
 demandReduction[i] ≤ (utilityKw[i] + 
kwOutCogen[i]) - (kwIntoCHCP[i] + 
demandKw[i]);, i.e., the power supply reduction 
cannot exceed the difference between the total 
power supply (utilityKw[i] + kwOutCogen[i]) and 
the total power demand (kwIntoCHCP[i] + 
demandKw[i]), where 
demandReduction[FuturePowerIntervals] ≥ 0 is an 
array of extra power supply that can be cut from 
the power inputs over the FuturePowerIntervals, 
and i ∈ FuturePowerIntervals. 
 ∑demandReduction[i] ≤ 
maxKwReductionPerPayPeriod;, i.e., the total 

power reductions over the future power intervals 
cannot exceed the allowable maximal power 
interruptions per future pay period, where i ∈ 
FuturePowerIntervals, p ∈ FuturePayPeriods, and 
i.payPeriod = p.  
 utilityGas[i] ≥ gasIntoCogen[i] + 
gasIntoCHCP[i];, i.e., the gas input to the 
CoGen plant and to the CHCP cannot exceed the 
gas supply provided from the WGLC, where i ∈ 
FuturePowerIntervals. 
 heatOutCogen[i] + heatOutCHCP[i] ≥ 
demandHeat[i];, i.e., the heat demand from 
GMU cannot exceed the heat supply generated 
from the CoGen plant and the CHCP, where i ∈ 
FuturePowerIntervals. 
 coolOutCogen[i] + coolOutCHCP[i] ≥ 
demandCool[i];, i.e., the cool demand from 
GMU cannot exceed the cool supply generated 
from the CoGen plant and the CHCP, where i ∈ 
FuturePowerIntervals. 

3.5 DGEI Optimization Model 

After declaring all the input data sets and the above 
constraints, which the input data sets need to satisfy, 
the DGEI optimization model for the GMU energy 
investment problem can be formulated as follows in 
Figure 3. 
 

 

Figure 3: The DGEI Optimization Model for the GMU 
Energy Investment Problem. 
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4 OPL IMPLEMENTATION 
FOR DGEI OPTIMIZATION 
MODEL 

The DGEI optimization model has been 
implemented by using the OPL language. Using the 
GMU historical data of power usage in the past year, 
i.e., 2011, and its projected electricity, cooling, and 
heating demand over a future time horizon from 
2012 to 2020, we use the OPL language to 
implement and demonstrate the DGEI optimization 
model to solve the GMU energy investment problem 
and minimize the operating cost.  

The intuition of using the OPL language is that 
its optimization formulation looks like the DGEI 
optimization model. When comparing the DGEI 
optimization model in Figure. 3 with the OPL 
formulation from Figure 4.1 to Figure 4.9, we realize 
that both models are very similar to each other. Only 
some notations and syntaxes are different that is 
shown in Table 2. For example, instead of using the 
summation sign (∑) in the DGEI optimization 
model, the OPL language uses the keyword, “sum”, 
to perform the aggregation. Rather than using the if-
then statement in the mathematics, the OPL uses the 
specific construct with the implication operatior 
(=>). 

Table 2: Differences between DGEI Optimization model 
and OPL formulation model. 

DGEI Optimization Model OPL Formulation Model 

Notation: Summation Sign 
∑ 
Example: 
∑(demandKw[i] – kW[i]) ≤ 
2 * annualBound 

Syntax: sum 
Example: 

sum(i in PowerIntervals : 
i.pInterval >= 1) 

(demandKw[i] - kW[i]) <= 
annualBound * 2 

Notation: If-then Statement 
Example: 
if (payPeriodKwh[p] ≤ 
24000) 
payPeriodKwhCharge[p] = 
0.01174 * payPeriodKwh[p] 

Syntax: => 
Example: 

(payPeriodKwh[p] <= 
24000) => 

(payPeriodKwhCharge[p] 
== 0.01174 * 

payPeriodKwh[p]) 

Notation: Where clause 
Example: 
peakDemandBound[p] ≤ 
payPeriodSupplyDemand[p
], where p ∈ PayPeriods 

Syntax: forall 
Example: 

forall (p in PayPeriods) 
peakDemandBound[p] <= 
payPeriodSupplyDemand[

p] 
 

More specifically, the OPL implementation 
construct is described as follows. In Figure 4.1, from 
the line number 9 to 12, the value 12, i.e., the total 

12 months of 2011, is assigned to the variable 
nbPastPayPeriods, the value 108, i.e., the total 108 
months from 2012 to 2020, is assigned to the 
variable nbPayPeriods, and the value 0 is assigned to 
the maximal power interruptions, i.e., 
maxKwReductionPerPeriod. The FuturePayPeriods 
is ranged from 1 to 108. From the line number 15 to 
23, we declare a tuple of a power interval that has 
the attributes, including pInterval, payPeriod, year, 
month, day, hour, and weekDay. The line number 25 
to 27 declares and initializes AllPowerIntervals that 
include both PastPowerIntervals and 
FuturePowerIntervals. The line number 30 to 32 
declares and initializes the 
demandKw[AllPowerIntervals], the 
demandHeat[FuturePowerIntervals], and the 
demandCool[FuturePowerIntervals] arrays. 
 

 

Figure 4.1: General and Demand Input Data. 

 

Figure 4.2: Total Electricity Cost. 

Figure 4.2 declares the decision control variables, 
i.e., utilityKw[AllPowerIntervals], 
payPeriodSupplyDemand[FuturePayPeriods], and 
payPeriodKwh[FuturePayPeriods], to compute 
payPeriodKwhCharge[FuturePayPeriods] and 
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generationDemandCharge[FuturePayPeriods] that 
are summed together to determine the total 
electricity cost over all the future pay periods while 
satisfying the electric contractual constraints. 

Figure 4.3 declares the constants, i.e., 
gasPricePerDth and btuPerDth, and 
utilityGas[FuturePowerIntervals] to calculate the 
total gas cost over all the future power intervals. 
 

 

Figure 4.3: Total Gas Cost. 

Figure 4.4 declares the objective function to 
minimize the total operating cost, i.e., the total 
electricity cost plus the total gas cost. 
 

 

Figure 4.4: Total Operating Cost. 

Figure 4.5 declares the constants, i.e., 
gasPerHeatUnit, kwhPerCoolUnit, 
chcpMaxHeatPerHr, and chcpMaxCoolPerHr, and 
the arrays, i.e., 
gasIntoCHCP[FuturePowerIntervals], 
kwIntoCHCP[FuturePowerIntervals], 
heatOutCHCP[FuturePowerIntervals], and 
coolOutCHCP[FuturePowerIntervals], used in the 
CHCP capacity constraints. 
 

 

Figure 4.5: Operational Parameters and Data Structures of 
the CHCP Plant. 

Figure 4.6 declares the constants from the line 
number 71 to 79, and the arrays, i.e., 
gasIntoCogen[FuturePowerIntervals], 
heatOutCogen[FuturePowerIntervals], 
coolOutCHCP[FuturePowerIntervals], and 

kwOutCHCP[FuturePowerIntervals], which are used 
in the capacity constraints of the CoGen plant. 
 

 

Figure 4.6: Operational Parameters and Data Structures of 
the CoGen Plant. 

Figure 4.7 defines all the capacity constraints for the 
CHCP and the CoGen plant. 
 

 

Figure 4.7: Capacity Constraints of the CHCP and the 
CoGen Plant. 

Figure 4.8 defines the contractual constraints for the 
electricity bill. 
 

 

Figure 4.8: Contractual Electricity Utility Constraints. 
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Figure 4.9 defines the constraints for the energy 
aggregations of electric power, gas, heat, and cool. 
 

 

Figure 4.9: Energy Aggregations of Supply and Demand. 

5 ANALYTICAL 
METHODOLOGY ON 
EVALUATION AMONG 
ENERGY INVESTMENT 
OPTIONS 

For domain experts being able to formulate and 
implement the above DGEI optimization model to 
determine the best investment option, we propose an 
analytical methodology that guides the domain 
experts to achieve this goal. The methodology 
includes six steps. 

STEP 1: Collect historical energy demand, such 
as electricity, heating, and cooling, from each 
building unit, and forecast those demands in terms of 
growth on a square-foot basis over the future time 
horizon.  

STEP 2: Identify all the possible energy 
investment options, such as the expansion of current 
facilities and the procurement of cogeneration 
plants. 

STEP 3: Formulate, implement, and execute the 
DGEI optimization model that integrates historical 
and projected energy demand, electric and gas 
contractual utility, operational parameters and 
capacity constraints of energy equipment, as well as 
energy aggregations of supply and demand in each 
considered option under the assumption of optimal 
interactions among available resources.  

STEP 4: Compute the annualized evaluation 
parameters for each option based upon the results 
from the optimization process in STEP 3. 

The parameters include the investment cost (Ii), 
equipment cost (Ei), i.e., maintenance expenditure 
(Mi) plus replacement charge (Ri), operating expense 
(Ci), i.e., the charges on electricity and gas 
consumptions, cost saving (Si), i.e., C0 – Ci, where i 
≥ 0 denotes an investment option and C0 is the 
operating cost of a base investment option that the 
other available options compare with, and return on 
investment (ROIi), i.e., Si / (Ii – I0), as well as the 
GHG emissions (MTCDEi),  i.e., Gi * 0.053 
MTCDE/Million-Btu + Pi * 0.513 MTCDE/Million-
Wh, shown in Table 3, against the various 
investment options, where 0.053 and 0.513 are the 
factors, which are calculated from the historical data. 

Note that the base investment option is the option 
that the current capacity of the existing facilities is 
expanded without procuring any new energy 
equipment.  

Using the ROI and GHG emissions, domain 
users and experts can plot the analytical graphs to 
illustrate the relationships among the ROI, GHG 
emissions, and investment expenses, which enable 
the domain experts to determine the best investment 
option among all of the options being considered. 

Table 3: Evaluation Parameters of ROI and GHG 
Emissions for Determining the Best Investment Option. 

Parameter Symbol 
Investment Cost Ii 
Maintenance Expenditure Mi 
Replacement Charge Ri 
Equipment Cost Ei 
Operating Expense Ci 
Cost Saving Si 
Return on Investment ROIi 
Average Annual Gas Consumption MBTU Gi 
Average Annual Electric Power 
Consumption MWh 

Pi 

GHG Emission MTCDEi 
 
STEP 5: Remove any option that is dominated by 
the other options in terms of the evaluation 
parameters. 

STEP 6: Construct a trade-off graph to evaluate 
the options that are not dominated among others and 
then make a final decision. 

Note that although STEP 1, 2, 4, 5, and 6 are 
typical processes of evaluations, STEP 3 is not 
typical at all as the problem that we solve is a non-
trivial optimization problem. 
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6 ANALYTICAL 
METHODOLOGY 
ON EXPERIMENTAL CASE 
STUDY 

After the process from STEP 1 to STEP 3 in the 
experimental case study at GMU, the four 
investment options, including ① the expansion of 
the existing CHCP only, ② the addition of a CoGen 
plant to the existing CHCP, ③ the half capacity of 
the Option ① with the half planned capacity of the 
CoGen plant, and ④ the full capacity of the Option 
① with the full planned capacity of the CoGen 
plant, have been chosen to be evaluated to meet the 
electricity, heating, and cooling demand of the 
Fairfax campus over the next 9 years from 2012 to 
2020. 

In STEP 4, using the evaluation parameters, i.e., 
ROI and GHG emissions, discussed in Section 5 and 
the OPL to solve the GMU energy investment 
problem in Section 4, we obtained Table 4 and 
Figure 5 that can be used to determine the best 
investment option.  

Table 4: Evaluation Parameters of ROI and GHG 
Emissions for Determining the GMU Energy Investment 
Options. 

Investment 
Option 

Investment Cost 
($M) 

Annual 
Maintenance 

Cost ($) 
1 Expanded 
CHCP 

$34.293 $343,200 

1 CoGen Plant 
+ 1 Current 
CHCP 

$65.328 $655,600 

½ CoGen Plant 
+ ½ Expanded 
CHCP 

$46.995 $499,400 

1 CoGen Plant 
+ 1 Expanded 
CHCP 

$99.621 $998,800 

 

Investment 
Option 

Annualized 
Replacement 

Cost ($M) 

Annualized 
Equipment Cost 

($M) 
1 Expanded 
CHCP $3.429 $3.772 

1 CoGen Plant 
+ 1 Current 
CHCP 

$3.850 $4.506 

½ CoGen Plant 
+ ½ Expanded 
CHCP 

$4.699 $5.199 

1 CoGen Plant 
+ 1 Expanded 
CHCP 

$7.279 $8.278 

Table 4: Evaluation Parameters of ROI and GHG 
Emissions for Determining the GMU Energy Investment 
Options. (Cont.) 

Investment 
Option 

Annualized 
Average 

Operational 
Cost ($M) 

Annualized 
Saving over the 

Expanded 
CHCP ($M) 

1 Expanded 
CHCP $6.244 $0.000 

1 CoGen Plant 
+ 1 Current 
CHCP 

$5.494 $0.016 

½ CoGen Plant 
+ ½ Expanded 
CHCP 

$5.557 -$0.740 

1 CoGen Plant 
+ 1 Expanded 
CHCP 

$5.492 -$3.754 

 

Investment 
Option 

ROI (%) 

Average Annual 
Gas 

Consumption 
(MBTU) 

1 Expanded 
CHCP 0.000% 510,500.00 

1 CoGen Plant 
+ 1 Current 
CHCP 

0.052% 523,622.22 

½ CoGen Plant 
+ ½ Expanded 
CHCP 

-5.827% 520,888.89 

1 CoGen Plant 
+ 1 Expanded 
CHCP 

-5.747% 523,600.00 

 

Investment 
Option 

Average Annual 
Electric Power 
Consumption 

(MWh) 

GHG Emission 
(MTCDE) 

1 Expanded 
CHCP 141,433.33 99611.799 

1 CoGen Plant 
+ 1 Current 
CHCP 

141,333.33 100255.977 

½ CoGen Plant 
+ ½ Expanded 
CHCP 

141,344.44 100116.811 

1 CoGen Plant 
+ 1 Expanded 
CHCP 

141,333.33 100254.799 

 

In STEP 5, the Option ③ and ④ are the dominated 
cases that can be removed from our consideration 
list because of the negative ROI. 

In STEP 6, according to the Table 4 and Figure 
5, we can conclude that the Option ① should be 
chosen because of the three observations. First, the 
GHG emissions and the equipment cost of the 
Option ① are the lowest. Second, even though the 
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ROI of the Option ②, i.e., 0.052%, is marginally 
better than that of the Option ①, the GHG 
emissions of the Option ② is the highest among all 
the options being considered. Third, it is not 
economical at all for GMU to invest $31 million 
dollars, i.e., the Option ② investment cost minus 
the Option ① investment cost, more to earn only 
0.052% ROI in the next 9-year timeframe. Thus, the 
Option 1 is the best long-term option for GMU. 
 

 

Figure 5: ROI (%) and GHG Emissions (MTCDE) vs. 
Investment Cost ($M) across the Four Investment Options. 

7 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we propose a Decision-Guided Energy 
Investment (DGEI) Framework to optimize power, 
heating, and cooling capacity. The DGEI framework 
is designed to support energy managers to (1) use 
the analytical and graphical methodology to 
determine the best investment option that satisfies 
the designed evaluation parameters, such as ROI and 
GHG emissions; (2) develop a DGEI optimization 
model to solve energy investment problems that the 
operating expenses are minimal in each considered 
investment option; (3) implement the DGEI 
optimization model using the IBM OPL language 
with historical and projected energy demand data, 
i.e., electricity, heating, and cooling, to solve energy 
investment optimization problems; and (4) conduct 
an experimental case study on the Fairfax campus 
microgrid at George Mason University (GMU) and 
utilize the DGEI optimization model and its OPL 
implementations, as well as the graphical and 
analytical methodology to make the investment 
decision and trade-offs among the cost savings, 
investment costs, maintenance expenditures, 
replacement charges, operating expenses, GHG 

emissions, and return on investment (ROI) for all the 
considered options.  

Technically, the core challenge is the 
development of the DGEI optimization model that is 
very accurate in terms of the contractual terms and 
engineering constraints, and yet efficient and 
scalable, which is done by the careful modelling of 
mainly continuous decision variables and using 
constructs that avoid introduction of combinatorics, 
e.g., explicit or implicit binary variables, into the 
model. However, the DGEI optimization problem 
that we formulate is implemented by using the OPL 
language. This OPL construct is then sent to the 
IBM CPLEX solver which is the branch-and-bound-
based algorithm with the exponential time 
complexity, i.e., ܱሺ݇2ேሻ, where k is the number of 
decision control variables, and N is the size of the 
learning data set. Thus the furture research focus 
will develop a new algorithm that will be able to 
solve the energy investment problems at a lower 
time complexity. 

Concerning the real case study at George Mason 
University and its CHCP system, it is clear that 
GMU must develop and research other available 
options beyond those discussed in the analysis of 
this paper in order to meet the future needs of the 
Fairfax campus demand. Thus, the DGEI framework 
further developed will aid the GMU energy decision 
makers to determine the optimal solutions that will 
satisfy the GMU short- and long-term power, 
heating, and cooling demand. Note that our 
framework is applicable to solve any energy 
investment problem in different domains of industry. 
Therefore, the future work includes the advanced 
development of the DGEI libraries and optimization 
models that enable domain users and experts to 
integrate more clean and efficient energy equipment, 
such as geothermal electric power facilities, into the 
existing plants optimally in order to support the 
continuous development of enterprises and 
organizations. 
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APPENDIX: ABBREVIATION 

Abbreviation Full Name 

CHCP 
Centralized Heating and Cooling 

Plant 
CO2 Carbon Dioxide 
CoGen Cogeneration 

DGEI 
Decision-Guided Energy 

Investment 

DVPC 
Dominion Virginia Power 

Company 
EC EnergyConnect 
ECU Energy Contractual Utility 
EFD Energy Future Demand 
EFE Energy Facility Expansion 
EGP Energy Generation Process 
EHD Energy Historical Demand 
ES Electricity Supply 
FCWA Fairfax County Water Authority 

FMD 
Facilities Management 

Department 
GHG Greenhouse Gas 
GMU George Mason University 

MILP 
Mixed Integer Linear 

Programming 

MINLP 
Mixed Integer Non-Linear 

Programming 
NOx Mono-Nitrogen Oxide 

OPL 
Optimization Programming 

Language 
QoS Quality of Service 
ROI Return On Investment 
WGLC Washington Gas Light Company 
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