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Abstract: A large amount of data is generated daily. Credit card transactions, monitoring networks, sensors and 
telecommunications are some examples among many applications that generate large volumes of data in an 
automated way. Data streams storage and knowledge extraction techniques differ from those used on 
traditional data. In the context of data stream classification many incremental techniques has been proposed. 
In this paper we present an incremental decision tree algorithm called StARMiner Tree (ST), which is based 
on Very Fast Decision Tree (VFDT) system, which deals with numerical data and uses a method based on 
statistics as a heuristic to decide when to split a node and also to choose the best attribute to be used in the 
test at a node. We applied ST in four datasets, two synthetic and two real-world, comparing its performance 
to the VFDT. In all experiments ST achieved a better accuracy, dealing well with noise data and describing 
well the data from the earliest examples. However, in three of four experiments ST created a bigger tree. 
The obtained results indicate that ST is a good classifier using large and smaller datasets, maintaining good 
accuracy and execution time. 

1 INTRODUCTION 

Data streams are obtained continuously, generating 
large volumes of data daily. Some characteristics 
like storage and knowledge extraction techniques 
differ from those used on traditional data. Examples 
of these applications are credit card transactions, 
sensor networks, financial applications and web 
logs. 

Knowledge discovery systems are constrained by 
three main limited resources: time, memory and 
sample size (Domingos and Hulten, 2000). 

The classification task aims to build a model to 
describe and distinguish classes of data. In 
traditional classification, all data is loaded into 
memory and then a static model is build. When new 
tuples are added, the model must be rebuilt, 
considering both the old and the new data. In the 
data stream context, incremental techniques should 
be used, where there is no need of rebuilding the 
model every time that a new example arrives. In 
fact, the decision tree is built based on sufficient 
statistics extracted from the processed data. 

According to (Zia-Ur et al., 2012) the 
classification, using a decision tree algorithm, is a 
widely studied problem in data streams and the 

challenge is when to split a decision node into 
multiples leaves. 

One of the well-known algorithms for data 
streams classification is the VFDT, which uses 
Hoeffding bound to guarantee that its output is 
asymptotically nearly identical to the output of a 
conventional learner (Domingos and Hulten, 2000). 

In this paper we present a parametric incremental 
decision tree algorithm called StARMiner Tree. It is 
based on VFDT and proposes a decision tree model 
constructed from numerical data using statistics to 
decide when to perform the division of a tree node.  

We applied our algorithm in four datasets, two 
synthetic and two real-world, comparing the 
obtained results with VFDT using large and smaller 
datasets. 

The paper is organized as follows. Section 2 
presents the theoretical background of data streams 
classification using decision trees. Section 3 presents 
the proposed algorithm, the StARMiner Tree. 
Section 4 presents the experiments performed. 
Finally, Section 5 summarizes the obtained results. 
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2 RELATED WORK 

In (Domingos and Hulten, 2000) a basic decision 
tree algorithm for data stream classification called 
Hoeffding Tree (HT) was presented. In the same 
paper, it was proposed the VFDT (Very Fast 
Decision Tree) system, which is a framework based 
on HT. The VFDT allows the use of Information 
Gain and Gini Index as the attribute evaluation 
measure and adds several refinements to the original 
algorithm. In Figure 1 is shown a version of VFDT, 
adapted from (Bifet, 2010). 

According to (Domingos and Hulten, 2000), in 
order to find the best attribute to test at a given a tree 
node, it may be sufficient to consider only a small 
subset of training examples that pass through that 
node. After processing a given stream of examples, 
the first ones will be used to choose the root test. 
Once the root attribute is chosen, the next examples 
will be passed down to the corresponding leaves and 
used to choose the appropriate attributes there, and 
so on recursively. 
 
Algorithm: VFDT 

1. Let ܶܪ be a tree with a single leaf (the root) 
2. for all training examples do 
3. Sort example into leaf ݈ using HT 
4. Update sufficient statistics in ݈ 
5. Increment ݊ଵ, the number of examples seen at ݈ 

6. 
if ݊ଵ	݉݀݋	݊௠௜௡ ൌ 0 and all examples seen at ݈ not 
all of same class then 

7. Compute ̅ܩ௟ሺ ௜ܺሻ for each attribute 
8. Let ܺ௔ be the attribute with highest ̅ܩ௟ 

9. 
Let ܺ௕ be the attribute with the second-highest 

 ௟ܩ̅

10. Compute Hoeffding bound ߳ ൌ ට
ோమ ୪୬ሺଵ ఋ⁄ ሻ

ଶ௡೗
 

11. 
if ܺ௔ ് ܺ∅ and ൫̅ܩ௟ሺܺ௔ሻ െ ௟ሺܺ௕ሻܩ̅ ൐ ߳ ܚܗ ߳ ൏

߬൯ then 

12. 
Replace ݈ with an internal node that splits
on ܺ௔ 

13. for all branches of the split do 

14. 
Add a new leaf with initialized
sufficient statistics 

Figure 1: The VFDT Algorithm. 

The algorithm starts with a unique node, the root of 
the tree (step 1). When a new example arrives, it is 
classified to the corresponding leaf, the sufficient 
statistics are collected and ݊௟, the number of 
examples seen at node l, is incremented (steps 3, 4 
and 5). 

At step 6 it is checked if sufficient examples 
were observed at that node, in order to try to split the 
node. This is verified using the ݊௠௜௡ parameter 
(minimum number of examples that should be read 
for the division attempt). Thus, the code block 
between steps 6 and 14 is only performed 
periodically. At step 6 it is also checked if all data 
observed at that node so far belong to the same class.  

In steps 7, 8 and 9, a heuristic (criteria) is used to 
choose the two best attributes to split the node. To 
solve the problem of deciding how many examples 
are necessary at each node is used a statistical result 
known as the Hoeffding bound. 

According to (Domingos and Hulten, 2000): let ݎ 
be a real-valued random variable whose range is ܴ 
(e.g., for a probability the range is one, and for an 
information gain the range is log ܿ, where ܿ is the 
number of classes). Suppose we have made ݊ 
independent observations of this variable, and 
computed their mean	̅ݎ. The Hoeffding bound states 
that, with probability	1 െ  the true mean of the ,ߜ
variable is at least	̅ݎ െ  where ,ߝ
 

߳ ൌ ඨ
ܴଶ ln 1 ⁄ߜ

2݊
 (1)

 

At step 11, the following conditions are checked: 
 ܺ௔ ് ܺ∅: if at least one attribute has been selected, 

i.e., if the best attribute is not null; 
 ̅ܩ௟ሺܺ௔ሻ െ ௟ሺܺ௕ሻܩ̅ ൐ ߳	: if the difference between 

the two best attributes is greater than ߳; 
 ߳ ൏ ߬: as ݊ (the number of observed examples at 

that node) increases, ߳ tends to decrease. If the two 
best attributes have very close values, ߳ would be 
as small as	߬, which is a tie criterion. 

If the conditions at step 11 are satisfied, the leaf ݈ 
becomes an internal node that divides at ܺ௔ (step 
12), and the sufficient statistics at ݈ are initialized for 
all branches of the split (step 14). 

One of the main features of VFDT is its ability to 
handle large amounts of data maintaining a good 
accuracy, with theoretical guarantees concerning the 
use of HB. According to (Zia-Ur et al., 2012) a 
disadvantage of being so general is that the HB is 
conservative, requiring more examples than 
necessary to describe the data. 

The VFDT is a very popular classification 
algorithm that has been constantly adapted and 
modified. 

In (Gama et al., 2003) an extension of VFDT 
called VFDTc was proposed. It uses Information 
Gain, handles with numeric attributes and uses 
Naïve Bayes at the leaves, considered by the authors 
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a more powerful technique to classify examples. 
The OVFDT (Optimized Very Fast Decision 

Tree) was proposed in (Yang and Fong, 2011) to 
control the tree size while keeping a good accuracy. 
According to the authors, this is enabled by using an 
adaptive threshold tie and incremental pruning in 
tree induction. 

In (Chen et al., 2009) the OcVFDT (One-class 
Very Fast Decision Tree) algorithm was proposed. It 
is based on VFDT and POSC4.5, and it is applied to 
one-class classification. 

In (Zia-Ur et al., 2012) the authors proposes the 
Empirical Bernstein Tree (EBT) that uses empirical 
Bernstein’s bound to achieve a better probabilistic 
bound on the accuracy of the decision tree. 

An important concern regarding the data stream 
classification is the concept drift problem, which 
occurs when the concept defining the target being 
learned begins to shift over time. In (Hulten et al., 
2001) the CVFDT was proposed, an efficient 
algorithm for mining decision trees from 
continuously-changing data streams, based on 
VFDT. The algorithm grows alternatives subtrees, 
and whenever current model becomes questionable 
it is replaced by a more accurate alternative subtree. 

In this paper we propose the StARMiner Tree 
(ST) algorithm, which is based on the principles of 
VFDT, but utilizes a method based on statistics as a 
heuristic to choose the best attribute to be used in the 
test at a node. 

3 StARMiner TREE 

The StARMiner Tree (ST) is a parametric statistical 
decision tree algorithm for data streams 
classification. The StARMiner (Statistical 
Association Rule Miner) algorithm was first 
proposed in (Ribeiro et al., 2005) to mine 
association rules over continuous feature values. In 
this paper, the original algorithm was adapted to 
work as an attribute evaluation measure in ST, 
verifying when to split a node and which attribute 
should be used. The algorithm is presented in Figure 
2. 

ST handles numerical data, preferably 
standardized, and has as input three parameters 
 ,As it is possible to observe .(௠௜௡ߛ ௠௔௫ andߪ	,௠௜௡ߤ∆)
its general structure is very similar to VFDT. We 
only describe the steps that differ from the original 
algorithm. 

 Let ݔ௝ be a class (category) and ܽ௜ be an 
attribute (feature). At step 4 the statistics updated by 

ST are ߤ௔೔ሺ ௫ܶೕሻ and ߪ௔೔ሺ ௫ܶೕሻ, i.e., the mean and 

standard deviation of each attribute according to its 
corresponding class. 

When a minimal number of examples is 
observed, ST selects the attributes that satisfy the 
following conditions (steps 7 to 10): 
 The ܽ௜ attribute should have a behavior at class ݔ௝ 

different to its behavior in other classes; 
 The ܽ௜ attribute should present a uniform behavior 

at data from class ݔ௝. 
 
Algorithm: StARMiner Tree 
1. Let ܵܶ be a tree with a single leaf (the root) 
2. for all training examples do 
3. Sort example into leaf ݈ using ܵܶ 
4. Update sufficient statistics in ݈ 
5. Increment ݊ଵ, the number of examples seen at ݈ 

6. 
if ݊ଵ ݀݋݉ ݊௠௜௡ ൌ 0 and all examples seen at ݈
not all of same class then 

7. 
Select attributes that satisfies the condition 
ሺߤ௔೔ሺ ௫ܶೕሻ െ ௔೔ሺܶߤ െ ௫ܶೕሻሻ ൒  ௠௜௡ߤ∆

8. 
Select attributes that satisfies the condition 
σୟ౟ሺT୶ౠሻ ൑ σ୫ୟ୶ 

9. Compute ܼ௜ೕ 

10.
if at least one attribute is selected and 
ܼ௜ೕ ൏ ܼଵ or ܼ௜ೕ ൐ ܼଶ then 

11.

Let ܺ௔ be attribute that identifies more 
classes, with higher ߤ௙೔ሺܶ െ ௫ܶೕሻ and 

lower ߪ௙೔ሺ ௫ܶೕሻ 

12. Replace ݈ with an internal node that splits 
on ܺ௔ 

13. to all branches of the split do 

14. Add a new leaf with sufficient 
statistics initialized 

Figure 2: The StARMiner Tree Algorithm. 

To satisfy these conditions, the algorithm uses three 
constraints of interest, which must be informed by 
the user: 
 ∆ߤ௠௜௡: minimum difference between the means of 

attribute ܽ௜ at examples from class ݔ௝ and the other 
examples; 
 ߪ௠௔௫: maximum deviation allowed in the attribute 
ܽ௜ at examples from class ݔ௝; 
 ߛ௠௜௡: minimum confidence to reject the hypothesis 
௔೔ሺߤ that the means	ܪ ௫ܶೕሻ and ߤ௔೔ሺܶ െ ௫ܶೕሻ are 

statistically equal at the sets ௫ܶೕ (examples at class 

௝) and Tݔ െ T୶ౠ (examples at the other classes). 

To reject ܪ with confidence equal or greater 
than	ߛ௠௜௡, the critical values of ܼ are calculated, i.e., 
ܼଵ and ܼଶ, according to the formula (2). The 
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rejection regions are illustrated at Figure 3. 
 

ܼ ൌ
௔೔ߤ ቀ ௫ܶೕቁ െ ௔೔ߤ ቀܶ െ ௫ܶೕቁ

௔೔ሺߪ ௫ܶ೔ሻ

ඥሺ| ௫ܶ|ሻ

 (2)

 

 

Figure 3: Rejection Regions. 

If just one attribute (ܺ௔) is selected and the 
hypothesis ܪ is rejected, the ܺ௔ attribute is chosen to 
split the node (step 10). If two or more attributes 
satisfy the conditions, at step 11 ST chooses the 
attribute ܺ௔ that, respectively, identifies more 
classes, have higher ߤ௙೔ሺܶ െ ௫ܶೕሻ and lower 

௙೔ሺߪ ௫ܶೕሻ. Then, ܺ௔ is used for the test node at steps 

12, 13 and 14. 

4 EXPERIMENTS 

In this section we present the experiments performed 
using both synthetic and real-world datasets in order 
to validate the proposed algorithm, the StARMiner 
Tree. This version of ST still does not deal with the 
concept drift problem, as well as VFDT, the 
algorithm used to compare de obtained results. 

4.1 Datasets 

We applied our algorithm using four datasets. The 
two synthetic datasets used, Hyperplane and 
Random RBF, were generated with MOA (Massive 
Online Analysis) ¹. The two real-world datasets, 
Electricity and Skin Segmentation were obtained, 
respectively, at MOA website¹ and at UCI 
repository². 

The Hyperplane dataset has been set with 5% of 
noise, 10 attributes and 5 class values. Random RBF 
dataset has been set to generate 5 attributes and 5 
class values. Both generated 10 million examples.  

The Skin Segmentation dataset contains a 
randomly sample of RGB values from face images 
of various age groups, race groups and genders. It 
has 245,057 examples with three attributes (R, G 

and B) and 2 class values, 50,859 skin samples and 
194,198 is non-skin samples. We have normalized 
the data to achieve a better result with the use of ST.  

The last experiment has been performed using 
the Electricity dataset. It contains 45,312 instances 
collected from the Australian New South Wales 
Electricity Market, where prices are not fixed and 
are affected by demand and supply of the market. 
We have excluded two attributes from the original 
dataset (date and day) and normalized all data. The 
modified dataset contains 6 numeric attributes with 2 
class values, “up” and “down”.  

4.2 Configurations 

We compare the obtained results using StARMiner 
Tree (ST) to VFDT, in terms of accuracy, tree size 
and execution time using prequential validation. 

The prequential (or interleaved test-then-train) 
validation is a scheme used to interleave testing and 
training.  According to (Partil and Attar, 2011), each 
example can be used to test the model before it is 
used for training, and from this the accuracy can be 
incrementally updated. 

We have used two different configurations of ST 
for each experiment, referred as ST1 and ST2, in 
order to show how different parameters can modify 
the obtained results. All the parameters were set by 
the user, according to the type of data available. 
Every time the obtained results showed low 
accuracies, the parameters were modified. 

We performed all experiments with the default 
parametric values employed in MOA on a Windows 
7, Core i7 / 2.8GHz CPU, 8GB memory computer, 
considering ݊௠௜௡ ൌ 200 for all algorithms and 
 .௠௜௡=0.99 for all ST configurationsߛ

In the experiment using the Hyperplane dataset, 
ST1 was set with ߪ௠௔௫ ൌ 0.36 and the ST2 with 
௠௔௫ߪ ൌ 0.273. Both configurations used ∆ߤ௠௜௡ ൌ
0.14. 

Using the Random RBF dataset, ST1 was set 
with ∆ߤ௠௜௡ ൌ 0.2 and ST2 with ∆ߤ௠௜௡ ൌ 0.14. Both 
used	ߪ௠௔௫ ൌ 0.36. 

We have tested the model built using the 
Hyperplane and the Random RBF datasets at each 
500 thousands examples. 

In the experiment using Skin Segmentation 
dataset, the ST1 was set with ∆ߤ௠௜௡ ൌ 0.01 
and	ߪ௠௔௫ ൌ 0.04, and the ST2 was set with 
௠௜௡ߤ∆ ൌ 0.014 and ߪ௠௔௫ ൌ 0.2. We evaluated the 
classification at each 10 thousands examples. 

In the last experiment, using the Electricity 
dataset the ST1 was set with ߪ௠௔௫ ൌ 0.2 and the 

 

¹MOA: Massive Online Analysis, http://moa.cms.waikato.ac.nz. 
²UCI: Machine Learning Repository, http://archive.ics.uci.edu/ml. 
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ST2 with ߪ௠௔௫ ൌ 0.186. Both used ∆ߤ௠௜௡ ൌ 0.005.  
The evaluation of the model were performed at 

each 3 thousands examples. 

4.3 Experiments Results 

The obtained results are summarized in Table 1, 
using the mean accuracy percentage and execution 
time of each experiment. Figure 4 shows the 
percentage of correct classifications and tree size 
according to the number of examples.  

Table 1: Experiments results. 

Datasets 
Mean Accuracy / %  Execution Time / s 

VFDT ST1 ST2  VFDT ST1 ST2 

Hyperplane 91.29 91.35 91.04  56.01 39.86 40.41

RBF 75.45 76.24 77.88  44.94 39.83 46.66

Skin Seg. 98.80 99.68 99.24  0.57 0.57 0.55 

Electricity 77.44 78.91 78.53  0.25 0.40 0.39 
 

As we can observe in Table 1, using the Hyperplane 
dataset ST1 has obtained the best mean accuracy and 
execution time, with 91.35% in 39.86 seconds, 
followed respectively by VFDT with 91.29% in 
56.01 seconds and ST2 with 91.04% in 40.41 
seconds. In Figure 4 (a) it is possible to observe that 
the algorithms had similar accuracy variations. ST2 
finished the classification process with the best final 
accuracy, 92.6%, and the smallest tree, with 503 
nodes, according to Figure 4 (b). VFDT reached 
92.1% of accuracy with 6,637 nodes and ST1 
achieved 91.6% with 861 nodes. ST handled with 
noise better than VFDT, achieving the highest mean 
and final accuracy, building the smallest tree and 
obtaining the best execution time. 

According to Table 1, in the experiment using 
the Random RBF dataset, ST obtained the best mean 
accuracy in both configurations of ST. ST2 has 
obtained the best mean accuracy with 77.88% in 
46.66 seconds. The second higher accuracy has been 
achieved by ST1 with 76.24% with accuracy in 
39.83 seconds (the best execution time) and VFDT 
has obtained 75.45% of mean accuracy in 44.94 
seconds (the second best execution time). Figure 4 
(c) shows that ST2 had the best accuracy in almost 
all the time, finalizing the classification with 77.8%, 
but with a bigger tree, as it is possible to see in 
Figure 4 (d), with 9,735 nodes. The final accuracy of 
ST1 and VFDT were, respectively, 77.7% with 
2,391 nodes and 76.9% with 1,593 nodes. In general, 
using Random RBF dataset, ST achieved the best 
accuracy with a good execution time, in comparison 

with VFDT. Although ST2 obtained the best 
accuracy variation, it has created the biggest tree. 

Using the Skin Segmentation dataset, ST also 
obtained the best mean accuracy in both 
configurations of ST, as it is possible to observe in 
Table 1. ST1 achieved the best mean accuracy, 
99.68% in 0.57 seconds, followed by ST2 with 
99.24% of accuracy in 0.55 seconds, the best 
execution time, and VFDT with 98.8% of accuracy 
in 0.57 seconds. 

Figure 4 (e) and (f) shows that ST1 had the best 
accuracy during all the classification process and 
generated the larger tree, finishing with 99.9% of 
accuracy with 189 nodes. Although VFDT and ST2 
achieved lower accuracies, they generated the 
smaller trees with, respectively, 99.2% of accuracy 
with 95 nodes and 98.9% of accuracy with 127 
nodes. 

As it is possible to observe in Table 1, using the 
Electricity dataset ST2 and ST1 achieved the best 
mean accuracies, with 78.91% of accuracy in 0.4 
seconds and 78.53% of accuracy in 0.39 seconds, 
respectively. VFDT has obtained 77.44% of mean 
accuracy in 0.25 seconds, the smallest execution 
time. 

According to Figure 4 (g) and (h) all algorithms 
obtained a similar variation of accuracy, while 
VFDT produced the smallest tree. VFDT, ST1 and 
ST2 achieved as final accuracy 77.8% with 47 
nodes, 81.7% with 313 nodes and 80.2% with 309 
nodes, respectively. 

As it is possible to observe in Figure 4, in the 
first examples processed, ST described the data first 
than VFDT, which needed more examples to 
improve its accuracy. 

Although in three experiments ST constructed 
bigger trees, the execution time obtained was close 
(when not lower) in comparison to VFDT. 

According the obtained results and the 
configurations used, it is possible to conclude that 
combining different values for the ST parameters 
∆μ୫୧୬ and σ୫ୟ୶, the algorithm can achieve a better 
accuracy result, but sometimes creating a bigger 
tree. Thus, the user can modify the parameters 
values in order to achieve a higher accuracy 
according to the total of data and memory available. 
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Figure 4: Accuracy and tree size (number of nodes) obtained.

 88

 89

 90

 91

 92

 93

 94

 0  1  2  3  4  5  6  7  8  9  10

%
 c

or
re

ct

number of examples (milions)

(a) Hyperplane Dataset

VFDT
ST1
ST2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  1  2  3  4  5  6  7  8  9  10

tr
ee

 s
iz

e 
(n

od
es

)

number of examples (milions)

(b) Hyperplane Dataset

VFDT
ST1
ST2

 70

 72

 74

 76

 78

 80

 0  1  2  3  4  5  6  7  8  9  10

%
 c

or
re

ct

number of examples (milions)

(c) Random RBF Dataset

VFDT
ST1
ST2

 0

 2000

 4000

 6000

 8000

 10000

 0  1  2  3  4  5  6  7  8  9  10

tr
ee

 s
iz

e 
(n

od
es

)

number of examples (milions)

(d) Random RBF Dataset

VFDT
ST1
ST2

 95

 96

 97

 98

 99

 100

 0  50  100  150  200  250

%
 c

or
re

ct

number of examples (thousands)

(e) Skin Segmentation Dataset

VFDT
ST1
ST2

 0

 50

 100

 150

 200

 0  50  100  150  200  250

tr
ee

 s
iz

e 
(n

od
es

)

number of examples (thousands)

(f) Skin Segmentation Dataset

VFDT
ST1
ST2

 60

 65

 70

 75

 80

 85

 90

 0  5  10  15  20  25  30  35  40  45  50

%
 c

or
re

ct

number of examples (thousands)

(g) Electricity Dataset

VFDT
ST1
ST2

 0

 50

 100

 150

 200

 250

 300

 0  5  10  15  20  25  30  35  40  45  50

tr
ee

 s
iz

e 
(n

od
es

)

number of examples (thousands)

(h) Electricity Dataset

VFDT
ST1
ST2

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

222



5 CONCLUSIONS 

In this paper we introduced the StARMiner Tree a 
statistical decision tree algorithm for data streams 
classification. 

The experiments described of both synthetic and 
real-world datasets show that the StARMiner Tree is 
a good alternative for data streams classification 
maintaining good accuracy and execution time. 

In all experiments ST presented at least one 
configuration with the best mean and final accuracy, 
in comparison with VFDT. In terms of execution 
time, VFDT was faster than ST only using the 
Electricity dataset. Although the good accuracy and 
execution time results, ST constructed the biggest 
tree in three of four experiments. 

Another concern regarding the data stream 
classification is the concept drift problem, which 
occurs when the concept defining the target being 
learned begins to shift over time. 

As future work we intent to add an automatic 
estimation of the StARMiner parameters. We also 
intent to extend StARMiner Tree in order to deal 
with the concept drift problem. 
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