
SyMPLES
A SysML-based Approach for Developing Embedded Systems Software Product

Lines

Rogério F. Silva1, Vanderson H. Fragal1, Edson A. Oliveira Junior1, Itana M. S. Gimenes1

and Flávio Oquendo2

1Departamento de Informática, Universidade Estadual de Maringá, Maringá-PR, Brazil
2IRISA, European University of Brittany, UBS, Vannes Cedex, France

Keywords: Embedded Systems, Software Product Line, SysML, Unmanned Aerial Vehicle, Variability Management.

Abstract: The evolution of hardware platforms has transferred a great amount of functionality to embedded software,
thus increasing its complexity. The Software Product Line approach (SPL) has been successfully applied to
the development of embedded software both to deal with complexity and to accelerate time to market. This
paper contributes to enhance the application of SPL to embedded systems by extending the SysML language
to include variability as well as by providing a well-defined SPL development process. The proposed
approach, named SysML-based Product Line Approach for Embedded Systems (SyMPLES), includes two
SysML extensions, created by means of the UML profiling mechanism both to express variability concepts
and to associate SysML blocks to the main classes of functional blocks. An application example was
developed for two subsystems of an Unmanned Aerial Vehicle (UAV) family, named Tiriba, which has
been produced by the AGX Company in cooperation with the National Institute of Science and Technology
for Safety-Critical Embedded Systems (INCT-SEC).

1 INTRODUCTION

Embedded systems are applications for processing
embedded information in a larger product which is
not usually directly visible to users (Marwedel,
2006). The increased computational power of
hardware platforms has led to a fast growth of
embedded software over the last decades; this is
mainly due to the transfer of more functionality to
software (Burch et al., 2001). As a consequence,
embedded systems became larger and more
complex, thus more demanding in terms of software
engineering techniques (Bassi et al., 2011). The
Software Product Line (SPL) approach has been
successfully applied to embedded systems (Polzer et
al., 2009); (Shimabukuro et al., 2011); (Achatz,
2011). However, there is a need to improve the
specification of higher-level models of embedded
systems with respect to variability representation.
Such models are usually specified in UML (Farkas
et al., 2009); (Moreira et al., 2010). This language
does not take into account important aspects of the
system engineering discipline, which involve the

development of complex systems, implemented by
hardware and software solutions.

This paper presents SyMPLES, a SPL approach
that is based on higher-level models specified in
SysML enhanced with extensions that represent
variability concepts. SysML is a language designed
for embedded systems, derived from UML and
officially adopted and standardized by the OMG
(OMG, 2012). SysML extends the concept UML
classes using the concept of block to model not only
software, but also hardware and any other
constituent of a system. SysML offers important
modelling features for embedded systems
(Sabetzadeh et al., 2011), which include:

 better semantical expression of systems
engineering features, thus reducing the bias of
UML towards classical software. In particular,
the block concept has been introduced, which is
a modular unit of system description used to
describe structural concepts in a system and its
environment.

 improved requirement specification. This allows
the definition of both function and non-

257F. Silva R., H. Fragal V., A. Oliveira Junior E., M. S. Gimenes I. and Oquendo F..
SyMPLES - A SysML-based Approach for Developing Embedded Systems Software Product Lines.
DOI: 10.5220/0004446802570264
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 257-264
ISBN: 978-989-8565-60-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

functional requirement, in addition to their
tracing to design models described at different
levels of abstraction.

SyMPLES includes two SysML extensions for
representing embedded system artifacts, created by
means of the UML profiling mechanism: (i)
SyMPLES-ProfileVar which supports variability
representation by providing a set of stereotypes and
tagged values; and (ii) SyMPLES-ProfileFB which
includes a set of stereotypes that represents the main
classes of functional blocks. These stereotypes
represent the behavior associated with standard
SysML blocks.

In addition to the SysML extensions, SyMPLES
defines two processes: (i) SyMPLES-ProcessPL
which defines a set of activities and guidelines to
support the creation of the SPL artifacts; and (ii)
SyMPLES-ProfileVar which is concurrently
executed with the first process and contains a set of
activities and guidelines to support the identification,
delimitation and representation of variability, as well
as the SPL product configuration.

An application example of SyMPLES was carried
out to design a SPL for a family of UAV, called
Tiriba, developed by the AGX Company (AGX,
2012), in partnership with INCT-SEC (INCT-SEC,
2008). Tiriba is used in pre-defined missions and
applications such as agricultural and environmental
monitoring. This family of aircrafts has taken
advantage of the miniaturization of electronic
components such as GPS receivers, digital cameras,
wireless communication equipment and sensors
(Branco et al., 2011) to reduce production costs and
expand its application domain

This paper is organized as follows: Section II
presents a background summary; Section III presents
the SyMPLES approach; Section IV presents an
application example of the SyMPLES approach to
develop a SPL for the Tiriba UAV Family. Section
V presents discussion and related works; and Section
VI presents conclusions and ongoing works.

2 BACKGROUND

Important concepts related to the application of the
SPL approach to system engineering are presented in
this section.

2.1 SPL applied to the embedded
Systems Domain

A SPL describes a family of systems that share a

common and managed set of features according to
the requirements of a particular market segment
(Linden et al., 2007). The main SPL engineering
activities are: (i) domain engineering in which a core
infrastructure is designed by explicitly representing
the variation points that allow further configuration;
and (ii) the application engineering in which the
configuration of the core components takes place to
resolve variation points. Feature models are used for
capturing and managing the similarities and
variabilities of a SPL. A feature model may contain
mandatory, optional and alternative features. Such a
model is created during domain engineering as part
of the core infrastructure, and then used as input to
the application engineering (Czarnecki et al., 2005).

The SPL approach has been important for the
embedded systems domain (Polzer et al., 2009);
(Buschmann and Schwanninger, 2011); (Achatz,
2011) because the market usually produces similar
product models of which the specific requirements
usually lead to changes in the core software
architecture of the family of products. The use of
SPL can make the systematic evolution of products
easier, thus reducing development cost, effort and
time to market.

In addition to the SPL principles, we have used
an approach to manage variability named SMarty
(Oliveira Junior et al., 2010) as it allows the
representation of variability in UML-like models
and has also an explicit process for identification,
delimitation and tracing variabilities.

2.2 Systems Engineering and SysML

Systems engineering is a multidisciplinary approach
that aims to develop complex systems implemented
using solutions that encompass hardware and/or
software (Lykins and Friedenthal, 2000; Weilkiens,
2007). Embedded systems are within the scope of
system engineering techniques. In this paper, we
take embedded systems as the domain of our SPL
therefore we conceived it by taking into account
languages and models previously applied to system
engineering.

SysML was used as the main notation for our
SPL artifacts. This language (OMG, 2012) is quickly
becoming a de-facto standard for systems
engineering (Sabetzadeh et al., 2011). It reuses a
subset of diagrams defined in UML (version 2.3)
and defines its own extensions. The main diagrams
used in our approach were the Block Definition
Diagram and the Internal Block Diagram because
they are related to functional block models usually
applied by industry to specify embedded systems

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

258

Figure 1: Stereotypes of the SyMPLES-ProfileVar profile.

(Sjostedt, 2008).
Model-based Systems Engineering (MBSE) is an

approach that uses higher-level models represented
in languages such as SysML. MBSE processes
(INCOSE, 2006) encompass requirements
specification, design, analysis, verification and
validation of system design activities. Examples of
MBSE processes are: Harmony (Douglass, 2004),
RUP SE (Murray, 2003) and OOSEM (Lykins and
Friedenthal, 2000). SyMPLES is mainly based on
OOSEM as it uses SysML and is a tool-independent
process. In addition, it has the advantage of being
generic and providing a framework for instantiating
methods for system engineering, as proposed in
(Bassi et al., 2011).

3 THE SyMPLES APPROACH

SyMPLES provides two profiles and two processes.
The profiles are extensions of the SysML language
created to support the representations of the SPL
artifacts and the processes guide the user in the
application of the profiles to specify the SPL
artifacts. The profiles and processes are described in
the next sections.

3.1 Sy1 Profiles

a) The SyMPLES Profile for Functional Blocks
(SyMPLES-ProfileFB) provides additional
semantics to SysML blocks. It is composed of a
group of stereotypes to support the mapping of

the SysML elements to main classes of
functional blocks languages, such as Simulink.
This supports the association of behavior with
SysML models, thus facilitating the
transformation process from specification to
implementation; and,

b) The SyMPLES Profile for Representation of
Variability (SyMPLES-ProfileVar) is based on
the UML profile defined in the SMarty approach
(Oliveira Junior et al., 2010). It defines a set of
stereotypes and tagged values that allow the
association of SysML elements such as Block,
Interfaces, Dependency and Comment with
variability concepts. It enables the specification
of the structural, behavioral and variability
aspects by using a single notation. Figure 1
presents the SyMPLES-ProfileVar and its
stereotypes. We can see, for instance, that the
variable stereotype is applied to the Block
metaclass.

3.2 SyMPLES Processes

SyMPLES processes are composed of a set of
activities as follows:
a) The SyMPLES Process for Product Lines

(SyMPLES-ProcessPL) defines a set of generic
and tool-independent activities that supports the
SPL domain engineering; and,

b) The SyMPLES Process for Identification of
Variabilities (SyMPLES-ProcessVar) is an
iterative and incremental process for representing
and managing SPL variability based on the

SyMPLES�-�A�SysML-based�Approach�for�Developing�Embedded�Systems�Software�Product�Lines

259

Figure 2: Interaction Between SyMPLES-ProcessPL and SyMPLES-ProcessVar.

SMarty approach (Oliveira Junior et al., 2010).
Each SyMPLES-ProcessPL activity requires
iteration with the SyMPLES-ProcessVar. Its goal
is to support the user in the identification,
delimitation, representation and configuration of
variability.

Figure 2 shows an activity diagram which represents
the interaction between the SyMPLES-ProcessPL,
represented by the activities of the rectangle on the
left side, and SyMPLES-ProcessVar, represented by
the activities of the rectangle on the right side. These
processes run in parallel during SPL domain
engineering.

The activities of SyMPLES-ProcessPL were
extended from OOSEM (Bassi et al., 2011), as
follows:

 Requirements analysis, which performs analysis
of both the system environment and user needs,
for generating a list of requirements and the
system use case diagram;

 Requirements refinement, which takes as input a
list of requirements and the use case diagram
produced in the previous activity, and generates
as output a SysML requirements diagram;
Feature model definition, which identifies the
externally visible features of products that
compose the SPL and organizes them into a
feature model;

 Architecture definition, which decomposes the

system into blocks to create the SysML block
diagram, and therefore define how such blocks
interact to meet the system requirements;

 Architecture refinement, which defines the
internal structure of the blocks by creating
SysML internal block diagrams; and

 Map requirements onto architecture, which
associates previously created blocks and the
requirements defined in the requirements
diagram. This activity produces tracing reports
between the requirements and the architecture
which support the analysis of the SPL evolution.
SysML use, at this level, the requirements
diagram instead of the use case model as this
diagram allows the representation of non-
functional requirements and a better mapping of
them to the elements of the architecture.

SyMPLES-ProcessVar activities are described as
follow:

 Variability identification: performed in every
interaction between SyMPLES-ProcessPL and
SyMPLES-ProcessVar taking as input the feature
model, use cases, requirements and blocks. This
activity aims to identify the variabilities
associated with these models. SyMPLES-
ProfileVar supports this activity by applying
their stereotypes to SysML models and
associating values for tagged values;

 Variability delimitation: which sets values for the

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

260

Figure 3: Excerpt of the Tiriba UAV flight control subsystems in SysML.

following variability tagged values:
minSelection, maxSelection, bindingTime,
allowsAddingVar and variants;

 Product configuration: which contains specific
block models (eg. block and block definition
diagrams). This activity leads to the resolution of
SysML model variabilities for generating
specification for a specific product. The product
configuration can be performed manually or
automatically as, for instance, using the tool
pure::variants (Pure-Systems, 2011).

In addition to the activities described above,
SyMPLES provides a set of guidelines to support the
developer on how to develop and evolve the models.

4 APPLYING SyMPLES TO
DEVELOP A SPL FOR UAV

4.1 Modeling the SPL for UAV

The activities defined by SyMPLES-ProcessPL were
executed to create the core of a SPL for the
navigation and flight control subsystems of the
Tiriba UAV family. After the execution of the
process activities, the following artifacts were
produced: use case model, requirements diagram,
feature model, block definition diagram and internal
block diagram. We have recovered the specification
of the Tiriba UAV block models from their existing
Simulink models. Thus, the stereotypes of
SyMPLES-ProfileFB were used to represent the
main blocks recovered from the Simulink models in
the SysML models.

The block definition and internal block diagrams
were specified with their respective variabilities
following the SyMPLES-ProfileVar. Figure 3 shows

an excerpt of the internal block diagram of the UAV
flight control subsystem. In this figure, blocks c1
and c3 were marked with the stereotype
<<Constant>> indicating that they correspond to a
block of type constant in Simulink. This shows that
SyMPLES-ProfileFB supports the establishment of
straightforward correspondence between SysML
blocks and Simulink implementation blocks.

Figure 4: Tiriba UAV Feature Model in pure::variants.

After executing the variability identification
activity of SyMPLES-ProcessVar, the blocks
subsystem1 and c3, shown in Figure 3 were
identified as exclusive variants, thus they were
annotated with <<alternative_XOR>> stereotype.
This means that only one of these blocks is selected
after the product configuration. The block
parachute was identified as an inclusive variant;
this means that the block may be selected to a
specific product.

The product configuration activity of SyMPLES
was suported by an Eclipse plugin, named

SyMPLES�-�A�SysML-based�Approach�for�Developing�Embedded�Systems�Software�Product�Lines

261

Figure 5: Excerpt of the flight control subsystem of the Tiriba UAV after the variability configuration.

SysMLImporter. It was implemented to map SysML
block models with variability to feature models in
the pure::variants tool, as shown in Figure 4. The
configuration of the feature model results in SysML
models for specific products.

Important elements presented in the Figure 4 are:

 Variation points are identified with
<variability>; in this example they are Type
Parachute, Type Flight, Type Cam e
Type Rec; the variation points Type
Flight and Type Parachute are parts of
the navigation system and can also be seen in
Figure 3;

 Variants associated with the variation points are
identified with <variant>;

 <part> identifies elements of the SysML model
which are necessary after the selection of a
certain variant; for instance, in Figure 3 the
blocks alt and stop are automatically selected
after the selection of the parachute block,
because they are linked by a <<requires>>
relationship.

After selecting the features of the specific product
the SysML Importer plugin can clean up the
correspondent SysML model eliminating the
features that were not selected. Figure 5 shows the
SysML model of the flight control subsystem of the
Tiriba UAV obtained from the configuration
selected in Figure 4. In this figure, the blocks c1 and
c3 are not present because in the alternative
exclusive variability Type Flight of the feature
model (Figure 4) the block c3 was selected and it
requires block c1. The block parachute is also in
the model because the alternative variant was
selected.

5 DISCUSSION AND RELATED
WORK

SyMPLES application was analyzed according to
main aspects as follows:

 Use of High-level Abstraction Models and the
SysML Language: SyMPLES uses SysML for
modeling embedded systems. This language
proved to offer appropriate resources to represent
different perspectives of the system architecture
through requirements, blocks, ports, parametric
diagrams and allocations. It is also possible to
trace the model evolution throughout the
development process. In SyMPLES we could
observe the transformation of requirements to the
system block diagram. Perseil and Pautet (2010)
and Zaki and Jawawi (2011) use the MARTE
profile (OMG, 2009) for modeling embedded
systems. However, MARTE focuses on the
specification of real-time issues, which involve
guidelines to annotate models based on time,
such as performance and scalability. Farkas et
al., (2009) propose an approach that uses UML
to specify embedded systems integrated with
functional blocks specified in Simulink.
However, as stated previously, UML is a
general-purpose language and it does not allow
the specification of details required in system
engineering such as non-functional requirements.
So, by working with SysML we provided an
approach closer to what system engineering
requires.

 Application of SPL Techniques: it was possible
to represent variabilities in SysML models based
on the SyMPLES-ProfileVar profile, which takes
SMarty as a basis for proposing new extensions
for the SysML language. SMarty provides a

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

262

more precise representation of variability issues
by making explicit relationships between
variation points and variants. Thus, SyMPLES-
ProfileVar inherits such characteristics form
SMarty. The SyMPLES-ProfileFB also makes it
easier to associate the SysML blocks to
functional block languages, such as Simulink. In
addition, the processes SyMPLES-ProcessPL and
SyMPLES-ProcessVar have well-defined
activities and guidelines that make the SPL
development easier. Botterweck et al., (2009)
propose an approach to develop SPL for
embedded systems in which Simulink models are
translated to feature models. Thus, it is possible
to associate Simulink blocks with features in
order to obtain specific models from the
configuration and their correspondent
implementation.

 Support for Product Configuration: the
SyMPLES-ProcessVar established a set of
guidelines that made product configuration
systematic. This made it possible to implement
SysMLImporter, a tool that maps SysML models
to pure::variants feature models that generates
specific SysML models for the products.

6 CONCLUSIONS AND FUTURE
WORK

This paper presents SyMPLES, an approach to
develop SPL for embedded systems. It was applied
to model two subsystems of a real UAV application.
The SysML models presented were created in a
reverse engineering process, using the real Simulink
models of the UAV Tiriba. In addition, the activities
defined in the SyMPLES-ProcessPL includes
requirements analysis and makes it possible to create
SysML models using the stereotypes for functional
blocks defined in the SyMPLES-ProfileFB, in a
straightforward development task.

One of the key contributions of our work is to
provide high-level abstraction models in SysML
enhanced with a variability management
mechanism. SyMPLES is based on SysML, because
this language enable the expression of important
system engineering concepts which cannot be
represented in the general UML, such as:
parametrized blocks, hierarchically structured
requirements, mapping between requirements and
the system architecture and the definition of ports
and flows.

In addition, SyMPLES provides support to:

 Define the semantics of functional blocks of
SysML through the SyMPLES-ProfileFB; as can
be seen in Figures 3 and 5, the application of the
stereotypes of the profile SyMPLES-ProfileFB to
the block model of the Tiriba UAV indicate the
correspondent block in Simulink. By specifying
the system models initially at a higher
abstraction level, make it possible to improve
tasks like requirements specification, software
architecture analysis and model-based testing.
The use of the profile SyMPLES-ProfileVar
enables the representation of variability concepts
directly in SysML without adding artificial
elements to represent variability.

 Provide two well-defined processes to guide the
user in the specification of the SPL artifacts in
SysML by identifying, delimiting and
representing variability;

 Offer a mechanism to support variability
configuration. This mechanism was implemented
as an Eclipse plugin to associate SysML models
with feature models in pure::variants.

Ongoing work includes the completion of the SPL
mechanisms necessary in the application
engineering. This uses model transformation
techniques based on the MDA approach (OMG,
2004) to enable the generation of Simulink models
from the SysML specification of a product generated
by SyMPLES.

ACKNOWLEDGEMENTS

We are grateful to the Brazilian funding agencies
CNPq/INCT-SEC and FAPESP for supporting this
work.

REFERENCES

Achatz, R. Product Line Engineering at Siemens --
Challenges and Success Factors: A Report on
Industrial Experiences in Product Line Engineering.
In: Proc. of 15th International Software Product Line
Conference (SPLC 2011), Munich, 2011, p. 10-11.

AGX Tecnologia Ltda, www.agx.com.br, accessed in
12/19/2012.

Bassi, L., Secchi, C., Bonfé, M., and Fantuzzi, C. A
SysML-Based Methodology for Manufacturing
Machinery Modeling and Design. In: IEEE/ASME
Transactions on Mechatronics, v. 16, n. 6, p. 1049-
1062, 2011.

Botterweck, G., Polzer, A., and Kowalewski, S.
Interactive Configuration of Embedded Systems

SyMPLES�-�A�SysML-based�Approach�for�Developing�Embedded�Systems�Software�Product�Lines

263

Product Lines. In Proc. of the International Workshop
on Model-Driven Approaches in Product Line
Engineering, San Francisco, 2009, p. 51-57.

Branco, K. R. L. J. C.; Pelizzoni, J. M.; Oliveira Neris, L.;
Trindade, O.; Osorio, F. S.; Wolf, D. F. Tiriba - a new
approach of UAV based on model driven development
and multiprocessors. In: IEEE International
Conference on Robotics and Automation (ICRA 2011),
Shanghai, 2011, p. 1-4.

Burch, J., Passerone, R., and Sangiovanni-Vicentelli, A. L.
Using Multiple Levels of Abstractions in Embedded
Software Design. In: Proc. of the International
Workshop on Embedded Software (EMSOFT 2001),
Berlin, 2001, p. 324-343.

Buschmann, F.; Schwanninger, C. Successful Product
Line Engineering: Experiences from the Real World.
Proc. of 15th International Software Product Line
Conference (SPLC 2011), Munich, 2011, p. 349.

Czarnecki, K., Helsen, S., and Eisenecker, U. Staged
Configuration Through Specialization and Multi-Level
Configuration of Feature Models. Software Process
Improvement and Practice, v.10, n. 2, p. 143-169,
2005.

Douglass, B. P. Real-Time UML: Developing Efficient
Objects for Embedded Systems. 3rd ed. Reading, MA:
Addison-Wesley, 752 p. 2004.

Farkas, T., Meiseki, E., Neumann, C., Okano, K.,
Hinnerichs, A., and Kamiya, S. Integration of UML
with Simulink into Embedded Software Engineering.
In: Proc. of the ICROS-SICE International Joint
Conference, Fukuoka, Japan, 2009, p. 474-479.

INCOSE. International Council on Systems Engineering.
Object Oriented System Engineering Method. OOSEM
Descriptive Outline for INCOSE SE Handbook
Version 3, Annotated Update, Sect. 6.4.2, p. 6-1 a 6-6,
2006.

INCT-SEC, Sistemas Embarcados Críticos: aplicações em
segurança e agricultura, CNPq 2008, Available in:
<http://www.inct-sec.org>. Accessed in: Sep. 18,
2012.

Linden, F., Schmif, K., and Rommes, E. Software Product
Lines in Action: The Best Industrial Practice in
Product Line Engineering. Secaucus: Springer, 2007,
353 p.

Lykins, F. M., and Friedenthal, S. Adapting UML for an
Object-Oriented Systems Engineering Method
(OOSEM). In: Proc. of the INCOSE International
Symposium, Minneapolis, 2000, 91-98.

Marwedel, P. Embedded System Design. Springer,
Dortmund, 2006, 241 p.

Moreira, T. G., Wehrmeister, M. A., Pereira, C. E., Pétin,
J., and Levrat, E. Automatic Code Generation for
Embedded Systems: From UML Specifications to
VHDL Code. In: Proc. of the 8th IEEE International
Conference on Industrial Informatics, Osaka, Japan,
2010, p. 1085-1090.

Murray, C. RUP SE: The Rational Unified Process for
Systems Engineering. The Rational Edge, Rational
Software, 2003.

Oliveira Junior, E. A., Gimenes, I. M. S., and Maldonado,

J. C. Systematic Management of Variability in UML-
based Software Product Lines, Journal of Universal
Computer Science, v.16, p. 2374-2393, 2010.

OMG. Model-Driven Architecture. Object Management
Group. 2004.

OMG. MARTE UML Profile Specification. Object
Management Group. 2009.

OMG. Systems Modeling Language (SysML), 2012.
Version 1.3. Object Management Group.

Perseil, I., and Pautet, L. High-Level Abstraction
Modeling for Detailed Analysis of Avionic Real-time
Systems. In Proc. of the 17th IEEE International
Conference and Workshops on Engineering of
Computer-Based Systems, 2010, p. 418-424.

Polzer, A., Kowalewski, S., and Botterweck, G. Applying
Software Product Line Techniques in Model-based
Embedded Systems Engineering. In: Proc. of the 6th
International Workshop on Model-based
Methodologies for Pervasive and Embedded Software,
Vancouver, CA, 2009, p. 2-10.

Pure-Systems. pure::variants. Available in:
<http://www.pure-systems.com/pure_variants.49.0.ht
ml>. Accessed in: Dec. 10, 2011.

Sabetzadeh, M.; Nejati, S.; Briand, L.; Mills, A. E. Using
SysML for Modeling of Safety-Critical Software-
Hardware Interfaces: Guidelines and Industry
Experience. In Proc. of the IEEE 13th International
Symposium on High-Assurance Systems Engineering
(HASE), 2011, p. 193-201.

Shimabukuro, J.; Ohara, T.; Okamoto, C.; Atarashi, Y.;
Koizumi, S.; Watanabe, S.; Funakoshi, K. Key
Activities for Introducing Software Product Lines into
Multiple Divisions: Experience at Hitachi. In: Proc. of
15th International Software Product Line Conference
(SPLC 2011), Munich, 2011, p. 261-266.

Sjostedt, C., Shi, J., Torngren, M., and Servat, D. Mapping
Simulink to UML in the design of embedded systems:
Investigating scenarios and transformations. In: Proc.
of the 4th Workshop on Object-oriented Modeling of
Embedded Real-Time Systems, Paderborn, Germany,
2008, p. 36-43.

Weilkiens, T. Systems Engineering with SysML/UML.
Morgan Kaufmann Publishers. 2007, 320 p.

Zaki, M. Z. M., and Jawawi, D. N. A. Model-Based
Methodology for Implementing MARTE in Embedded
Real-Time Software. In Proc. of the IEEE Symposium
on Computers & Informatics, 2011, p. 536-541.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

264

