
Formalization of the User Centric SOA Approach*
Implementation and End User Satisfaction Evaluation

Meriem Benhaddi1, Karim Baïna2 and El Hassan Abdelwahed1
1Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390-Marrakesh, Morocco

2ENSIAS, Mohammed V University, BP 713 Agdal-Rabat, Morocco

Keywords: SOA, Mashup, Integration Patterns, End User Development, End User Satisfaction, Usability, Intuitiveness,
Cloud Computing.

Abstract: User-centric SOA is a new paradigm allowing unskilled end users to compose services to create new one.
Mashups represent new agile and quick ways to compose and integrate structured and unstructured
resources, from different types existing on the web. Mashups emerged as a new way to democratize the
SOA and realize the user-centric SOA; However, Mashups are emerging applications, and thus consist of
immature, non intuitive and non formalized area. In this paper, we formalize the user-centric SOA
development by proposing a new cloud-based architecture for user-centric SOA platforms, and by
introducing a new rich integration language based on the advanced Enterprise Integration Patterns (EIPS).
We also propose a new intuitive and self-explanatory semantic methodology and interaction model for end
users services integration. Through these contributions, we give the promise of realizing the user-centric
SOA.

1 INTRODUCTION

1.1 Problems and Limitations of SOA

The concepts behind the Service Oriented
Architecture - which consist of modulating
applications as interoperable services - has proved
that it is the best way to urbanize the enterprise
information system by promoting the reuse of
services to build more complexes ones, the
interoperability between different heterogeneous
system, and the standardized languages and
protocols (WSDL, SOAP, BPEL). Nevertheless,
enterprises that applied SOA didn’t get the great
promised added value, which has prevented the
installation of the global SOA, and has lowered the
percentage of companies planning the SOA
(Gartner, 2005).

In this section, we introduce the concept of "End
User", to signify the non-computer user, who has
very little computer knowledge. We will give a
further definition of this concept in the next section.

* This Work is partially financed by the research project EvA
(vulgarisation of Enterprise Architecture) \no 002/ENSIAS/2011
of Mohammed V Souissi University

The limitations of SOA could be summarized as:
 Exclusion of the end user from the hierarchy of

the SOA actors: users kept away and out of the
loop. In fact, the SOA technologies (WSDL,
SOAP, SCA, BPEL, etc) are hard to master and
require advanced knowledge (Nestler et al.,
2009; Zhao et al., 2009).

 Rigidity, heaviness and incompatibility of SOA
implementations with the real constraints of end
users:

o Lack of accessibility: UDDI registries are
dedicated to expert; therefore, end users have
to browse different web sites in order to use
services. (Hierro et al., 2008) states that SOA
was originally designed as an architecture
focused fundamentally on the B2B context,
and does not offer support for B2C
interactions.
o Lack of flexibility and scalability: SOA
technologies cannot support the services
composition on the fly: After composition
design, implementation, testing and
deployment, it becomes very difficult to
change the composition logic according to
the changing needs of users, as it involves a
long life cycle (Liu et al., 2007).

481Benhaddi M., Baïna K. and Abdelwahed E..
Formalization of the User Centric SOA Approach - Implementation and End User Satisfaction Evaluation.
DOI: 10.5220/0004446304810488
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 481-488
ISBN: 978-989-8565-60-0
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

o Lack of mobility: SOA implementation
and integration technologies are very heavy
for devices with limited capabilities. WSDL
and SOAP are instances of complicated XML
documents, which makes the WS* services
very demanding in terms of computing
power, bandwidth and storage (Guinard and
Trifa, 2009).

1.2 End Users: Who are they? What
Do they Need?

A software end user is a person who interacts with
information systems solely as a final information
consumer. It’s a user with minimal technical
knowledge, and who uses the software in the context
of daily life or daily work for personal (business or
leisure) purposes, without having any intentions to
produce other systems (Cypher, 1993, Allison and
Kelly, 1992).

End users have many requirements that should
be respected by system designers and developers in
order to deliver systems satisfying end users. Based
on the work of (McCall et al., 1977) and (ISO/IEC
9126-12001), we have grouped into four criteria the
end users requirements, which are listed as follows:
 Functional richness is features requested to

execute different tasks. A limited set of offered
features could be a problem at this level.

 Usability & intuitiveness concern user interfaces,
interaction and dialogue mode. Lack of usability
results in lack of visibility, feedback,
consistency, non-destructive operations,
discoverability, scalability, reliability (Norman
and Nielsen, 2010).

 Efficiency, reliability, maintainability and
portability (ERMP) are difficulties that do not
refer directly to system features. Problems could
be lack of documentation, performance, security,
supportability.

 Personnalizability, customizability is the
capability of end user to tailor themselves their
systems. Not providing end users with this
capability results in useless systems that lack
many important features.
Based on this section, we define the user-centric

SOA as the expectation of end users, their future
hope, and the promise for better information
systems. A user-centric SOA offers:
 Empowerment of the end user: Easy and flexible

composition on the fly of services by all end
users.

 Openness of the Information System to the
public: the democratization of SOA and the

installation of the global SOA or the Internet of
Services (Schroth and Janner, 2007).

 More independence of SOA: the adoption of a
variety of interoperable technologies in order to
meet the great variety of the web.

 Lightweight SOA technologies: the support of
SOA technologies by all mobile devices.

2 STATE OF THE ART

2.1 Mashup Frameworks Limitations

Mashup is a new paradigm of the Web 2.0
(O’Reilly, 2005) – the new generation of the web -
that enables the user generation of services by
allowing end users to personalize and customize
their applications (Hoyer et al., 2009; López et al.,
2008; Bradley, 2007). Today, there are a big number
of Mashup frameworks on the web, which allow end
users to mix visually different heterogeneous
resources and thus create new applications called
mashups. Mashup frameworks have helped to bridge
the gap between end users and software
development, but they are still some technical gaps
(Benhaddi et al., 2010): Mashup frameworks use
lightweight resources (RSS, ATOM, REST services,
etc) (Roy, 2010; Nestler, 2008), they do not allow
the creation of business process mashups (Nestler,
2008), they do not provide stable applications
(Anjomshoaa et al., 2010) and finally they are still
outside the scope of end users (Nestler et al., 2009).

These critics show that the Mashup is at an early
stage and needs more research. In fact, there is a
lack of a powerful integration language, and
intuitive design process. Hence, in order to achieve
the user-centric SOA, there is a need to introduce
new elements consisting of patterns and models to
enhance the development of Mashup applications.

The next section introduces the Enterprise
Integration Patterns, and shows their contribution to
any integration solution.

2.2 Study: Mashup Frameworks
 and the User-centric SOA

The Enterprise Integration Patterns (EIPs) collected
by (Hohpe and Woolf, 2003) describe a number of
design patterns for enterprise application integration
and message oriented middleware. The EIPs are
implemented by a set of sophisticated mediation bus,
such as Camel, Mule and Apache, in order to
achieve very complex integration scenarios.
Enterprise Integration Patterns propose the best and

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

482

common solutions to integration problems.
Therefore, when EIPs are used, they enhance the
quality of the integrated applications. EIPs consist of
six groups of patterns: messaging channels, message
construction, message routing, message
transformation, messaging endpoints and system
management. Based on the book of (Hohpe and
Woolf, 2003), we categorize these patterns groups
according to the four end user satisfaction criteria
that we defined and presented in section I.2.

The Enterprise Integration Patterns, when used
together, help achieving a high level of system
quality by ensuring the end user satisfaction criteria.
The use of EIPs is therefore considered as a proof of
the system quality. Hence, we had the idea of
studying different Mashup frameworks - Yahoo!
Pipes (Yahoo! Pipes, 2012), Jackbe Presto Wires
(Jackbe Presto Wire, 2012) and IBM Mashup Center
(IBM Mashup Center, 2012) - based on the EIPs.
Our study showed that the three Mashup frameworks
implement a limited set of the integration patterns,
which are very basic and simple; the three Mashup
frameworks fail to implement advanced and
sophisticated integration patterns.

According to this study, we deduced that the
three Mashup frameworks fail to totally ensure the
criteria of “Functional richness”, “Efficiency”,
“Reliability” and “Maintainability”.

We also studied these Mashup frameworks from
the usability & intuitiveness perspective. The study
showed also that Mashup frameworks lack ease of
use and intuitivity for inexperienced end users.
Unfortunately we could not introduce this study in
this paper because of the restricted number of pages.

Table 1 present the final result of our studies that
all showed that the Mashup frameworks are not
user-centric SOA solutions.

The next section gives a brief description of our
proposed new user-centric SOA solution, by
introducing new patterns and methodologies helping
to formalize the user-centric SOA development.

Table 1: Mashup frameworks and user-centric SOA
criteria.

User-Centric SOA
criteria/Mashup

Frameworks

Yahoo!
Pipes

Jackbe
Presto
Wires

IBM
Mashup
Center

Functional Richness 2 2 2
Personnalizability 3 3 3

Usability & Intuitiveness 2 2 2
Efficiency, Reliability,

Maintainability and
Portability

3 2 2

3=High, 2=Medium, 1=Low

3 USER-CENTRIC SOA
PROPOSAL

3.1 A Cloud-based Architecture

We presented the technical architecture of the user-
centric SOA in (Benhaddi et al., 2012). This
Architecture includes several services required by
Mashup platforms. These different services can be
homemade (developed internally), or accessible
through the Cloud Computing. Indeed, the Cloud
Computing can be considered as a new way to
retrieve and use IT-enabled services by customers.
According to (Buyya et al., 2008), the Cloud
Computing is an emerging paradigm that is based on
compute and storage virtualization to deliver reliable
services to customers. Customers can access data
and applications anywhere in the world on demand.

This way, Mashup platforms can rely on the
Cloud Computing services to ensure the operation of
each layer of the technical architecture. For example,
Enterprise Service Buses could be used for their
routing and translation capabilities, BPEL engines
could be used for their orchestration capability and
the CRUD services offer different services such as
identity management, persistent storage, resources
access, routing and translation.

As stated before in this paper, end users have
four requirements: functional richness, usability &&
intuitiveness, personalizability and infrastructure
requirements such as reliability, efficiency,
maintainability and portability. As Mashup
platforms were created to let end users personalize
their applications, we consider that the third
requirement is ensured. The fourth requirement is
out of the scope of this paper. We focus our work on
the first two requirements. The next section is
dedicated to the study of the first requirement -
functional richness – and provides a solution based
on the Enterprise Integration Patterns (EIPs).

3.2 First Requirement: Functional
Richness

As it was showed in section 2.2, the Enterprise
Integration Patterns enhance the system quality in
terms of the functional richness. Therefore, our
proposal is based on the Enterprise Integration
Patterns.

In order to achieve his task, the end user needs a
platform that encapsulates the following elements:
 Objects/resources to integrate: services spread

across the web that, together, offer a new
service with a new added value.

Formalization�of�the�User�Centric�SOA�Approach�-�Implementation�and�End�User�Satisfaction�Evaluation

483

 Fields on interface allowing the entry of
intermediate data.

 Communication channels that allow binding
and forwarding the results between different
objects.

 Messages of different types which will be
carried by channels and sent by one object to
another. A message can be of different types: a
message representing a document, a message
representing an order, etc.

 Routing components whose role is to route the
results of an object to another.

 Translation components that transform the
results of an object before sending them to
another object.

We have identified the different basic elements
that will form our future language that we named
SOA4EU (SOA for End User). Table 2 lists these
elements.

We have realized the formalization of SOA4EU
language using Backus-Naur Form (BNF). Because
of the pages number restriction, we do not present it
in this paper.

The next section focuses on the second
requirement – usability & intuitiveness – and
presents a methodology helping end users to easily
compose services.

3.3 Second Requirement: Usability
and Intuitiveness

3.3.1 Goals Composition vs Services
Composition

When creating new applications, end users try to
achieve a new goal by composing existing sub-
goals. Each sub-goal is represented by a service. In
this way, when composing services, end users try to
resolve a problem whose solution does not exist yet
on the web. In fact, the answer exists in the form of
many subparts – services – dispersed on the web.
Therefore, the inexperienced end user faces many
challenges when trying to compose services in
response to a new goal:
 Determine the types of resources: what to do?
 Find resources that meet the end user criteria

(quality, price, etc.).
 Determine necessary actions for the use of

interfaces (selection problems): what and how
to use interfaces?

 Determine how to arrange and coordinate
resources (integration): how to coordinate the
elements?

 Determine the final interface of the integrated
resources.

Table 2: Constructs of SOA4EU language.

Construct Description
Task is the goal of the end user performing the

integration. Each task can have a
frequency of execution.

Tag key words used to describe a task
Mashup A Mashup application represents the

realization of a task and includes a set of
integration taking place between several
resources.

Process Is the composition process of the Mashp
application resources and consists of
parallel or sequential integration flows.

Step Is a step in the integration process and
consists of a link between two or several
components.

Component Is the integration process node: resource,
input of the end user, router or translator.

EndUser Represents the interaction with end users
during the integration process.

Resource Represents the applications to integrate by
the Mashup. A resource is described by its
type, address and exchange format.

Expose
Resource

Represents an exposed resource with input
and output variables. The same resource
can be exposed many times within the
integration process.

Channel Allows communication between two
components and supports the single atomic
integration step.

Message is the entity transferring in a channel
between two components.

Router Is a node forwarding messages between
resources, end user fields or translators.

Translator Is the messages translation node.
System
Manager

Each Mashup application can have one or
several managers to improve reliability and
maintainability.

Transaction End users may want to synchronize actions
of components to realize a transaction.

The system has the role of helping end user to
answer these different questions, by suggesting
resources, providing guidelines for the coordination
of resources and providing feedback and
documentation for each selected action.

Faced with these design problems, the end user
will use the knowledge he possesses that describe
his goal and which consists of the objective or set of
operations that the goal task must accomplish, the
final result of the goal task (output of the process),

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

484

the frequency, the degree of importance and the
duration of the goal task execution.

This end-user knowledge represents the semantic
which, alone, should be involved in the interaction
between the end user and the user-centric SOA
platform. Indeed, the service-to-service interaction,
which is based on the syntax, is not valid at the
interface level. The interface provides gadgets that
represent a sub-goal, which is an abstraction of
services; therefore, the interaction and
communication way at the interface level should
also be an abstraction of the communication way
between services (Figure 1).

Figure 1: Interaction way on the service level and the
interface level.

The user centric SOA platform has to allow to
end users to link the various resources in a very
intuitive and self-explanatory way, requiring no
knowledge of how to map an output of a resource to
an input of another. To achieve this, the user centric
SOA platform has to provide the end user with a set
of goal prototypes or goals patterns, which have the
role of guiding the end user through the goals
composition process. The next section presents our
goals patterns-based suggestion system.

3.3.2 Goals Patterns-based Suggestion
System

3.3.2.1 What are the Goals patterns?

In the world of software development, design
patterns are solutions or best practices in response to
common problems in software design. For example,
the "Model-View-Controller" pattern help
organizing an application by splitting it into a data
model, an interface or a presentation and a controller
(control logic, event management and
synchronization).

Goals patterns represent common and repetitive
use cases, and can also be called end users
experience patterns. They provide answers to
questions like "How to automate the execution of
two consecutive tasks - eg. Turn on the light on the
entrance of the house and turn on the heating - in
response to a triggered event? - ex. presence of a
person detected by the sensor.

The following are examples of goals patterns:

 Booking airline ticket, hotel room and car for a
destination.

 Purchase order for a product whose quantity
reached a limit value.

 Turning on the room light and the coffeemaker
when the alarm clock goes off.

While software design patterns are derived from
the experience of the software developers, goals
patterns are created, improved and enriched by end
users themselves.

3.3.2.2 Suggestion System

The usefulness of the goals patterns is the suggestion
system. In fact, end users will be guided in the
process of services composition through the
database of goals patterns that contains the possible
links between the various gadgets. As gadgets
represent sub-goals, the database links represent also
relations between sub-goals. The system will utilize
this goals patterns database to suggest to the end
user links and components in order to build new
applications.

The suggestion system should be based on the
semantic information, as it is explained in section
3.3.1. In fact, the different links between
components should be represented by semantic
information as input/output matching.

The database of goals patterns being built
through the experience of end users, the system will
score the various components, depending on the
frequency of use, and thus offer to the end user the
best one - which has the highest score.

Our suggestion model is similar to e-mail
interfaces - ex. Gmail. When writing a new message,
and when the first recipient address is entered by the
user, other addresses are proposed and suggested at
the basis of the previous messages sent by this user.

The goals patterns database elements that
constitute also the components of the services
composition interface are managed by the following
description:
 An end-user profile is described by the age, the

types of goals (work, leisure or both) the end
user is interested in, the areas of interest, the
physical environment.

 A profile is a set of goals.
 A goal is described by its type, its physical

environment of execution, its objective, its
frequency and its degree of importance.

 The realization of a goal involves several
composition steps. A step represents a link from
a component to one or several components (one-
to-one or one-to-many).

Formalization�of�the�User�Centric�SOA�Approach�-�Implementation�and�End�User�Satisfaction�Evaluation

485

 A component can be another application
participating in the composition as a sub-goal, a
user input or an operator (translator or router).

 In order to suggest to the end user the
appropriate actions, the database must store the
various possible relationships between
components. Thus, each composition step
possesses a relation.

 Each link between two components (composition
step) is described by a semantic data that
corresponds to the output of the message
transmitter and the input of the message receiver.

 The semantic data of a component can be
information, event, interface or nothing.

 The participating applications or sub-goals can
be synchronized in order to realize a transaction.
The object model of the goals patterns database

is represented by Figure 2.

4 IMPLEMENTATION AND
ILLUSTRATIVE EXAMPLE

4.1 Overview of SOA4EU Framework

Our new framework is characterized by being:
 Dynamic: the static services composition used by

existing Mashup frameworks does not meet end
users needs. In fact, in some situations, end users
do not have a clear understanding of how to
design the entire composite application;
displaying results step by step help end users
determine the future actions.

 Semantic: the interaction between end users and
our framework use the semantic layer offering an
intuitive way to link services and match inputs
and outputs.

 Suggestive: our framework helps end users faced
with many challenges while designing their
future applications. Suggestions ease and
accelerate the system learning.

All the framework integration (resources invocation,
transformation and routing) are done using the
Apache CAMEL integration framework (Ibsen et al.,
2011) which was realized based on the Enterprise
Integration patterns (Hohpe and Woolf, 2003).

4.2 Evaluation

4.2.1 Demonstration Scenario

To illustrate our new proposal, we choose an
example from the public health field. Our end user,

Figure 2: The object model of the goals patterns database.

Mark, got diabetes with kidney complications. Mark
lives in a small city, so he wants to plan a medical
consultation with a lower cost by comparing costs in
three different neighbouring cities. Then Mark
would like to search for kidney doctor addresses in
the city with the lower cost, and display the
addresses on a map. In order to watch his diet, Mark
would like also to have a list of diabetes products
that are sold in the supermarkets of the city with the
lower medical consultation cost, so he could both
visit a doctor and buy the diet products.

In the goals patterns database, there is a set of
gadgets that Mark could use and that the platform
could suggest to him. The gadgets are represented in
four sub-directories depending on their output type
(information, event, interface, none). Mark could use
semantic tag while searching for a specific gadget.
In order to link and adapt gadgets, Mark will also
use transformer and router operators: content filter,
content enricher, aggregator, content-based router,
etc.

4.2.2 End Users Satisfaction Evaluation

The platform-implementation of our model was
evaluated by analyzing end users reactions and
feedback. We invited twenty individuals to use and
test our framework, we then measured their
satisfaction against the criteria of integration
scenario richness and usability & intuitiveness.

4.2.2.1 Integration Scenarios Richness

The chosen scenario implements various integration

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

486

 patterns: channel patterns (Point-to-Point, Publish-
Subscribe), message construction patterns
(command message, document message, event
message), message transformation patterns (content
filter, message enricher) and message routing
patterns (content-based router, message filter,
message aggregator).

We asked end users to realize this use case by
providing them with a description of the objective to
be achieved. We then collected their feedback and
reactions about the usefulness and appropriateness
of this use case compared to their daily activities. In
other words, we asked end users if they sense any
interest or gain by using our framework.

The majority of end users feedback was in favour
of the usefulness and adequacy of our framework.

4.2.2.2 Usability && Intuitiveness

The usability & intuitiveness criteria is composed of
several sub-criteria (Norman and Nielsen, 2010)
listed in the table below. We asked end users to
measure their satisfaction against these criteria; the
results are as follows.

Table 3: Evaluation of the usability & intuitiveness.

Criteria Description
Satisfaction

(%)

Visibility
Accessibility, system

learning
80

Feedback
Possibility of cancelling

the effect of previous
action

40

Consistency
Respect of interfaces

design standards
80

Non-destructive
operations

Undo operations 40

Discoverabi-lity
All operations can be

discovered by systematic
exploitation of menus

80

Scalability
The system should work

on all screen sizes.

Reliability
Operations should work,
events should not happen

randomly.
80

As shown in the table above, most end users
were satisfied with the main criteria of usability &&
intuitiveness. End users have particularly pointed the
usefulness of the suggestions, the use of semantic
and the dynamic execution of our framework
operations. Indeed, the suggestions can push and
accelerate the system learning, visibility and
discoverability, by guiding and accompanying the
end users in their choices and actions. The semantic

and dynamic interfaces facilitate also the system
learning and discoverability by hiding any
complexity and by giving immediately the result of
each performed action.

The feedback and non-destructive operations
criteria are a weakness element in our system that
we are improving.

We were not able to test our system regarding
the scalability criteria. In fact, the hardware we used
was a computer with characteristics (processor,
memory, screen size) equal or higher than that of a
laptop. Materials such as tablet or mobile phone
(smartphone) were not used.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented the limitations of the
Service Oriented Architecture leading to the
emergence of the user-centric SOA concept. As a
technology allowing the end user SOA
implementation, the Mashup remains immature and
needs new patterns, failing thus to be user-centric
SOA solution. Our contribution aims at the
formalization of the end user service creation,
consisting of the proposal of a new Cloud-based
architecture, a new integration language based on
the advanced Enterprise Integrations Patterns and a
new intuitive and self-explanatory service creation
methodology. The tests that we conducted showed
end users satisfaction with integration richness and
usability & intuitiveness. Our future work consists
of enhancing and completing our user-centric SOA
framework.

REFERENCES

Allison, H and R. Kelly, R, 1992. ‘The Influence of
Individual Differences on Skill in End-User
Computing’. Journal of Management Information
Systems I Summer 1992, Vol. 9, No. 1, pp. 93-111.
(1992).

Anjomshoaa, A., Tjoa, A. M. and Hubmer, A., 2010.
‘Combining and integrating advanced IT-concepts
with semantic web technology, Mashup architecture
case study’. Paper presented at The 2nd Asian
Conference on Intelligent Information and Database
Systems, ACIIDS 2010, 24–26 March 2010, pp.13–22,
Hue City, Vietnam, Part I, LNAI 5990. (2010).

Benhaddi, M., Baïna, K. and Abdelwahed, E., 2010.
‘Towards an approach for a user centric SOA’. Paper
presented at The third International Conference on
Web & Information Technologies, Marrakech,

Formalization�of�the�User�Centric�SOA�Approach�-�Implementation�and�End�User�Satisfaction�Evaluation

487

Morocco, April 2010. ISBN: 978-9954-9083-0-3.
Pages: 91-104.

Benhaddi, M., Baïna, K. and Abdelwahed, E., 2012. ‘A
user centric Mashuped SOA’. Int. Journal of Web
Science. Volume 1, Issue 3. DOI:
10.1504/IJWS.2012.045812

Bradley, A. (2007) Reference Architecture for Enterprise
Mashups, Gartner Research.

Buyya, R., Yeo, C. and Venugopal, S., 2008. ‘Market-
Oriented Cloud Computing: Vision, Hype, and Reality
for Delivering IT Services as Computing Utilities’.
Paper presented at The 10th IEEE International
Conference on High Performance Computing and
Communications (HPCC-08), pages 25{27, Los
Alamitos, CA, USA, 2008. IEEE

Cypher, A., 1993. Watch What I Do: Programming by
Demonstration. The MIT Press, Cambridge.

Gartner. 2005. Gartner Newsroom http://
www.gartner.com/it/page.jsp?id=790717. (2008).
(Accessed:10/06/2012).

Guinard, D. and Trifa, V., 2009. ‘Towards the Web of
Things: Web Mashups for Embedded Devices’. Paper
presented at The 18th Int World Wide Web
Conference, April, 2009, Madrid, Espagne.

Hohpe, G. and Woolf, B., 2003. Enterprise Integration
Patterns: Designing, Building, and Deploying
Messaging Solutions, Addison-Wesley Professional.

Hoyer, V., Janner, T., Schroth, C., Delchev, I. and
Urmetzer, F., 2009. ‘FAST Platform: A Concept for
user-centric, enterprise class Mashups’. Paper
presented at The 5th Conference of Professional
Knowledge Management, Poster Session, Solothurn,
Switzerland, 25-3-2009, pp.5-8.

IBM Mashup Center. [Online] http://www-
01.ibm.com/software/info/mashup-center/ (Accessed :
04 Mars 2012).

Ibsen, C., Anstey. J. and Zbarcea. H.(2011). Camel In
Action. Manning Publications.

ISO/IEC 9126-1. (2001) Software engineering – Product
quality - Part 1: Quality model. ISO.

Jackbe Presto Wire. [Online]. www.jackbe.com/
(Accessed : 04 Mars 2012).

J. Hierro, J., Janner, T., Lizcano, D., Reyes, M., Schroth,
C. et Soriano, J., 2008. ‘Enhancing User-Service
Interaction Through a Global User-Centric Approach
to SOA’. Paper presented at The Fourth International
Conference on Networking and Services IEEE
Computer Society, ICNS '08. Washington, DC, USA
(2008).

Liu, X., Hui, Y., Sun, W. and Liang, H., 2007. ‘Towards
service composition based on Mashup’. Paper
presented at The IEEE Congress on Services, 9–13
Juillet 2007, pp.332–339, Salt Lake City, Utah, USA.

López, J., Pan, A., Bellas, F., and Montoto, P., 2008.
‘Towards a Reference Architecture for Enterprise
Mashups’. Paper presented at The Jornadas de
Ingeniería del Software y Bases de Datos, 7-10
October 2008. Gijón, Spain.

McCall, J. A., Richards, P. K., and Walters, G. F., 1977.
Factors in Software Quality, RADC TR-77-369, 1977,

Vols I, II, III, US Rome Air Development Center
Reports. Italie. (1977).

Nestler, T., 2008. ‘Towards a Mashup-driven end-user
programming of SOA-based applications’. Paper
presented at The 10th International Conference on
Information Integration and Web-based Applications
& Services, iiWAS 2008, 24–26 November 2008,
pp.551–554, Linz, Austria.

Nestler, T., Dannecker, L. and Pursche, A., 2009. ‘User-
centric composition of service front-ends at the
presentation layer’. Paper presented at The 2009
International Conference on Service-oriented
Computing, ICSOC/ServiceWave, 24–27 November
2009. Stockholm, Sweden.

Norman, D. and Nielsen, J., 2010. ‘Gestural Interfaces: A
Step Backward In Usability’. Interactions' magazine,
Volume 17 Issue 5, September + October 2010 ACM
New York, NY, USA.

O’Reilly, T., 2005. ‘What is Web 2.0 – design patterns
and business models for the next generation of
software’, O’Reilly [Online] 30 September.
http://www.oreillynet.com/pub/a/oreilly/tim/news/200
5/09/30/what-is-web-20.html. (Accessed: 10
November 2011).

Roy, M., 2010. ‘Towards end-user enabled web service
consumption for Mashups. International conference on
software engineering’. Paper presented at The 32nd
ACM/IEEE International Conference on Software
Engineering, ICSE 2010, Vol. 2, pp.413–416, Cape
Town, South Africa.

Schroth, C. and Janner, T., 2007. ‘Web 2.0 and SOA:
converging concepts enabling the internet of services’.
Journal of IT Professional, Vol. 9, No. 3, pp.36–41.
(2007).

Yahoo! Pipes [Online]. http://pipes.yahoo.com/pipes/.
(Accessed: 04 Mars 2012).

Zhao, Z., Laga, N. and Crespi, N., 2009. ‘The Incoming
Trends of End-user driven Service Creation’. Paper
presented at Digital Business: the first International
ICST Conference, DigiBiz, London, UK, June 17-19,
2009 Springer (Ed.) (2010) 98-108.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

488

