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Abstract:   This paper proposes strategies for updating action policies in dynamic environments, and discusses the 
influence of learning parameters in algorithms based on swarm behavior. It is shown that inappropriate 
choices for learning parameters may cause delays in the learning process, or lead the convergence to an un-
acceptable solution. Such problems are aggravated in dynamic environments, since the fit of algorithm pa-
rameter values that use rewards is not enough to guarantee a satisfactory convergence. In this context, strat-
egy-updating policies are proposed to modify reward values, thereby improving coordination between 
agents operating within dynamic environments. A framework has been developed which iteratively demon-
strates the influence of parameters and updating strategies. Experimental results are reported which show 
that it is possible to accelerate convergence to a consistent global policy, improving the results achieved by 
classical approaches using algorithms based on swarm behavior. 

1 INTRODUCTION 

When properly applied, coordination between agents 
can help to make the execution of complex tasks 
more efficient. Proper coordination can help to avoid 
such complications as finding redundant solutions to 
a sub-problem, inconsistencies of execution (such as 
up-dating obsolete sub-problems), loss of resources, 
and deadlocks (waiting for events which will proba-
bly not occur) (Wooldridge, 2002). 

Real-world activities which require coordinated 
action include traffic environments (Ribeiro et al., 
2012), sensor networks (Mihaylov et al., 2009), 
supply chain management (Chaharsooghi et al., 
2008), environmental management, structural mod-
eling, and dealing with the consequences of natural 
disasters. In such applications agents act in uncertain 
environments which change dynamically. Thus, 
autonomous decisions must be taken by agents 
themselves in the light of what they perceive locally. 

In such applications, agents must decide upon 
courses of action that take into account the activities 
of other agents, based on knowledge of the environ-
ment, limitations of resources and restrictions on 
communication. Methods of coordination must be 

used to manage consequences that result when 
agents have inter-related objectives: in other words, 
when agents share the same environment or share 
common resources. 

The paradigm for coordination based on swarm 
intelligence has been extensively studied by a num-
ber of researchers (Dorigo, 1992), (Kennedy et al., 
2001), (Ribeiro and Enembreck, 2012), (Sudholt, 
2011). It is inspired by the behavior of colonies of 
social insects, with computational systems reproduc-
ing their behavior exhibited when solving collective 
problems: typically the colonies are those of ants, 
bees, woodlice or wasps. Such colonies have desira-
ble characteristics (adaptation and coordination) 
which find solutions to computational problems 
needing concerted activity. Earlier research on the 
organization of social insect colonies and its applica-
tions for the organization of multi-agent systems has 
shown good results for complex problems, such as 
combinatorial optimization (Dorigo and Gam-
bardella, 1996). 

However, one of the main difficulties with such 
algorithms is the time required to achieve conver-
gence, which can be quite expensive for many real-
world applications. In such applications, there is no 
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guarantee that reward-based algorithms will con-
verge, since it is well known that they were initially 
developed and used to cope with static problems 
where the objective function is invariant over time. 
However, few real-world problems are static in 
which changes of priorities for resources do not 
occur, goals do not change, or where there are tasks 
that are no longer needed. Where changes are need-
ed through time, the environment in which agents 
operate is dynamic.  

The use of methods based on insect behavior, of 
ant colonies in particular, has drawn the attention of 
researchers who reproduce sophisticated exploration 
strategies which are both general and robust (Dorigo 
and Gambardella, 1996); but in most cases such 
approaches are not able to improve coordination 
between agents in dynamic conditions due to the 
need to provide adequate knowledge of changes in 
environment. 

The work reported here re-examines and extends 
principles presented in (Ribeiro et al., 2012) and 
(Ribeiro et al., 2008), which discussed approaches 
for updating policies in dynamic environments and 
analysed the effects of strengthening learning-
algorithm parameters in dynamic optimization prob-
lems. To integrate such approaches into updating 
strategies, as proposed in this paper, a test frame-
work was developed to iteratively demonstrate the 
influence of parameters in the Ant-Q algorithm 
(Gambardella and Dorigo, 1995), whilst agents re-
spond to the system using updating strategies, fur-
ther discussed in Section 3. 

One important aspect is to investigate whether 
policies learned can be used to find a solution rapid-
ly after the environment has been modified. The 
strategies proposed in this paper respond to changes 
in the environment. We cite as one example of dy-
namic alteration the physical movement of the ver-
tex in a graph (the environment): i.e., the change in 
vertex coordinates, in a solution generated with a 
Hamiltonian cycle. Such strategies are based on 
rewards (pheromones) from past policies that are 
used to steer agents towards new solutions. Experi-
ments were used to compare the utilities of policies 
generated by agents using strategies proposed. The 
experiments were run using benchmark: eil51 e 
eil76, found in the online library TSPLIB (Reinelt, 
1991). 

The paper is organized as follows: Section 2 de-
scribes some approaches related to optimization and 
ant-colony algorithms. Section 3 then describes 
policy up-dating strategies based on ant-colonies, 
and the framework developed for evaluating the 

proposed approaches. Experimental results are set 
out in Section 4, and the final Section 5 lists conclu-
sions and discusses ideas for future work.  

2 OPTIMIZATION 
AND ANT-COLONY 
ALGORITHMS 

Ant colony optimization (ACO) (Dorigo, 1992) is a 
successful population-based approach inspired by 
the behavior of real ant colonies: in particular, by 
their foraging behavior. One of the main ideas un-
derlying this approach is the indirect communication 
among the individuals of a colony of agent, called 
(artificial) ants, based on an analogy with phero-
mone trails that real ants use for communication 
(pheromones are an odorous, chemical substance). 
The (artificial) pheromone trails are a kind of dis-
tributed numeric information that is modified by the 
ants to reflect their accumulated experience while 
solving a particular problem. 

Ant-colony algorithms such as Ant System (Dori-
go, 1992), Ant Colony System (Dorigo and Gam-
bardella, 1996) and Ant-Q (Gambardella and Dorigo, 
1995) have been applied with some success to com-
binatorial optimization problems, including the trav-
eling salesman problem, graph coloring and vehicle 
routing. Such algorithms are based on the foraging 
behavior of ants (“agents”) which follow a decision 
pattern based on probability distribution (Dorigo et 
al., 1996). 

Gambardella and Dorigo (1995) developed the 
algorithm Ant-Q, inspired by the earlier algorithm 
Q-learning of Watkin and Dayan (1992). In Ant-Q, 
the pheromone is denoted by AQ-value (AQ(i,j)). 
The aim of Ant-Q is to estimate AQ(i,j) as a way to 
find solutions favoring collectivity. Agents select 
their actions based on transition rules, as given in 
equations 1 and 2: 
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where the parameters δ and β represent the weight 
(influence) of the pheromone AQ(i,j) and of the 
heuristic HE(i,j) respectively; q is a value selected at 
random with probability distribution [0,..,1]: the 
larger the value of q0, the smaller is the probability 
of the random selection; S is a random variable 
drawn from the probability function AQ(i,j); and the 
HE(i,j) are heuristic values associated with the link 
(i,j) (edge) which helps in the selection of adjacent 
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states (vertices). In the case of the traveling sales-
man problem, it is taken as the reciprocal of the 
Euclidean distance (Gambardella and Dorigo, 1995). 

Three different rules were used to choose the 
random variable S: i) pseudo-random, where S is a 
state selected at random from the set Nk(t), following 
a uniform distribution; ii) pseudo-random-
proportional, in which S is selected from the distri-
bution given by Equation 2 and; iii) random-
proportional, such that, if q had the value 0 in Equa-
tion 1, then the next state is drawn at random from 
the distribution given by Equation 2. 
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Gambardella and Dorigo (1995) showed that a good 
rule for choosing actions with the Ant-Q algorithm is 
based on pseudo-random-proportional. The AQ(i,j) 
is then estimated by using the updating rule in Equa-
tion 3, similar to the Q-learning algorithm: 
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where the parameters γ and α are the discount factor 
and learning rate respectively. 

When the updating rule is local, the updated 
AQ(i,j) is applied after the state s has been selected, 
setting ΔAQ(i,j) to zero. The effect is that AQ(i,j) 
associated with the link (i,j) is reduced by a factor γ 
each time that this link appears in the candidate 
solution. As in the Q-learning algorithm, therefore, 
this approach tends to avoid exploration of states 
with lower probability (pheromone concentration), 
making the algorithm unsuitable for situations where 
the present solution must be altered significantly as a 
consequence of unexpected environmental change. 

Other methods based on ant-colony behavior 
have been proposed for improving the efficiency of 
exploration algorithms in dynamic environments. 
Guntsch and Middendorf (2003) propounded a 
method for improving the solution when there are 
changes in environment, using local search proce-
dures to find new solutions. Alternatively, altered 
states are eliminated from the solution, connecting 
the previous state and the successor to the excluded 
state. Thus, new states are brought into the solution. 
The new state is inserted at the position where the 
cost is least or where the highest cost in the envi-
ronment is reduced, depending on the objective. Sim 
and Sun (2002) used multiple ant-colonies, such that 

one colony is repelled by the pheromone of the oth-
ers, favoring exploration when the environment is 
altered. Other methods for dealing with a dynamic 
environment change the updating rule of the phero-
mone to enhance exploration. Li and Gong (2003), 
for example, modified local and global updating 
rules in the Ant Colony System algorithm. Their 
updating rule was altered as shown in Equation 4: 
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where p1(τij) is a function of τij at time t, with θ > 0; 
for example: 
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with θ > 0. 
Such methods can be used as alternatives for 

finding solutions where the environment is chang-
ing. By using probabilistic transition rules, the ant-
colony algorithm widens the exploration of the state-
space. In this way a random transition decision is 
used and some parameters are modified, with new 
heuristic information influencing the selection of the 
more desirable links. 

High pheromone values are reduced by introduc-
ing a dynamic evaporation process. Thus when the 
environment is altered and the solution is not opti-
mal, pheromone concentration in the corresponding 
links is diminished over time. Global updating pro-
ceeds in the same way, except that only the best and 
worst global solutions are considered; i.e.: 
 

 
(6)

 

where: 
 












otherwise

solutionglobalworsttheisjiif

solutionglobalbesttheisjiif

ji

0

),(1

),(1

,  
(7)

 

A similar global updating rule was used by Lee et al. 
(2011). Other strategies for changing the pheromone 
value have been proposed to compensate the occur-
rence of stagnation in ant-colony algorithms. Gam-
bardella et al. (1997) proposed a method for re-
adjusting pheromone values with the values initially 
distributed. In another strategy, Stutzle and Hoos 
(1997) suggested proportionally increasing the pher-
omone value according to the difference between it 
and its maximum value. 

Thus, a number of methods based on ant-colony 
algorithms have been developed for improving effi-
ciency of algorithm exploration in dynamic envi-

2( 1) (1 ( ( ))) ( ) ( )ij ij ij ij ijt t t t         

Updating�Strategies�of�Policies�for�Coordinating�Agent�Swarm�in�Dynamic�Environments

347



ronments. They can be used as alternatives for im-
proving the solution when the environment is 
changed. The proposed approaches are based on 
procedures that use strategies to improve exploration 
using the probabilistic transition of the Ant Colony 
System algorithm to widen exploration of the state 
space. Thus, the most random transition decision is 
used, varying some parameters where the new heu-
ristic information influences the selection of the 
more desirable links. 

Some papers apply updating rules to links of a 
solution, including an evaporation component simi-
lar to the updating rule of Ant Colony System. Thus 
the pheromone concentration diminishes through 
time, with the result that less favorable states are less 
likely to be explored in future episodes. For this 
purpose, one alternative would be to re-initialize the 
pheromone value after observing the changes to the 
environment, maintaining a reference to the best 
solutions found. If the altered region of the environ-
ment is identified, the pheromone of adjacent states 
is re-initialized, making them more attractive. If a 
state is unsatisfactory, rewards can be made smaller 
(generally proportional to the quality of the solu-
tion), thus becoming less attractive over time be-
cause of loss of pheromone by evaporation. 

It can be seen that most of the works mentioned 
concentrate their efforts on improving transition 
rules using sophisticated strategies to obtain conver-
gence. However, experimental results shown that 
such methods do not yield satisfactory results in 
environments that are highly dynamic and where the 
magnitude of the space to be searched is not known. 
In Section 3 we present strategies developed for 
updating policies generated by rewards (phero-
mones) in dynamic environments. 

In these problems, it is only possible to find the 
optimum solution if the state space is explored com-
pletely, so that the computational cost increases 
exponentially as the state-space increases. 

3 STRATEGIES FOR UPDATING 
POLICIES GENERATED 
BY ALGORITHMS WHICH 
SIMULATE ANT-COLONIES 

In Ribeiro and Enembreck (2010) it was found that 
algorithms based on rewards are efficient when the 
learning parameters are satisfactorily estimated and 
when modifications to the environment do not occur 
which might change the optimal policy. An action 

policy is a function mapping states to actions by 
estimating a probability that a state e’ can be reached 
after taking action a in state e. In dynamic environ-
ments, however, there is no guarantee that the Ant-Q 
algorithm will converge to an acceptable policy. 
Before setting out the strategies for updating poli-
cies, we give a summary of the field of application, 
using a combinatorial optimization problem fre-
quently used in computation to demonstrate prob-
lems that are difficult to solve: namely the Traveling 
Salesman Problem (TSP). In general terms, the TSP 
is defined as a closed graph A=(E,L) (representing 
the agent’s environment) with n states (vertices) 
E={e1,...,en}, in which L is the set of all linkages 
(edges) between pairs of states i and j, where lij = lji 
under symmetry. The goal is to find the shortest 
Hamiltonian cycle which visits every state, returning 
to the point of origin (Schrijver 2003). It is typically 
assumed that the distance function is a metric (e.g., 
Euclidean distance). 

One approach to solving the TSP is to test all 
possible permutations, using exhaustive search to 
find the shortest Hamiltonian cycle. However given 
that the number of permutations is (n – 1)!, this 
approach becomes impracticable in the majority of 
cases. Unlike such exhaustive methods, heuristic 
algorithms such as Ant-Q therefore seek feasible 
solutions in less computing time. Even without 
guaranteeing the best solution (the optimal policy), 
the computational gain is favorable to finding an 
acceptable solution. 

The convergence of ant-colony algorithms would 
occur if there were exhaustive exploration of the 
state space, but this would require a very lengthy 
learning process before convergence was achieved. 
In addition, agents in dynamic environments can 
adopt policies which delay the learning process or 
which generate sub-optimal policies. Even so, the 
acceleration to convergence of swarm-based algo-
rithms can be accelerated by using adaptive policies 
which avoid unsatisfactory updating. The following 
paragraphs therefore set out strategies for estimating 
current policy which improve convergence of agents 
under conditions of environmental change. 

These strategies change pheromone values so as 
to improve coordination between agents and to allow 
convergence even when there changes in the Carte-
sian position of environmental states. The objective 
of the strategies is to find the optimum equilibrium 
of policy reformulation which allows new solutions 
to be explored using the information from past poli-
cies. Giving a new equilibrium to the pheromone 
value is equivalent to adjusting information in the 
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linkages, giving flexibility to the search procedure 
which enables it to find a new solution when the 
environment changes, thereby modifying the influ-
ence of past policies to construct new solutions. 

One updating strategy that has been developed is 
inspired by the approaches set out in (Guntsch and 
Middendorf, 2001) and (Lee et al., 2001), in which 
pheromone values are reset locally when environ-
mental changes have been identified. This is termed 
the global mean strategy. It allocates the mean of all 
pheromone values of the best policy to all adjacent 
linkages in the altered states. The global mean strat-
egy is limited because it fails to take in account the 
intensity of environmental change. For example, 
good solutions when states are altered can often 
make the solution less acceptable since it is only 
necessary to update part of action policy. The global 
distance strategy updates the pheromone concentra-
tions of states by comparing the Euclidean distances 
between all states, before and after the environmen-
tal change. If the cost of the policy increases with 
increasing rate of environmental change, the phero-
mone value is decreased proportionately; otherwise 
it is increased. The local distance strategy is similar 
to the global distance strategy, but updating the 
pheromone is proportional to the difference in Eu-
clidean distance of states that were altered. 

Before discussing how strategies allocate values 
to the current policy in greater detail, we discuss 
how environmental changes are occurring. Envi-
ronmental states can be altered by factors such as 
scarcity of resources, change in objectives or in the 
nature of tasks, such that states can be inserted, ex-
cluded, or simply moved within the environment. 
Such characteristics are found in many different 
applications such as traffic management, sensor 
networks, management of supply chains, and mobile 
communication networks. 

Figure 1 gives a simplified representation of a 
scenario with 9 states in a Cartesian plane. Figurea 
shows the scenario before alteration; Figureb shows 
the scenario after altering positions of states. The 
configuration of the scenario is shown in Table 1. 

It can be seen that altering the positions of states 
e4 and e9 will add six new linkages to the current 
policy. The changes to the environment were made 
arbitrarily by altering the Cartesian positions of 
states whilst restricting them to lie within the field 
limit: i.e., adjacent to a Cartesian position. Field 
limit is used to restrict changes in addition to adja-
cent states. 

 
(a) Position of states before alteration (A) 

 

(b) Position of states after alteration (A’) 

Figure 1: Changing environmental states. 

Table 1: Linkages between states before and after altera-
tions. 

Before alterations (A) After alterations (A’) 

states Linkages states linkages 

e1(0,5) 1→2, 1→9 e1(0,5) 1→2, 1→8 
e2(2,7) 2→3, 2→1 e2(2,7) 2→3, 2→1 
e3(3,5) 3→2, 3→4 e3(3,5) 3→5, 3→2 
e4(5,5) 4→3, 4→5 e4(5,4) 4→6, 4→5 
e5(6,7) 5→4, 5→6 e5(6,7) 5→4, 5→3 
e6(5,1) 6→5, 6→7 e6(5,1) 6→4, 6→7 
e7(3,0) 7→6, 7→8 e7(3,0) 7→9, 7→6 
e8(2,3) 8→9, 8→7 e8(2,3) 8→9, 8→1 
e9(1,1) 9→1, 9→8 e9(2,1) 9→7, 9→8 

 

Thus, introducing environmental change can 
modify the position of a state, which can introduce 
differences between the current and the optimal 
policies giving rise, temporarily, to undesirable 
policies and errors. The strategies must update the 
pheromone values of linkages between the altered 
states, according to the characteristics of each. 

A. Mean Global Strategy 

The mean global strategy takes no account of the 
intensity of environmental change, whilst detecting 
that states have been altered. The mean pheromone 
value of all linkages to the current best policy Q is 
attributed to linkages to the modified states. In con-
trast to other reports where the pheromone was re-
initiated without taking account of the value learned, 
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the mean global strategy re-uses values from past 
policies to estimate updated values. Equation 8 
shows how the values are computed for this strategy: 
 

l
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where nl is the number of linkages and AQ(l) is the 
pheromone value of the l linkages. 

B. Global Distance Strategy  

The global distance strategy calculates the distance 
between all states and the result is compared with 
the distance between states in the modified environ-
ment. This strategy therefore takes into account the 
total intensity of environmental change. If the dis-
tance between states increases, the updated phero-
mone value is inversely proportional to this distance. 
If the cost of the distance between states is reduced, 
the pheromone value is increased by the same pro-
portion. Equation 9 is used to estimate the updated 
values for linkages between states in the modified 
environment A’. 
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where ne is the number of states, A’ is the environ-
ment after change and d is the Euclidean distance 
between the states. 

C. Local Distance Strategy 

The local distance strategy is similar to the global 
distance strategy, except that only the pheromone of 
linkages to the modified states is updated. Each 
linkage is updated in proportion to the distance to 
adjacent states that were modified so that updating is 
localized in this strategy, thereby improving conver-
gence when there are few changes to the environ-
ment. Equation 10 is used to compute updated val-
ues for the linkages: 
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The next sub-section gives the framework and the 
algorithm for the strategies mentioned above. 

3.1 FANTS - Framework for Ants 

FANTS was developed to simulate the Ant-Q algo-
rithm to include the strategies outlined above. Figure 

2 gives an overall picture of FANTS and its main 
components. The figure shows a graph in which the 
thicker, bolder line represents the best policy (i.e., 
shortest Hamiltonian cycle in ti) of the episode ti as 
revealed by the Ant-Q algorithm. The graph imme-
diately below shows the algorithm’s convergence 
from one episode to those following it. An episode t 
corresponds to a sequence of actions which deter-
mines the states visited by the agents. An episode ti 
ends when agents return to their original state after 
visiting all the others. The dimension Y of the graph 
is the cost of the policy in each episode (i.e., the cost 
of a Hamiltonian cycle). Also the dimension X cor-
responds to the number of episodes. The line in the 
graph which varies most gives the least-cost Hamil-
tonian cycle in each episode t. 
 

 
Figure 2: FANTS. 

The columns to the right of Figure 2 show the pa-
rameters used by the algorithm and environment, 
where δ and β are the parameters of the transition 
rule, and γ and α are the algorithm’s learning param-
eters. The variables mk, S and t are the number of 
agents, the number of states and the number of epi-
sodes respectively. The parameter t is used as a 
stopping criterion for the algorithm. The internal 
structures of the framework are expressed by equa-
tions 8-13 which make up the algorithm Ant-Q pre-
sented as Pseudocode 1. 

The initial pheromone value is calculated from 
Equation 11: 
 

navg 
1
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where avg is the average of the Euclidean distances 
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between state pairs (i,j) calculated from Equation 12, 
and n is the number of agents in the system. Having 
calculated the pheromone initial value, this value is 
attributed to the linkages which constitute the graph. 
This procedure is used only before starting the first 
episode, allowing the agents to select states using 
both the pheromone values and the heuristic values. 

An important aspect of the algorithm in Pseudo-
code 1 is the method for updating the learning table, 
which can occur either globally or locally. Global 
updating occurs at the end of each episode, when the 
least-cost policy is identified and the state values are 
updated using the reward parameter. 
 
Algorithm FANT() 
Require: 
Learning table AQ(i,j); 
Environment E; 
#Changes, tw = 100; 
Number of agents mk; 
Number of states S; 
Number of episodes tn; 
Learning parameters:{α,β,γ,q0,δ,W}; 
Updating strategies = {mean_global,
global_distance,local_distance} 
 
01  Ensure: 
02 Randomize the states in E; 
03 Use equation 11 to compute the 

initial value of the pheromone   
and assign it to AQ(i,j); 

04 For all episode Do: 
05   Set the initial position of 

the   
  agents in the states; 

06   While there are states to be  
  visited Do: // lista tabu <>   

07   For all agent Do: 
08    if (q(rand(0..1) <= q0) Then 
09      Choose an action according  

     to equation 1; 
10     Else 
11      Choose an action according  

     to equation 2; 
12    end if 
13     Update AQ(i,j) using the 

rule  
    in place upgrade Equation 
3); 

14   end for 
15   end while 
16  Compute the cost of the best  

 policy of the episode tx; 
17  Compute the global update, us-

ing  
 equations 3 and 13; 

18  If #changes are supposed to   
 occur Then 

19  For all linkage (i,j) of al-

tered  
 states Do: 

20   Switch (strategy): 
21    Case mean_global strategy:  
22    value=strategyA();//equation 

8 
23    Case global_distance strate-

gy: 
24    value=strategyB();//equation 

9 
25    Case local_distance strategy: 
26    value=strategyC();//equation 

10
27 end for 
28 end if
29 For all linkage (i,j) incident 

to the altered state Do:         
30   AQ(i,j) = value; 
31 end for
32 Otherwise continue() 
33 end for
34 Return(.,.)

Pseudocode 1: FANTS algorithm with strategies. 

Equation 13 is used to calculate the value of 
∆AQ(i,j), the reward for global updating. 
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where W is a parameterized variable with value 10 
and Lbest is the total cost of the shortest Hamiltonian 
cycle in the current episode. Local updating occurs 
at agent action, the value of ΔAQ(i,j) being zero in 
this case. 

4 EXPERIMENTAL RESULTS 

Experiments are reported here which evaluate the 
strategies discussed in Section 3 and the effects of 
the learning parameters on Ant-Q performance. 
These experiments evaluate algorithm efficiency in 
terms of: (i) variations in learning rate; (ii) discount 
factor; (iii) exploration rate; (iv) transition rules; (v) 
number of agents in the system; and (vi) the pro-
posed updating strategies. Results and discussions 
are given in sub-sections 4.1 and 4.2. 

The experiments were run using benchmark: 
eil51 e eil76, found in the online library TSPLIB1 
(Reinelt, 1991). The datasets eil51 and eil76 have 51 
and 76 states respectively and were constructed by 
Christofides and Eilon (1969). Such sets have im-

                                                 
1www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/ 
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portant characteristics for simulating problems of 
combinatorial optimization, such as, for example, 
the number of states and the presence of neighboring 
states separated by similar distances. They were also 
used by Dorigo (1992), Gambardella and Dorigo 
(1995), Bianchi et al. (2002), and Ribeiro and En-
embreck (2010). Figure 3 shows the distribution of 
states in a plane, using a 2D Euclidean coordinate 
system. 

Learning by the algorithm in each set of instanc-
es was repeated 15 times, since it was found that 
doing experiments in one environment alone, using 
the same inputs, could result in variation between 
results computed by the algorithm. This occurs be-
cause agent actions are probabilistic and values 
generated during learning are stochastic variables. 
The action policy determined by an agent can there-
fore vary from one experiment to another. The effi-
ciency presented in this section is therefore the mean 
of all experiments generated in each set of instances. 
This number of replications was enough to evaluate 
the algorithm’s efficiency, since the quality of poli-
cies did not change significantly (± 2.4%). 

The learning parameters were initially given the 
following values: δ=1; β=2; γ=0.3; α=0.1; q0=0.9 
and W=10. The number of agents in the environment 
is equal to the number of states. Stopping criteria 
were taken as 400 episodes (t=400). It should be 
noted that because of the number of states and the 
complexity of the problems, the number of episodes 
are not enough for the best policy to be determined. 
However the purpose of the experiments was to 
evaluate the effects of parameters on the algorithm 
Ant-Q and on the utility of the final solution from 
the strategies given in Section 3. 

To evaluate the performance of a technique, a 
number of different measures could be used, such as 
time of execution, the number of episodes giving the 
best policy, or a consideration only of the best poli-
cies identified. To limit the number of experiments, 
the utility of policies found after a given number of 
episodes was used, taking the minimum-cost policy 
at the end of the learning phase. 

Preliminary results discussed in subsection 4.1 
are for the original version of the Ant-Q algorithm, 
whilst experiments with dynamic environments and 
updating strategies are given in subsection 4.2. 
 

a. Set of instances (eil51) b. Set of instances (eil76) 

Figure 3: State space: Set of instances used in the simula-
tions, with states given as points in a 2D Euclidean coor-

dinate system. 

50 episodes 100 episodes 

  

150 episodes 200 episodes 

Figure 4: Policy evolution after each 50 episodes. 

4.1 Preliminary Discussion 
of the Learning Parameters 

Initial experiments were generated to evaluate the 
impact of the learning parameters and consequently 
were adjusted to the proposed strategies. Preliminary 
discussions are related in sub subsections A to E. 

A. Learning Rate 

The learning rate α shows the importance of the 
pheromone value when a state has been selected. To 
find the best values for α, experiments were con-
ducted in the set of instances for values of α between 
0 and 1. Best results were found for α between 0.2 
and 0.3. For larger values, agents tend to no longer 
make other searches to find lower-cost trajectories 
once they have established a good course of action 
in a given environmental state. For lower values, 
learning is not given the importance that it requires, 
so that agents tend to not select different paths from 
those in the current policy. The best α-value for 
policy was 0.2, and this was used in the other expe 
iments. It was also seen that the lower the rate of 
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learning, the lower is the variation in policy. 

B. discount Factor 

The discount factor determines the time weight rela-
tive to the rewards received. The best values for the 
discount factor were between 0.2 and 0.3. Smaller 
values led to inefficient convergence, having little 
relevance to agent learning. Values greater than 0.3 
the discount factor receives too much weight, lead-
ing agents to local optima. 

C. Exploration Rate 

The exploration rate, denoted by the parameter q0, 
gives the probability that an agent selects a given 
state. Experiments showed that the best values lay 
between 0.8 and 1. As the parameter value ap-
proaches zero, agent actions become increasingly 
random, leading to unsatisfactory solutions. 

The best value found for q0 was 0.9. Agents then 
selected leading to lower-cost trajectories and higher 
pheromone concentrations. With q0= 0.9 the proba-
bility of choosing linkages with lower pheromone 
values was 10%. 

D. Transition Rule 

The factors δ and β measure the importance of the 
pheromone and of the heuristic (distance) when 
choosing a state. The influence of the heuristic pa-
rameter β is evident. To achieve best results, the 
value of β must be at least 60% lower than the value 
of δ. 

E. Number of Agents 

To evaluate the effect of number of agents in the 
system, 26 to 101 agents were used. The best poli-
cies were found when the number of states is equal 
to the number of agents in the system. When the 
number of agents exceeded the number of states, 
good solutions were not found resulting in stagna-
tion. Thus, having found a solution, agents tend to 
cease to look at other states, having found a local 
maximum. When the number of agents is lower than 
the number of states, the number of episodes must 
increase exponentially in order to achieve better 
results. 

4.2 Performance of Agents with 
Updating Strategies 

To evaluate the strategies set out in Section 3, dy-
namic environments were generated in the set of 
instances eil76. Agent performance was evaluated in 
terms of the percentage change (percent of changes 
(10% and 20%) in environment for a window 

tw=100) generated in the environment after each 100 
episodes. This time window (tw=100) was used be-
cause past studies have shown that the algorithm 
converged well in environments in around 70 states 
(Ribeiro and Enembreck 2010). 

Change was introduced as follows: at each 100 
episodes, the environment produces a set of altera-
tions. The changes were made arbitrarily in a way 
that simulated alterations in regions that were par-
tially-known or subject to noise. Thus, environments 
with 51 states had 10 states altered when 20% 
change occurred. Moreover, alterations were then 
simulated for the space with limiting field of depth 1 
and 2, so that change in state positions was restrict-
ed, thus simulating the gradual dynamically chang-
ing problems of the real world. Equation 14 is used 
to calculate the number of altered states in tw=100. 
 

#states
changes #percent

t 100 100w
 

 (14)

 

The results of the experiments compare the three 
strategies with the policy found using the original 
Ant-Q algorithm. The learning parameters used in 
simulation were the best of those reported in subsec-
tion 4.1. In most cases, each strategy required a 
smaller number of episodes, since the combination 
of rewards led to better values by which agents 
reached convergence when policies were updated. 
Figures 5, 6, 7 and 8 show how the algorithm con-
verged in the set of instances eil51. The X-axis in 
these figures shows the ti episodes; the Y-axis shows 
policy costs (Hamiltonian cycle as a percentage) 
obtained in each episode, which 100% refers to the 
best policy compute (optimal policy). 

Figures 5, 6, 7 and 8 show that the global policy 
obtained when the strategies are used is better than 
that of the original Ant-Q. The mean global strategy 
is seen to be most adequate for environments where 
changes are greater (Figures 6 and 8). This is be-
cause this strategy uses all the reward values within 
the environment. However, agents reach conver-
gence only slowly when the environment is little 
changed, since altered states will have lower rewards 
in their linkages than the linkages that define the 
current best solution. Nevertheless the global dis-
tance strategy was also more robust in environments 
with few changes (Figures 5 and 7). When the envi-
ronment is altered, the strategy seeks to modify 
rewards in proportion to the amount of environmen-
tal change. Thus, the effect of updating reduces the 
impact resulting from change, causing agents to 
converge uniformly. The local distance strategy only 
takes account of local changes, so that updating of 
policies by means of this strategy works best when 
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the reward values are larger, as in later episodes. 
In general, the strategies succeed in improving 

policy using fewer episodes. They update global 
policy, and accumulate good reward values, when 
the number of episodes is sufficiently large. When 
learning begins, policy is less sensitive to the strate-
gies, so that policy performance is improved after 
updating. Some strategies can estimate values that 
are inappropriate for current policy, mainly after 
many episodes and environmental changes result in 
local maxima. 
 

 

Figure 5: Limiting field = 1; Change = 10%. 

 

Figure 6: Limiting field = 1; Change = 20%. 

 

Figure 7: Limiting field = 2; Change = 10%. 

 

Figure 8: Limiting field = 2; Change = 20%. 

One point concerns the effect of the limiting field 
(adjacent to the Cartesian position) on strategies. 
Even with the limiting field restricted, the strategies 
improve the algorithm’s convergence. In other ex-
periments where the limiting field was set to 5, the 

efficiency of the Ant-Q algorithm is lower (19%) 
when compared with the best strategy (Figures 9 and 
10). 
 

 
Figure 9: Limiting field = 5; Change = 10%. 

 
Figure 10: Limiting field = 5; Change = 20%. 

The mean global strategy is better when the limiting 
field is less than 5 (as in Figures 5 to 8). Since up-
dating uses the mean of all pheromone values, the 
value for linkages between altered states is the same. 
The global distance and local distance strategies 
converge rapidly when the limiting field is 5 (Fig-
ures 9 and 10). This is because updating is propor-
tional to the length of each linkage connected to an 
altered state. Thus linkages which are not part of the 
best policy have their pheromone values reduced. 

We also generate experiments in others environ-
ments of different dimensions, 35, 45 and 55 states. 
Note that a number of states S can generate a long 
solution space, in which the number of possible 
policy is |A||s|. The quality of policies in such envi-
ronments did not change significantly (± 1.9%) and 
the efficiency of best strategy compared with the 
results of the set of instances eil76 is lower (14%). 

5 CONCLUSIONS 
AND DISCUSSIONS 

Methods for coordination based on learning by re-
wards have been the subject of recent research by a 
number of researchers, who have reported various 
applications using intelligent agents (Ribeiro et al., 
2008), (Tesauro, 1995) and (Watkins and Dayan, 
1992). In this scheme, learning occurs by trial and 
error when an agent interacts with the surrounding 
environment, or with its neighbors. The source of 
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learning is the agent’s own experience, which con-
tributes to defining a policy of action which maxim-
izes overall performance. 

Adequate coordination between agents that use 
learning algorithms depends on the values of fitted 
parameters if best solutions are to be found. Swarm-
based optimization techniques therefore use rewards 
(pheromone) that influence how agents behave, 
generating policies that improve coordination and 
the system’s global behavior.  

Applying learning agents to the problem of coor-
dinating multi-agent systems is being used more and 
more frequently. This is because it is generally nec-
essary for models of coordination to adapt in com-
plex problems, eliminating and/or reducing deficien-
cies in traditional coordinating mechanisms (En-
embreck et al., 2009). For this purpose the paper has 
presented FANTS, a solution-generating test frame-
work for analysing performance of agents with the 
algorithm Ant-Q and for describing how Ant-Q be-
haves in different scenarios, and with different pa-
rameters and updating strategies of policies in dy-
namic environments. The framework presented is 
capable of demonstrating interactively the effects of 
varying parameter values and the number of agents, 
helping to identify appropriate parameter values for 
Ant-Q as well as the strategies that lead to solution. 

Results obtained when the updating strategies for 
policies in dynamic environments are used show that 
performance of the Ant-Q algorithm is superior to its 
performance at discovering best global policy in the 
absence of such strategies. Although individual 
characteristics vary from one strategy to another, the 
agents succeed in improving policy through global 
and local updating, confirming that the strategies can 
be used where environments are changing over time. 

Experiments using the proposed strategies show 
that, although their computational cost is greater, 
their results are satisfactory because better solutions 
are found in a smaller number of episodes. However 
further experiments are needed to answer questions 
that remain open. For example, coordination could 
be achieved using only the more significant parame-
ters. A heuristic function could be used to accelerate 
Ant-Q, to indicate the choice of action taken and to 
limit the space searched within the system. Updating 
the policy could be achieved by using other coordi-
nation procedures, avoiding stagnation and local 
maxima. Some of these strategies are found in (Ri-
beiro et al., 2008) and (Ribeiro et al., 2012). A fur-
ther question is concerned with evaluating the algo-
rithm under scenarios with more states and other 
characteristics. These hypotheses and issues will be 
explored in future research. 
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