
A Meta Model for Monitoring Requirements in Cloud Environnment

Rima Grati, Khouloud Boukadi and Hanêne Ben-Abdallah
Mir@cl Laboratory, University of Sfax, Faculty of Economics and Management of Sfax, BP 1088, Sfax 3018 Tunisia

Keywords: Monitoring of Web Service Composition, Cloud Environment, Profile UML.

Abstract: Cloud computing is a promising technology where the infrastructure, platform technology and software are
remotely delivered as services over the Internet. Despite the increasing interest in cloud computing, several
enterprises are still reticent to fully adopt it in their business because of several unresolved difficulties.
Among others, the difficulty to provide guaranteed QoS for all kind of applications is one of the major
barriers for the adoption of this computing paradigm by a wider range of enterprises. To overcome this
difficulty, various service monitoring approaches were proposed as a means to detect potential violations of
an agreed-upon service level. These approaches, however, tackled the technical aspects of monitoring
without providing for a conceptual framework where the QoS monitoring requirements can be specified.
This paper highlights the need for a design-level modelization of monitoring composed web services in the
cloud. It then presents a meta-model for composite web services in the cloud, that provides for the
specification of QoS requirements, web service level agreements, and monitoring QoS of composite web
services in the cloud.

1 INTRODUCTION

Cloud computing is a rapidly spreading trend of
computing where readily available computing
resources are exposed as services. Depending on the
user’s needs, cloud computing offers services at
different layers: Software (Software as a service:
SaaS), Platform (Platform as a Service: PaaS) and
Infrastructure (Infrastructure as a Service: IaaS). In
recent years, SaaS implementations are in particular
gaining popularity as a means to let both users
manage typical day-to-day tasks and enterprises
make money by arranging an ongoing software
licensing agreement with different businesses.

Despite these advantages, given the complexity
of the Cloud environment, service failures are quite
likely and are the norm rather than the exception
(Vishwanath and Nagappan, 2010). Service failures
may result in QoS degradations at all layers. Hence,
SaaS applications require QoS monitoring for two
main reasons: on the one hand, to offer Cloud usage
that is “acceptable” by various clients and, on the
other hand, to spare Cloud providers penalties due to
the violation of a QoS level agreed-upon in the
Service-Level-Agreement (SLA).

To monitor the QoS of services, most works in
the literature focussed on the technical side and

neglected the conceptual side (cf., (Shao et al.,
2010), (Cao et al., 2009) and (Clayman et al.,
2010)). In addition, the proposed solutions require
modification of the server and/or the client
implementation code. In our previous work, we
proposed a framework for QoS Monitoring and
Detection of SLA Violations (QMoDeSV) (Grati et
al., 2012). The framework QMoDeSV provides for
monitoring composite services deployed on the
Cloud with no intrusion on the client nor server
implementation code.

In this paper, we complement QMoDeSV with a
conceptual formalisation that offers three
contributions to monitoring in the Cloud. As a first
contribution, we propose a meta-model to specify
QoS monitoring Requirements for Composite
Services; this meta-model, called QoSReq4CS, can
be used by Cloud customers to define their QoS
requirements for their composite services deployed
by a SaaS provider. In a second contribution, we
propose a meta-model to facilitate the specification
of SLA between a Cloud provider and its customers;
this meta-model, called WSLA4CS, extends the
WSLA specification (Ludwig et al., 2003) to take
into consideration the cloud context. In addition, it
formalizes the creation process of SLAs based on
the QoS monitoring requirements. Our third

223grati R., Boukadi K. and Ben-Abdallah H..
A Meta Model for Monitoring Requirements in Cloud Environnment.
DOI: 10.5220/0004442702230231
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 223-231
ISBN: 978-989-8565-60-0
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

contribution is the meta-model MonitorQoS4CS
which defines concepts related to the monitoring of
composite web services in order to detect potential
violations of the SLA contract.

The remainder of this paper is organized as
follows: Section 2 overviews works related to
monitoring Web services in the Cloud. Section 3
presents the meta-model for Composite Web Service
in the cloud (CompositeWSinTheCloud) regrouping
all three meta-models. Finally, Section 4
summarizes the presented work and highlights its
future directions.

2 RELATED WORK

Most of the ongoing research efforts dealing with
cloud monitoring, cf. (Shao et al., 2010), (Cao et al.,
2009) and (Clayman et al., 2010), tackled the
technical aspects and neglected the conceptual side
of monitoring.

Shao et al. (Shao et al., 2010) propose a Runtime
Model for Cloud Monitoring (RMCM). RMCM uses
interceptors (as filters in Apache Tomcat and
handlers in Axis) for service monitoring. It collects
all Cloud layer performance parameters. In the SaaS
layer, RMCM monitors applications while taking
into account their required constraints and design
models. To do so, it converts the constraints to a
corresponding instrumented code and deploys the
resulting code at the appropriate location of the
monitored applications. In other words, RMCM
modifies the source code of the applications being
monitored. In this work, Shao et al. (Shao et al.,
2010) do not propose any formalism for specifying
the constraints, which represent certain QoS
requirements to be monitored.

Cao et al. (Cao et al., 2009) propose a monitoring
architecture for Cloud computing. In this not-yet-
implemented architecture, cost is the only SLA
monitoring requirements.

Clayman et al. (Clayman et al., 2010) propose
the Lattice framework for Cloud service monitoring
in the RESERVOIR EU project. Lattice is capable of
monitoring physical resources, virtual machines and
customized applications. This approach addresses
some requirements and functionality of the service
cloud environment such as QoS, elasticity,
scalability, etc. Unlike our approach (Grati et al.,
2012), the Lattice framework does not explain how
the QoS requirements are specified.

Rak et al. (Rak et al., 2011) propose Cloud
application monitoring using the mOSAIC approach.
To benefit from mOSAIC, the application to be

monitored must be first customized using mOSAIC
API. Once customized, an application can be
monitored by gathering low-level information used
to perform manual or automatic load-balancing,
increase/decrease the number of virtual machines, or
calculate the total cost of the application execution.
Besides being intrusive on the application code, the
mOSAIC approach does not offer any formalism for
specifying QoS requirements.

Boniface et al. (Boniface et al., 2010) propose a
monitoring module that collects QoS parameters of
Cloud Computing. They use a monitoring
application component (AC) that must be first
described and registered in the application
repository. The AC collects QoS parameters at both
the application and technical levels. This approach is
complicated and hard to install due to the description
and registration of AC. In addition, similar to the
above approaches, this approach offers no means to
describe the QoS requirements.

Patel et al. (Patel and anabahu, 2009) propose a
mechanism for managing SLAs in a cloud
computing environment using the Web Service
Level Agreement (WSLA) framework. WSLA was
developed for SLA monitoring and enforcement in a
Service Oriented Architecture (SOA). This approach
uses the third party support feature of WSLA to
delegate monitoring and enforcement tasks to other
entities in order to solve the trust issues.

Wenzel et al. (Wenzel et al., 2012) develop an
approach to examine whether outsourcing of a
business process in a cloud environment is possible
while keeping all security and compliance
requirements. The first pillar of their approach is a
security risk analysis of the business process that are
to be outsourced into a cloud. The second pillar of
their approach is a compliance check that verifies
the legal regulations constraints are still kept. In
order to formulate such constraints, the meta model
of the business process model is extended with a set
of OCL expressions. The third pillar of their
approach is the automated analysis of security
properties. In their approach Wenzel et al. present
how they specify the constraints, which represent
certain security requirements but not in the context
of monitoring QoS for composite web service
deployed in the cloud to avoid SLA violations.

To the best of our knowledge, none of the
examined approaches deals with the conceptual
aspect for monitoring services in the Cloud. The
exception is the work of (Patel and Ranabahu, 2009)
who proposed an extension of WSLA to be adapted
to the Cloud environment; the extension lacks
however several concepts needed to link the SLA to

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

224

the QoS monitoring requirements of composite web
services.

Our work complements existing technical
monitoring frameworks/approaches by offering
formalisms to model Composite Web Services in the
Cloud in terms of Cloud customer requirements,
SLA contracts, and necessary monitoring services to
offer. Our proposed models will be used later for the
generation of monitor capable of monitoring the
functioning of a composite web service in the cloud
according to the customer needs.

3 CompositeWSinTheCloud META
MODEL

This section presents a meta-model for specifying
Composite Web Service in the cloud
(CompositeWSinTheCloud). This meta-model
consists of the following three packages which
describe the necessary concepts (see Figure 1):
 QoSReq4CS package: defines how a cloud

customer can express their QoS requirements for a
composite Web service deployed by a SaaS
provider;

 WSLA4CS package: proposes an extension of the
WSLA specification to take into consideration the
cloud context. The aim of WSLA4CS is to create
SLA approved between the customer and the
monitoring service in the Cloud side;

 MonitorQoS4CS package: defines concepts related
to the monitoring of composite web services in

order to detect the validation or violation of their
SLA contracts.

Figure 1: The CompositeWSinTheCloud meta-model.

3.1 The QoSReq4CS Package

The customer requests a particular composite Web
service from a SaaS provider by submitting their
QoS requirements (see Figure 2). QoS requirements
describe: any QoS characteristics that can be
measured such as performance, and QoS features
considered as essential when the service is running
such as reliability and availability. In the Web
service field, there are several types of quality of
service characteristics (Liu et al., 2004) (Canfora et
al., 2005). In our work, we focus on those
characteristics related to runtime issues rather than
those related to the Web service development (such
as reusability, testability, etc.).

The customer expresses their QoS requirements,
for a composite Web service, thanks to QoS

Figure 2: The QoSReq4CS package.

A�Meta�Model�for�Monitoring�Requirements�in�Cloud�Environnment

225

statements, which represent a set of constraints over
QoS elements. In practical terms, each constraint
imposed by a QoS statement must be ensured by the
composite service once an agreement is made
between the SaaS provider and the customer.

Within a QoS statement, the constraint over a
QoS element is governed by a kind of constraint. In
our approach, we adopt the notion of satisfiability
proposed in (Mylopoulos et al., 1992) in which the
QoS statements are achieved to a certain degree,
rather than absolutely. Hence, we define three kinds
of constraints: strong, medium and low. For
example, a customer can state that the Web service
throughput is qualified as a medium constraint,
while the Web service reliability is a strong
constraint over the reliability QoS element.

Furthermore, the combination of QoS elements
within a specific QoS statement follows three
quantifier types: all, at least one and exactly one.

We propose in the following a set of definitions
that help the reader to understand the proposed
concepts.

Definition1. QoS Requirement
A QoS Requirement is defined as a sequence of QoS
Statements

QoS_Req=<QoS_St1; … ; QoS_Stn>

where QoS_Sti is a QoS Statement.

Definition2. QoS Statement
A QoS Statement is defined as a couple

QoS_St= (QuantType, QoSConstElts)

where
 QuantType ϵ {All, AtLeastOne, ExactlyOne}
defines the participation of the QoS elements within
QoS_St. The type is interpreted as follows:
 All: QoS_St is defined by composing all the

QoS elements,
 AtLeastOne: QoS_St is defined by one or more

of its QoS elements ,
 ExactlyOne: QoS_St is defined by exactly one

of its QoS elements.

 QoSConstElts is a set of constrained QoS
elements (QoS_elt, KindConst) where
 QoS_elt is a QoS element related to the Web

service execution. Example of QoS elements can
be response time, service cost, throughput,
reliability, etc.

KindConst ϵ {Strong, Medium, Low} defines the
constraint regarding a QoS element.

Definition 3. Composite Web service
A composite Web service is defined as a structure

CompositeWS=<Name,Desc,CS,CP, QoSProf>

where
 Name: is the name of the composite Web service,

used as its unique identifier;

 Desc: is the description of the composite Web
service. It summarizes what the service offers;

 CS: is the set of its component services,

 CP: is the set of the composition patterns to
indicate the control flow between the component
services. These patterns are Sequence, Parallel,
Synchronization, Exclusive, Simple merge,
Conditional, Synchronizing merge, Multi merge,
Loop and Deferred choice pattern. For further
information about these patterns the reader can
refer to (WorkflowPatterns, 2013).

 QoSProf: a set of QoS profils (QoS profs). Each
QoSProf is a template for a particular quality of
service computed based on the used composition
pattern as well as the IT resources responsible for
executing the service. For example the provider
can offer a service with set of QoS profils: the first
QoS profil consists of response time 5ns and costs
10 euro, the second QoS profil is response time
10ns and cost 7 euro.

3.1.1 SLA between Cloud Customer
and SaaS Provider

In our work, we assume that a request for a
particular Web service is sent from the cloud
customer to a SaaS provider’s application layer with
QoS requirements (Figure 3). Thereafter, the
provider looks for the QoS profile that best fits the
customer’s request and proposes an SLA template.
In case of approval (i.e. the customer agrees on the
SLA template offering the desired QoS level), the
customer sets the contract validity period and
proposes the SLA to the provider. The provider may
reject the proposed SLA, otherwise it is accepted
and the contract is established.

The SaaS provider either rents resources from
IaaS providers, or proposes its own resources in
order to lease the composite Web service to
customers. In our work, we assume that a SaaS
provider has its own resources and hence it is in
charge of the required resource allocation. In
addition, it is responsible for dispatching VM
images to run on the physical resources and to create
instances for executing services.

The scenario depicted in Figure 3 can be
achieved thanks to an SLA negotiation protocol
which includes the involved parties, the service
description as well as the QoS that should be met by

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

226

the provider. Flexible and reliable management of
SLA agreements is of paramount importance for
both cloud customer and provider. Indeed, several
authors in the literature have demonstrated that SLA
monitoring is a prominent issue in the current cloud
computing context (Alhamad et al., 2010) and (Patel
and Ranabahu, 2009). For example, in (Patel and
Ranabahu, 2009) the authors emphasize that, due to
the dynamic nature of cloud computing, an
independent tool for monitoring/validating
performance of application is one of the facilities
which are most needed in the cloud.

The SLA monitoring facility enables both
customer and provider to understand if any failure or
quality of service degradation is caused by the cloud
provider, the network infrastructure, or even the
design of the service itself (Emeakaroha et al.,
2012).

There are two main specifications for describing
SLA for Web services: Web service Agreement
(WS-Agreement) (Andrieux et al., 2004) from the
Open Grid forum, and Web Service Level
Agreement language and Framework (WSLA) from
IBM (Ludwig et al., 2003). However, these
proposals are not suitable for a cloud computing
environment because the nature and type of IT
resources provided and delivered are different (Patel
and Ranabahu, 2009). In addition, a composite Web
service runs on the cloud provider infrastructure
which is shared and virtualized. However, current
monitoring infrastructures rely either on Grids or
service oriented infrastructures which are not
compatible with the cloud context.

On the other hand, most of the proposed
monitoring infrastructures require modification of
either the server or the client implementation code.
However, to provide for independence of any Cloud
provider/environment, monitoring should be
performed without modifying the implementation of
the deployed services. Moreover, the cloud
environment is dynamic and the resource usage
changes frequently. So, when trying to enforce an
SLA, one should take into account this dynamicity
by proposing a set of functionalities that track the
evolution of services.

Hence, a new SLA model adapted for the cloud
context is still needed (Patel, 2009). In our work, we
propose to enhance the WSLA in order the meet the
cloud computing context. Our assumption is that the
SLA monitoring facility is provided by the provider
to the customer. To do so, we propose a set of
services that run in parallel with the composite Web
service instance in order to detect potential SLA
violations. The extension of the WSLA is detailed in
the next section.

3.2 The WSLA4CS Package and SLA
Monitoring

The WSLA specification consists of a flexible and
extensible language based on XML Schema and a
runtime architecture comprising several SLA
monitoring services, which may be outsourced to
third parties to ensure a maximum objectivity. For

Figure 3: SLA agreement between Cloud Customer and SaaS Provider.

A�Meta�Model�for�Monitoring�Requirements�in�Cloud�Environnment

227

space limitation, we just present the definition of
WSLA without detailing its various concepts. For
more details the reader can refer to (Ludwig et al.,
2003).

Figure 4 depicts the new WSLA4CS for
specifying and monitoring SLAs for Web services
deployed in a Cloud; the concepts we added to
WSLA are highlighted.

The WSLA4CS is designed to achieve an
agreement between a SaaS provider and a Cloud
Customer concerning a cloud service definition. For
this, the following four monitoring services are
added to the initial specification:

 The QoS Calculator service
(QoSCalculatorService) computes QoS metrics for
the composite Web services. In its computations, it
uses the values of the constituent services and the
composition pattern defined in the monitored
service. The overall Web service QoS is derived
based on the values collected for each constituent
service and the composition pattern. For this
derivation, the calculation formulas proposed in
(San-Yih, et al., 2004) and (Jaeger et al., 2004) can
be easily adapted.

 The host monitor service (HostMonitorService) is
responsible for measuring the runtime parameters
of cloud provider resources by retrieving resource
metrics directly from the provider managed

resources based on two fundamental principles of
the cloud: the pay as you go and the elasticity
feature of the cloud. It maintains information on
the current system configuration and runtime
information about the metrics which are part of the
SLA. It can be configured to access different
virtual hosts at the same time to collect locally
monitored values. The particularity of the host
monitor service is that it can take into account two
types of metrics including: resource metrics and
JVM metrics. JVM metrics are considered by the
host monitor service because of the nature of the
monitored service (i.e. composite Web service
running thanks to JVM applications).

 The Lo2Hi QoS Convertor service
(Lo2HiQoSConvertorService) interacts with two
components: the host monitor which monitors the
resources, and the QoS Calculator which calculates
the global obtained metrics. Resources are
monitored by the host monitor using arbitrary
monitoring tools such as Gmond from Ganglia
project (Massie et al, 2004). Based on the
predefined mapping rules stored in a database,
monitored metrics are periodically mapped to the
SLA parameters.

 The SLA Violation Detector
service(SLAViolationDetectorService) accesses the

Figure 4: The WSLA4CS package.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

228

mapped metrics repository to get the mapped SLA
parameters. These parameters are compared with
the calculated values obtained from the QoS
Calculator. In the case of a violation (none respect
of SLA), it dispatches notification messages to the
customer/provider to alert about the violation.

Figure 5 shows the scenario when the client
invokes a service. A cloud customer sends a request
to the Seas provider with an approved SLA. The
Seas provider allocates the necessary resources
(infrastructure layer) and the platform adequate to
meet the request of the customer. Once the resources
are allocated, the provider begins the phase of
monitoring based on all the services belonging to
QMoDeSV framework. For further information
about these services, we refer the reader to (Grati et
al, 2012).

3.3 The MonitorQoS4CS package

The Monitoring QoS for Cloud Service package
covers all concepts of WSLA4CS and QoSReq4CS.

This package defines concepts related to the
monitoring of the composite service to detect
potential violations of specified SLA. It presents also
the different modules responsible for the monitoring
service. In our work, we consider that the monitoring
service is offered by the provider to the customer.

This assumption is taken after a certain level of trust
between the two parties is established.

4 CONCLUSIONS

In this paper, we discuss our approach for
monitoring quality of services (QoS) guarantees
given to the customers in Saas Cloud environments,
because this compliance of the guarantees are not
easily to maintain. Our goal is to monitor the
requirements that arise from the QoS guarantees that
the consumer has given.

For this purpose we presented a meta-model for
monitoring Composite Web Service in the Cloud
(CompositeWSinTheCloud). This meta-model
consists of three packages that describe concepts
pertinent to: expressing customer’s QoS monitoring
requirements for a composite service deployed by a
SaaS provider (QoSReq4CS); expressing SLA
specifications while taking into account the Cloud
context (WSLA4CS); and defining concepts related
to the monitoring of the composite service to detect
potential violations of specified SLA
(MonitorQoS4CS).

Currently we are working on the evaluation of
the expressive power of the proposed meta-model
through a real case study. We choose an example of
B2B scenario consisting of a real estate company,

Figure 5: SLA monitoring for composite Web service.

A�Meta�Model�for�Monitoring�Requirements�in�Cloud�Environnment

229

Figure 6: The MonitorQoS4CS package.

wishing to have a credit agreement to decide to build
a building, addresses to a financial institution.

REFERENCES

Vishwanath, K. V. and N. Nagappan. Characterizing cloud
computing hardware reliability. In Symposium on
Cloud Computing (SOCC), 2010

Grati, R., Boukadi, K. and Ben-Abdallah, H. “A QoS
Monitoring Framework for Composite Web services
in the Cloud”, In the 6th International Conference on
Advanced Engineering Computing and Applications in
Sciences 2012 (Advcomp’12). pp. 65-70

Ludwig, H., Keller, A., Dan, A., King, R., Franck, R, Web
service level agreement (WSLA) language
specification. IBM Corporation (2003)

Shao, J., Wei, H., Wang, Q. and H. Mei, “A Runtime
Model Based Monitoring Approach for Cloud,” in
Proceedings of 2010 IEEE 3rd International
Conference on Cloud Computing (CLOUD 2010), I.
C. Society, Ed. Miami, Florida: IEEE Computer
Society, 2010, pp. 313–320.

Cao, B.-Q. , Li, B and Xia, Q.-M “A Service-Oriented
Qos-Assured and Multi-Agent Cloud Computing
Architecture,” in Proceedings of the 1st International
Conference on Cloud Computing (CloudCom’09).
Berlin, Heidelberg: Springer- Verlag, 2009, pp. 644–
649.

Clayman, S., Galis, A., C. Chapman, M. L.R, L. M.
Vaquero, K. Nagin, B. Rochwerger, and G. Toffetti.
“Monitoring future internet service clouds” In
Towards the Future Internet - A European Research
Perspective book, April 2010.

Rak, M., Venticinque, S., Mandhr, T. a., Echevarria, G.
and Esnal, G. “Cloud application monitoring: The

mosaic approach”. In Cloud Computing Technology
and Science (CloudCom), 2011 IEEE Third
International Conference on, pages 758 –763, 29
2011-dec. 1 2011.

Boniface, M., Nasser, B., Papay, J., Phillips, S. C., A.
Servin, Yang, X., Z. Zlatev, S. V.Gogouvitis, G.
Katsaros, K. Konstanteli, G. Kousiouris, A.
Menychtas, and D. Kyriazis, “Platformas- a-Service
Architecture for Real-Time Quality of Service
Management in Clouds,” in Proceedings of the 2010
Fifth International Conference on Internet and Web
Applications and Services (ICIW ’10). Washington,
DC, USA: IEEE Computer Society, 2010, pp. 155–160

Patel Pankesh, Ajith Ranabahu, “Service level agreement
in cloud computing, UKPEW, 2009.

Liu, Y. A. H. H. Ngu, and L. Zeng. Qos computation and
policing in dynamic web service selection. In WWW
(Alternate Track Papers & Posters), pages 66–73.
ACM, 2004.

Wenzel S., C. Wessel, T. Humberg, and J. urjens.
Securing processes for outsourcing into the cloud. In
CLOSER, Porto, Portugal, 2012.

Canfora, G. ., M. D. Penta, R. Esposito, and M. L. Villani.
An approach for qos-aware service composition based
on genetic algorithms. In GECCO, pages 1069–1075.
ACM, 2005.

Mylopoulos, J., Lawrence Chung, and Brian Nixon.
Representing and Using Non-Functional
Requirements: A Process-Oriented Approach. IEEE
Transaction of Software Engineering, 18(6):483-497,
June 1992.

WorkflowPatterns. [cited 2103 April 2013]. Available
from: http://www.workflowpatterns.com/

Alhamad, M. T.Dillon, E.Chang, (2010), Conceptual SLA
Framework for Cloud Computing”, 4th IEEE
International Conference on Digital Ecosystems and
Technologies (IEEE DEST 2010) 2010 IEEE

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

230

Emeakaroha, E.; Netto, M. A. S.; Calheiros, R.; Buyya,
R.; De rose, C. A. F.; Towards Autonomic Detection
of SLA Violations in Cloud Infrastructures. Future
Generation of Computer Systems: the International
Journal of Grid Computing: Theory, Methods and
Applications (FGCS), 2012, Elsevier

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K.,
Ludwig, H., Pruyne, J., Rofrano, J., Tuecke, S., Xu,
M, Web services agreement specification (WS-
Agreement). In Global Grid Forum. (2004)

San-Yih, H. Wang H, S.Jaideep , and P. Raymond. “A
probabilistic QoS Model and computation Framework
for Web Services based workflow” In Proc of
ER2004, pages 596-609, Sanghai, November 2004.
pp. 254-260

Jaeger Michael C., Gregor Rojec-Goldmann, and Gero
Muhl. “QoS Aggregation for Web Service
Composition using Workflow Patterns” EDOC ’04
Proceedings of the Enterprise Distributed Object
Computing Conference, Eighth IEEE International.
pp. 52-59

Massie, M. L., B. N. Chun, and D. E. Culler, “The ganglia
distributed monitoring system: Design,
implementation and experience,” Parallel computing,
vol. 30, pp. 200, 206

A�Meta�Model�for�Monitoring�Requirements�in�Cloud�Environnment

231

