
Concern-based Refactorings Supported by Class Models to
Reengineer Object-Oriented Software into Aspect-Oriented Ones

Paulo Afonso Parreira Júnior1, Matheus Carvalho Viana1, Rafael Serapilha Durelli2,
Valter Vieira de Camargo1,

Heitor Augustus Xavier Costa3 and Rosângela Aparecida Dellosso Penteado1
1Departament of Computer Science, Federal University of São Carlos, São Carlos, Brazil

2Computer Systems Department, University of São Paulo, São Carlos, Brazil
3 Departament of Computer Science, Federal University of Lavras, Lavras, Brazil

Keywords: Concern-based Refactorings, Class Models, Aspect-Orientation, Reengineering.

Abstract: Reengineering Object-Oriented Software (OO) into Aspect-Oriented Software (AO) is a challenging task,
mainly when it is done by means of refactorings in the code-level. The reason for it is that direct
transformations from OO code to AO one involve several design decisions due to syntactic and semantic
differences of both paradigms. To make this task more controlled and systematic, we can make use of
concern-based refactorings supported by models. This type of refactorings concentrates on transforming
broader scenarios into a set of context-dependent scenarios, rather than specific ones, as in code-level
refactorings. In this paper we propose a set of concern-based refactorings that allows design decisions to be
made during the reengineering process, improving the quality of the final models. Two of them are
presented in more details in this paper. An example is presented to assess the applicability of the proposed
refactorings. Moreover, we also present a case study, in which AO class models created based on the
refactorings are compared with AO class models obtained without the aid of these refactorings. The data
obtained in this case study indicated to us that the use of the proposed refactorings can improve the efficacy
and productivity of a maintenance group during the process of software reengineering.

1 INTRODUCTION

Aspect-Orientation (AO) can be used in the
revitalization of Object-Oriented (OO) legacy
software. AO allows encapsulating the so-called
“crosscutting concerns” (CCC) - software
requirements whose implementation is tangled and
scattered by functional modules - in new
abstractions such as pointcuts, aspects, advices and
inter-type declarations (Kiczales et al., 1997).

Reengineering from OO to AO in code-level is
not an easy task due to existing differences between
concepts related to both approaches. However, if the
reengineering process was supported by models, it
could facilitate future maintenance. In this paper we
propose the use of concern-based refactorings on
OO class models annotated with information of CCC
to obtain AO models. In the context of this paper,
annotated OO class models are UML OO class
models whose elements (classes, interfaces,

attributes and methods) are annotated with
stereotypes corresponding to the CCC that exist in
the software. The main idea is that concern-based
refactorings can be applied to transform these
models into AO models.

There are many studies in the literature that
present code-based refactorings (Silva et al., 2009;
Monteiro and Fernandes, 2006; Hannemann et al.,
2005; Marin et al., 2004; Iwamoto and Zhao, 2003).
Our main reasons to create and apply concern-
based refactorings supported by models (“model-
based refactorings” in the rest of this paper) are:
i) code-level refactorings can be applied to

transform OO software in AO ones. However,
this transformation is usually done in one step,
which has as input an OO code and as output an
AO one. It makes the reengineering process less
flexible, because the responsibility to generate a
code that follows good design practices of AO is
on the refactorings. The transformation based on
model-based refactorings introduces at least one

46
Afonso Parreira Júnior P., Carvalho Viana M., Serapilha Durelli R., Vieira de Camargo V., Augustus Xavier Costa H. and Aparecida Dellosso Penteado
R..
Concern-based Refactorings Supported by Class Models to Reengineer Object-Oriented Software into Aspect-Oriented Ones.
DOI: 10.5220/0004442200460057
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 46-57
ISBN: 978-989-8565-60-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

more step in the process before generating the
final code. Thus, to ease the inflexibility of the
process, in this step the outcome AO model can
be modified by the software engineer according
to the environment and stakeholder
requirements;

ii) generally, the source code is the only available
artifact of the legacy software. Applying model-
based refactorings, both the legacy software and
the generated software will have a new type of
artifact (i.e., UML class models), improving their
documentation; and

iii) unlike the code-based refactorings, model-based
ones are platform independent. Thus, models can
be transformed and good designs can be
produced regardless of programming language.
A set of nine model-based refactorings was

developed. It is subdivided into: i) three generic
refactorings, which are concern-independent
refactorings; and ii) six specific refactorings to the
following concerns: persistence (subdivided into
connection, transaction and synchronization
management), logging and Singleton and Observer
design patterns (Gamma et al., 1995). Due to the
limitation of space, only two of them are discussed
in more details in this paper. The AO class models
presented in this paper are based on AOM (Aspect-
Oriented Modeling) approach proposed by
Evermann (Evermann, 2007).

The remainder of this paper is structured as
follows. Some concepts related to the AOM
approach proposed by Evermann, the annotated OO
class models and the computational support DMAsp
(Costa et al., 2009), used to generate automatically
annotated OO class models, are discussed in Section
2. The generic and specific refactorings are
presented in Section 3. An example that illustrates
the use of these refactorings is shown in Section 4
and an evaluation of them is presented in Section 5.
Some related works are summarized in Section 6.
Finally, conclusions and suggestions for future work
are presented in Section 7.

2 BACKGROUND

ProAJ/UML (UML Profile for AspectJ) is one of the
most used approaches to model AO software
(Evermann, 2007). This approach consists of a set of
stereotypes that can be applied on UML class
models, such as:
 <<CrossCuttingConcern>>: it is an extension of

the Package meta-class, in the UML meta-model.
Its aim is to encapsulate aspects related to the same

crosscutting concern.
 <<Aspect>>: it extends the UML Class meta-class.

Its goal is to cluster pointcuts and advices in an
aspect and to allow aspects to extend classes or
aspects and implement interfaces.
 <<Advice>>: it is a BehavioralFeature meta-class

extension. Its aim is to associate advices with
aspects.
 <<PointCut>>: it is a StructuralFeature meta-class

extension, whose goal is to specify a static
behavior. Its modelling is performed by concrete
subclasses of PointCut, such as CallPointCut and
ExecutionPointCut.

These stereotypes are used in the AO class
models generated with the application of the
refactorings proposed in this work. Furthermore, OO
class models annotated with information of CCC are
used in the proposed refactorings. These annotations
are represented using stereotypes on the left side of
the classes, interfaces, attributes and methods
identifiers. Figure 1 illustrates a class annotated with
indications of persistence CCC. The DMAsp
(Design Model to Aspect) tool (Costa et al., 2009),
developed in a previous work, is used to generate
automatically the annotated OO class models.

Figure 1: An UML Class Annotated with Information
about Persistence CCC.

Based on the concept of annotated OO class models,
the following concepts, proposed by Figueiredo et
al. (2009), were adapted to the context of this work
and are commented in the refactoring descriptions.
 Components affected by a concern are software

elements such as classes, interfaces, attributes and
methods which have indications of this concern.
These elements are annotated with stereotypes of
the concern that affect them.
 Primary concern is the main concern of a

component and it is related to the reason by which
it was created. For example, the
openConnection method (Figure 1) was created
to open database connections. Then “Persistence”
is the primary concern of this method. The primary
concerns are identified by the prefix “Pri_” in the
stereotypes.
 Secondary concern of a component corresponds

to functions that this component plays. However,

Concern-based�Refactorings�Supported�by�Class�Models�to�Reengineer�Object-Oriented�Software�into�Aspect-Oriented
Ones

47

these functions are not directly related to the
reason for which it was created. In Figure 1, the
Account class and its method withdraw were
created to perform the business rules of a
hypothetical banking system. Thus “Persistence” is
a secondary concern in these components. The
secondary concerns are identified by the prefix
“Sec_” in the stereotypes.
 Well-modularized components are software

elements composed only by the primary concern
for which they were created. For example, the
openConnection method (Figure 1) is
considered well-modularized, because the only
type of stereotype of this method is a primary
concern related to “Persistence” concern.

3 MODEL-BASED
REFACTORINGS

Hannemann (2006) proposed the following
classification of AO software refactorings:
i) Conventional OO Refactorings adapted for

AO Software. These refactorings only involve
OO elements. The difference between these
refactorings and the well-known OO refactorings
is they are aware of the existence of AO
elements;

ii) Specific Refactorings for AO Software. These
refactorings involve OO and AO elements and
they are specific to lead to the AO abstractions,
such as aspects, pointcuts, etc; and

iii) Crosscutting Concerns Refactorings. Also
called concern-based refactorings, they should
take all the elements (classes, aspects, interfaces,
etc) that participate in a crosscutting concern and
their relationships into consideration. This
happens, because concerns usually are
manifested in several components.
A set of nine concern-based refactorings is

shown in Table 1, but only two of them are
presented in this paper in more details. The
remaining refactorings were omitted for reasons of
limitation of space and can be found in (Parreira
Júnior, 2011).

The following information of refactorings are
presented: i) Acronym and Name of the Refactoring;
ii) Application Scenario, which defines the situations
the refactoring can be applied; iii) Motivation, which
presents some problems caused by tangling and
scattering of CCC; and iv) ProAJ/UML Mechanism,
which is a set of steps to obtain an AO class model
from an OO one, according to the ProAJ/UML
profile.

Table 1: Model-based refactorings.

Generic Refactorings
Name Description

R-1
Encapsulating a Primary Concern that does not

have Generalization / Specialization
relationships.

R-2
Encapsulating a Primary Concern that has

Generalization / Specialization relationships.
R-3 Extracting a Primary Concern.
Specific Refactorings
Name Description
R-
Connection

Encapsulating the CCC responsible for managing
database connections.

R-
Transaction

Encapsulating the CCC responsible for managing
database transactions.

R-Sync
Encapsulating the CCC responsible for managing

database synchronization.

R-Logging
Encapsulating the CCC responsible for

controlling the application of logging record.

R-Singleton
Encapsulating the CCC corresponding to the

Singleton design pattern.

R-Observer
Encapsulating the CCC corresponding to the

Observer design pattern.

3.1 Generic Refactorings

The generic refactorings are responsible for
transforming an annotated OO class model to a
partial AO class model. The generated model is
named “partial”, because the existing CCC may not
be well-modularized yet. In this case, there still can
exist classes/interfaces, methods and/or attributes
affected by crosscutting concerns. One of the
generic refactorings, R-3, is presented as follows.

R-3. Extracting a Primary Concern.
Application Scenario: when there are classes with
Secondary Concerns, which are Crosscutting
Concerns and these ones are not Primary Concerns
in any classes.

Motivation: some crosscutting concerns can be
scattered in several classes and there are not
specific classes that implement them. One concern
of this type is not a Primary Concern in any class
of the application. This scenario represents a high
level of concern tangling and a low level of
software modularization.

ProAJ/UML Mechanism: 1) Create a
CrossCuttingConcern element called “CCC”, in
which “CCC” represents the concern name that is
being modularized; 2) Inside the element created
previously, add an Aspect element called
“CCCAspect”; and 3) Move each well-modularized
attribute and method from the classes affected by
the concern to the “CCCAspect” element.

Looking at the application scenario of R-3
refactoring, we understand that: “no matter what
concern we are dealing, the scenario described

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

48

above represent a low level of modularization”.
Thus, we already can apply a modularization
strategy to this concern, whatever it is, putting all the
well-modularized elements (attributes and methods)
related to this concern in a specific module, in this
case, an aspect. Only well-modularized elements are
moved to the aspect, avoiding problems related to
the dependence of other concerns.

3.2 Specific Refactorings

The specific refactorings are responsible for
transforming partial AO class models in final ones.
These refactorings are named “specific”, because
they only can be applied to a specific type of
concern. For example, there is a specific refactoring
to the transaction management concern that
generates an AO class model with the
modularization of this concern using aspects. Six
specific refactorings were developed, as presented in
Table 1.

These refactorings were created based on the
most common strategies for implementing these
types of crosscutting concerns. For example, the
database connection concern is usually implemented
with a class responsible for creating connections and
each persistent method must open the connection at
the beginning of its execution and close it at the end.
In another example, the singleton pattern is
generally implemented as follows (Gamma et al.,
1995): i) create an attribute of the same type of the
Singleton class; ii) become private the constructor of
the Singleton class; and ii) create a method
responsible for keeping only one instance of the
Singleton class. Therefore, it is possible to define
some steps for modularization of this type of
concern, based on the most common strategies for
implementing them.

The specific refactorings are applied on the
models generated by the generic refactorings. Thus,
in ProAJ/UML Mechanism description, aspects
created previously are mentioned. To illustrate this
case the refactoring R-Singleton is presented.
Unlike the generic refactorings, in this case, we can
use some more specific steps to modularize the
CCC, because Singleton pattern is a commonly
known concern. Thus the aspect created by a generic
refactoring has been transformed into an abstract one
and for each class affected by the Singleton concern
one aspect has been created. This strategy follows a
good practice for AO design suggested by Piveta et
al. (2007). Furthermore, it is similar to Hanneman
and Kiczales’ (2002) solution and was adapted to the
context of annotated OO class models.

R-Singleton. Encapsulating the CCC
corresponding to the Singleton design pattern.
Application Scenario: when there are classes
dedicated to implementation of Singleton pattern.
Motivation: the Singleton pattern can cause
problems of tangling and scattering of concerns in
OO application. The modularization using AO is
one alternative to solve these problems
(Hannemann and Kiczales, 2002).
ProAJ/UML Mechanism: 1) Identify the
“CCCAspect” aspect related to implementation of
the singleton concern and verify if this aspect is
abstract. If not, transform it into abstract one; 3)
Create, inside the element “CCC” related to the
singleton concern, an empty interface called
Singleton; 4) Define an execution pointcut
called instance that intercepts the calls to
constructor of the classes that realize the
Singleton interface and add it to the
“CCCAspect”; 5) Identify the set of classes, “S”,
that implement the Singleton pattern, i. e., the
classes whose instance must be unique in the
application. If the constructor of these classes be
private, transform it into public; 6) For each class
“N” ϵ “S”, create an aspect “CCCAspectN”, where
“N” corresponds to the class name and create
inheritance relationships from the aspects
“CCCAspectN” to the aspect “CCCAspect”; 7)
Each aspect “CCCAspectN” created previously
must declare an interface realization relationship
between the class “N”, represented by this aspect,
and the interface Singleton; and 8) Create an
around advice that returns a Singleton object.
This advice implements the logic of the Singleton
pattern: if there exists an instance, return it;
otherwise, create one instance and return it.
Associate the around advice to the instance
pointcut.

3.3 Considerations about
the Refactorings

Some of the main reasons to apply generic
refactorings are: i) the application of generic
refactorings can facilitate the achievement of a
better AO model: wrong decisions made by
software engineers, due to their inexperience, can
prejudice the AO model quality. Thus, an initial
modularization strategy offered by these refactorings
can minimize this problem; and ii) generic
refactorings can be applied to any type of
concern, even to those concerns that are not
widely known as crosscutting concerns: it is not
easy to identify whether a particular concern is or

Concern-based�Refactorings�Supported�by�Class�Models�to�Reengineer�Object-Oriented�Software�into�Aspect-Oriented
Ones

49

not a crosscutting concern. Thus, with the help of
generic refactorings, we can identify scenarios that
demonstrate or provide evidence of the existence of
crosscutting concerns in software. For example, the
application scenario for the refactoring R-3 states a
configuration that can evidence the existence of a
crosscutting concern (many classes of software
related to a secondary concern in these classes).

There is not a specific sequence to apply generic
refactorings proposed in this work. The steps created
for refactoring are applied when a specific element
is well-modularized, i.e., when there is no
interference of other concerns in this element.
Moreover, some modularization strategies described
in the steps of the refactoring were considered to
avoid interference in the order of execution of the
refactoring. Similarly to what happens with the
generic refactorings, the order in which the specific
refactorings are applied does not interfere in the
final AO class model. It happens because each
refactoring acts only on a particular concern at a
time, not compromising elements related to other
concerns.

The manual execution of the steps described in
the refactoring presented on class models of
software for medium and large scale can be hard and
error-prone. Thus, an Eclipse plug-in called MoBRe
(Model-Based Refactorings) was developed to
perform tasks related to refactoring of crosscutting
concerns in a semi-automatic way. MoBRe (Parreira
Júnior et al., 2011) allows transforming an annotated
class model into a partial AO class model, when the
generic and specific refactorings are applied. The
AO class models generated can be visualized within
the Eclipse.

4 EXAMPLE OF USE

To verify the applicability of the proposed
refactorings, an example, using the Health Watcher
software (Soares et al., 2002), is presented. This
software registers complaints in the health area and
it was chosen because it: i) has an OO and an AO
version; and ii) was modularized by expert software
engineers by using best practices of AO design.

Figure 2: A UML Class Stereotyped with CCC Indications.

Figure 3: Health Watcher AO Class Model obtained through R-3 Refactoring.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

50

Figure 4: Health Watcher AO Class Model obtained through R-Singleton Refactoring.

The crosscutting concern modularized in this
example is the Singleton pattern, represented by the
“Singleton” stereotype. Other crosscutting concerns
affect this application, such as connection and
transaction management, represented by the “Conn”
and “Trans” stereotypes, but the modularization of
them is not performed in this paper because of
limitations of space.

One part of Health Watcher OO class model,
responsible for the maintenance of the patient
complaints, is presented in Figure 2. This model is
annotated by using stereotypes of the concerns that
affect the software classes, according to the
information provided by Soares et al. (2002).

The HealthWatcherFacade class provides
methods necessary for execution of the business
logic of the application, as complaints registration,
diseases, and symptoms. The singletonHW and
singletonPS attributes and the getInstanceHW
and getInstancePS methods have “Singleton” as
Primary Concern, because they were created
specifically for implementing the Singleton pattern.
The same way, “Conn” and “Trans” are Primary
Concerns of the IPersistenceMechanism
interface and the PersistenceMechanism class,
because they were created for implementing these

concerns. The HealthWatcherFacade class has
“Trans” and “Singleton” as Secondary Concerns,
because this class was not created for implementing
these concerns, but it is affected by them. This
information about what concerns are primary or
secondary one was provided by the Health Watcher
developers.

According to the scenario of tangling/scattering
of the model presented in Figure 2, the singleton
concern can be initially refactored by the R-3
refactoring. This happens because “Singleton” is a
Secondary Concern in some classes of this model
and it is not a Primary Concern in none other
classes.

After applying the R-3 refactoring to the
“Singleton” concern, the partial AO class model
presented in Figure 3 was obtained. The changes
made were: i) the SingletonAspect aspect was
created; and ii) the singletonHW and
singletonPS attributes and the getInstanceHW
and getInstancePS methods were moved to the
SingletonAspect aspect. It is because these
elements are well-modularized in the Health-
WatcherFacade and PersistentMechanism
classes.

Concern-based�Refactorings�Supported�by�Class�Models�to�Reengineer�Object-Oriented�Software�into�Aspect-Oriented
Ones

51

The pmInit method of the Health-
WatcherFacade class continues being affected to
the “Singleton” concern. To eliminate this influence,
the R-Singleton refactoring has been used on the
model in Figure 3 and the resulting model is
presented in Figure 4.

The changes were:
 An interface called Singleton was created; The
SingletonAspect aspect became abstract and a
pointcut called instance was added to it. This
pointcut intercepts the calls to constructor of the
classes whose instances must be unique;
 Two new aspects that extend Singleton-Aspect

were created: SingletonAspect-
HealthWatcherFacade and Singleton-
AspectPersistenceMechanism;
 For each aspect created: i) attributes and methods

corresponding to each Singleton class were moved
to it; ii) advices responsible for returning an
instance of the Singleton class when the pointcut
instance is reached were created; and iii) declare
parents structures were created to associate each
class related to Singleton concern with
Singleton interface; and
 The modifiers of the constructors of the
HealthWatcherFacade and Persistence-
Mechanism classes were changed from private
to public. It was done so that the instance of a
Singleton class is obtained using its constructor
and not by getInstance method.

5 EVALUATION

The crosscutting concern modularization may be
performed with or without the assistance of
refactorings. In the second case, the process of
modularization is extremely dependent on the
expertise of the software engineer. He/She must
have knowledge about the crosscutting concerns to
be modularized and best practices and strategies for
the modularization of these concerns. Refactorings
minimize this dependence, making the final product
(modularized software) more standardized and
improving its quality.

The question we want to answer with this case
study is: how much can the refactorings affect the
efficacy of the modularization process and the
productivity of the maintenance group? In this
context, productivity is defined as the time that a
group takes to modularize the crosscutting concerns
of a software product. Besides, efficacy consists in
verifying whether all crosscutting concerns were

suitably modularized or not. Thus, the case study
was carried out and it is shown in the next
subsections.

5.1 Case Study Definition

The efficacy and productivity evaluation of the
refactorings was performed in two ways:
i) comparing the generated AO class models with

another version of them, obtained from a reverse
engineering using the AO code found in the
literature (in this study, we use the JSpider AO
code available in (JSpider, 2013)). To do this, a
set of seven Metrics for Modularization were
used to compare both versions of the application
AO class model (Table 2). All of them, except
MQ and AVG(MQ), accept the following values:
1.0 – Completely Compliant; 0.5 - Partially
Compliant; and 0.0 – Not Compliant. These
values are assigned to the metrics for
modularization by specialists after comparing the
models created by the participants of this
experiment to the models obtained from the
literature. The metrics MQ and AVG(MQ)
accepts values between [0.0; 5.0] and the higher
the value of them, the better is the
modularization of a concern; and

ii) comparing the time spent by each participant to
complete the modularization of a given OO class
model. For this, we used the metric Productivity
(Pr), given to the Formula (1). The higher the
value of Pr, the better is the productivity of a
participant.

5.2 Case Study Planning

a) Selection of Context and Formulation of
Hypothesis. The study was carried out with
graduate students at the Federal University of São
Carlos. The system used as object of study was
JSpider (2013), a highly configurable and
customizable Web Spider engine. The participants
had to modularize the Logging and Singleton
crosscutting concerns and generate an AO class
model from the OO model classes of the JSpider
application.

Four hypotheses were elaborated (Table 3), two
of which refer to the efficacy and two ones refer to
the productivity. Besides, the metrics MQ and Pr
were used for formulating the hypotheses.

b) Selection of Variables and Participants.
Independent variables are those manipulated and
controlled during the experiment. In this context,
they are the way how the participants performed the

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

52

modularization: with or without the use of the
refactorings.

Dependent variables are those under analysis,
whose variations must be observed. In this
experiment, they are the efficacy and productivity.
The participants were selected through a convenient
non-probabilistic sampling.

Table 2: Metrics for Modularization.

Metric Metric Description

CC_As
Correctly Created Aspects: specifies if all needed
aspects were correctly created.

CM_AM
Correctly Modularized Attributes and Methods:
specifies if all attributes and methods affected by a
concern were correctly modularized.

CC_PA
Correctly Created Pointcut and Advices specifies if all
needed pointcuts and advices were correctly created.

CC_GSR
Correctly Created Generalization and Specialization
Relationships: specifies if all needed relationships
were correctly created.

CS_PC
Correctly Specified Profile Concepts: specifies if all
ProAJ/UML concepts were correctly used.

MQ
Modularization Quality: CC_As + CM_AM + CC_PA
+ CC_GSR + CS_PC.

AVG(MQ) Average of the Metric MQ.

Pr = AVG(MQ) / T,
where AVG(MQ) is the average of the metric
Modularization Quality and T is the time (in
hours) spent by a participant to modularize

the crosscutting concerns.

(1)

Table 3: Hypotheses of the case study.

Hypotheses for Efficacy

H0Ef
There is no difference of using refactorings or not using them,

regarding the efficacy. H0Ef: MQWR = MQWOR

H1Ef
There is difference of using refactorings or not using them,

regarding the efficacy. H1Ef: MQWR ≠ MQWOR

Hypotheses for Productivity

H0Pr
There is no difference of using refactorings or not using them,

regarding the productivity. H0: Pr WR = Pr WOR

H1Pr
There is no difference of using refactorings or not using them,

regarding the productivity. H0: Pr WR ≠ Pr WOR

Legends:
 XWR, where X is a metric, means: the value of X obtained by a

specific participant using the refactorings proposed in this paper
(WR = With Refactorings).

 XWOR, where X is a metric, means: the value of X obtained by a
specific participant that did not use the refactorings proposed in this
paper (WOR = Without Refactorings).

c) Design of the Experiment. The distribution of
the participants in groups was done by using a
profile characterization questionnaire. The questions
were about their level of experience in OO and AO,
modularization and UML profile to modelling AO
software. All questions had the possible answers: 1 -
None; 2 - Basic; 3 - Medium; 4 - Advanced; 5 -
Expert. The obtained values are plotted in the graph
shown in Figure 5.

The groups were created as follows: Group A –
participants P1 to P5; Group B – participants P6 to

P10. The average of expertise of Group A is
approximately 1.86 and Group B, 1.80, representing
that the groups were balanced. To separate the
experts and novices we have defined the value 1.75
(horizontal line in Figure 5). This value was defined
according to our experience with the required
knowledge to perform the modularization of CCCs.
Above this value the participants were considered
experts (P1, P2, P6 and P9) and below novices (P3,
P4, P5, P7, P8 and P10). It is important to notice that
both groups have the same number of expert and
novice participants.

Figure 5: Participants Expertise.

The documents used in this experiment were: i) a
registry form to be filled out with information
related to the execution of the study; ii) a script of
execution with the steps to be followed to perform
the experiment; and iii) the description of the
proposed refactorings. The registry form contained
the participant name, the application to be
modularized, the starting time and the observations
and/or problems noticed by the participant. The
script of execution contained a list of tasks that the
participants should carry out and had the goal of
assisting them and minimizing the possibility of
failures during the execution. The description of the
proposed refactorings presents the refactoring
according the template used in Section 3.

Table 4 shows the experimental design. The
experiment was divided in three phases. In the first
phase (Training), we conducted a training aimed at
homogenizing the knowledge of the participants on
the modularization of crosscutting concerns using
hypothetical applications.

In the second phase (Pilot) all participants had to
discover how to modularize the persistence concern
that crosscuts pieces of the HealthWatcher
application manually and using the proposed
refactorings. The goal of the pilot was to minimize
the difficulties of following the steps described in

Concern-based�Refactorings�Supported�by�Class�Models�to�Reengineer�Object-Oriented�Software�into�Aspect-Oriented
Ones

53

the refactorings. Besides, the pilot also was intended
to avoid that problems related to the filling out of the
forms could interfere in the results of the
experiment.

Table 4: Design of the case study.

Phases
Software

Used
With Refactorings

Without
Refactorings

1st. Phase
(Training)

Toy
Applications

All participants All participants

2st. Phase
(Pilot)

Health
Watcher

All participants All participants

3nd. Phase
(Execution)

JSpider Group A Group B

In the third phase (Execution) the goal was to
modularize the Logging and Singleton concerns in
the JSpider application. Different types of concern
between Execution and Pilot phases were used to
avoid that the knowledge on the persistence concern
obtained in the previous phase (pilot) to influence
the results.
d) Collected Data. Table 5 and 6 show the data
obtained in third phase of the experiment
(Execution) by the Groups A and B, respectively
(AoE means Average of the Experts and AoN means
Average of the Novices).

The participants, assigned by "P#", and the titles
of the table columns are presented in first line. The
time used by the participants for performing the
modularization is presented in lines from 2 to 3. The
concern names are presented in lines 3 and 10 and
the values of the metrics described in Table 2 are
presented in lines from 5 to 10 (for the Singleton
concern) and from 12 to 17 (for the Logging
concern). The average of the metric MQ and the
value of the metric Pr are presented in lines 19 and
20. The columns that contain the data of participants
classified as experts were highlighted in gray color.
e) Data Analysis. Regarding the Efficacy and
Productivity, Tables 5 and 6 show that most of
participants that used the proposed refactorings got
better results than those ones that do not used them.

Regarding the Productivity, just one of the
participants that used the proposed refactorings was
less productive. Although there was an extra task to
be carried out (to follow the steps described in the
refactorings), the developer will need to modify the
models during the process of refactoring less times,
thus minimizing the final time to perform the
activity.

As it can be observed in Figure 6, the average of
metric MQ, when the participants had the aid of the
refactorings was higher than the one when they did
not have this aid. According to this chart, the value
of the metric MQ was 206% higher, in average, for

all participants, and 344% higher, in average, for
participants classified as experts and 150% higher,
in average, for participants classified as novices).

Figure 6: Average of the Metric MQ.

Table 5: Execution of the case study – Group A (with
refactorings).

Data P1 P2 P3 P4 P5 Average AoE AoN

Time (min) 35 47 60 60 60 52 41 60

Time (hours) 0,58 0,78 1,0 1,0 1,0 0,87 0,68 1,0

Singleton Pattern

CC_As 1,0 1,0 1,0 1,0 1,0

CM_AM 1,0 1,0 1,0 1,0 1,0

CC_PA 1,0 1,0 0,5 1,0 0,5

CC_GSR 1,0 1,0 1,0 1,0 1,0

CS_PC 1,0 1,0 1,0 1,0 1,0

MQ 5,0 5,0 4,5 5,0 4,5 4,8 5,0 4,7

Logging

CC_As 1,0 1,0 1,0 1,0 1,0

CM_AM 1,0 1,0 1,0 1,0 1,0

CC_PA 1,0 1,0 0,5 0,5 0,5

CC_GSR 1,0 1,0 1,0 1,0 1,0

CS_PC 1,0 1,0 1,0 1,0 1,0

MQ 5,0 5,0 4,5 4,5 4,5 4,7 5,0 4,5

Results

AVG(MQ) 5,0 5,0 4,5 4,8 4,5 4,8 5,0 4,6

Pr 8,57 6,38 4,5 4,8 4,5 5,75 7,48 4,6

Analogously, in Figure 7, the average of metric Pr
also was better when the participants used the
refactorings. This chart presents productivity 124%
higher, in average, for all participants, and 115%
higher, in average, for participants classified as
experts and 134% higher, in average, for participants
classified as novices).

It is also possible to notice in Figure 6 and 7 that
the refactorings helped more expert participants than
non-expert ones. It happened maybe because the
description of the proposed refactorings was not well
detailed enough to guide non-expert participants to
modularize the concerns correctly.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

54

Table 5: Execution of the case study – Group B (without
refactorings).

Data P6 P7 P8 P9 P10 Average AoE AoN

Time (min) 38 45 60 60 30 46 49 45

Time (hours) 0,63 0,75 1,0 1,0 0,5 0,78 0,69 0,83

Singleton Pattern

CC_As 1,0 1,0 0,0 0,0 1,0

CM_AM 1,0 1,0 0,0 0,0 1,0

CC_PA 0,0 0,0 0,0 0,0 0,0

CC_GSR 0,0 0,0 0,0 0,0 0,0

CS_PC 0,0 0,0 0,0 0,0 1,0

MQ 2,0 2,0 0,0 0,0 3,0 1,4 1,0 1,7

Logging

CC_As 1,0 1,0 0,5 0,0 1,0

CM_AM 1,0 1,0 0,0 0,0 0,5

CC_PA 0,5 1,0 0,0 0,0 0,0

CC_GSR 0,0 0,0 0,0 0,0 0,0

CS_PC 0,0 0,0 0,0 0,0 1,0

MQ 2,5 3,0 0,5 0,0 2,5 1,7 1,3 2,0

Results

AVG(MQ) 2,3 2,5 0,3 0,0 2,8 1,6 1,1 1,8

Pr 3,63 3,33 0,3 0,0 5,6 2,57 3,48 1,97

Figure 7: Average of the Metric Pr.

f) Hypothesis Testing. After outlier analysis, it was
noticed that none outlier was identified and the
hypotheses tests were performed. The verification of
the normality of the distribution sample data was
made using the non-parametric test called Shapiro-
Wilk (Montgomery, 2000).

The aim of the hypothesis test is to verify if the
null hypothesis (H0Ef and H0EPr) can be rejected, with
some significance degree, in favor of an alternative
hypotheses (H1Ef or H1Pr) based in the set of data
obtained.

The t-test test was applied to the set of sample
data in two stages, because of the existence of two
dependent variables, Efficacy and Productivity were
observed. In first stage, the sample relative to the
values of the metric Pr was compared. In second
one, the comparison was made using samples

referring to the values of MQ metric. For the
purpose of this study, the minor degree of
significance α was used in both stages to reject the
null hypothesis and the maximum degree of
significance equal to 5% was considered.

First stage. Based in two independent samples
(PrWR and PrWOR) with averages equals to 5.75 and
2.57, respectively in Tables 5 and 6, the null
hypothesis (H0Pr) could be rejected with 0.0151% of
significance. In others words, it is possible to assure
with 99.9% of accuracy that the average of the
values of the productivity obtained by the
participants that used the refactorings is different.

Second stage. Based in two independent samples
(MQWR and MQWOR) with averages equals to 4.8 and
1.6, respectively, the null hypothesis (H0Ef) could be
rejected with 0.0007% of significance. In others
words, it is possible to assurance with 99.9% of
accuracy that the average of the values of the
efficacy obtained using the refactorings is different
as compared to not using the refactorings.

With the rejection of H0, it can be stated that the
observed differences in the average of efficacy and
productivity of the participants who used the
refactorings and participants who have not use them,
have statistical significance. Thus, the change in
efficacy and productivity of the groups was due to
the strategies for software modularization adopted in
the experiment, i.e., with or without refactorings.

As presented in Figures 6 and 7, the average
value of the metric MQ of the participants who used
the refactorings was higher than that of the
participants who have not used (MQWR> MQWOR).
These data show that the use of refactorings for
modularization of crosscutting concerns is generally
more effective than when such refactoring are not
used.

Analogously, with respect to productivity, it was
expected that the systematic description of the steps
of refactorings becomes more agile the execution of
the participants’ tasks. Based on the data and
hypothesis test, there are evidences that the use of
refactorings can increase the productivity of a group.

The analysis of the data was accomplished using
a statistical plug-in to the Excel called Analyse-it
(2013).
g) Threats to the Validity of the Study.
Concluding Validity: the t-test was adopted because
our study was a project with one factor with two
treatments. This is the most suitable test for projects
with this configuration, which the aim is to compare
the obtained averages from two distinct treatments.
The t-test usually requires normally distributed data.
So, the Shapiro-Wilk test was applied and the result

Concern-based�Refactorings�Supported�by�Class�Models�to�Reengineer�Object-Oriented�Software�into�Aspect-Oriented
Ones

55

was positive for our study.
Internal Validity: a point that may have

influenced the results of the experiment is the use of
graduate students as participants. However, they
were not influenced by the conductors of this study
and we did not show any expectation in favor or
against the refactorings proposed in this paper.
Besides, the students were properly grouped
according to their experience levels in order to have
homogeneous groups. This was done to avoid that a
group could finish the tasks much earlier than other
group. The participants did not receive any grade for
the participation.

External Validity: an important bias is the choice
of the concerns to be modularized in the experiment.
Different types of concern were used to avoid that
the knowledge on a specific concern obtained in the
training phase to influence the results in other phases
of the experiment. Another bias in this case study is
that the proposed refactorings have been applied in
software of fairly small size that cannot reflect the
real scenario of a company that develops/maintains
software. It is intended to replicate such experiment
with different participants, concerns and
applications, in order to isolate the obtained results
from these possible influences.

6 RELATED WORKS

Many works have been proposed for refactoring of
OO software to AO ones and the refactorings are
only applied at source-code level, from OO to AO
(Silva et al., 2009); (Monteiro and Fernandes, 2006);
(Hannemann et al., 2005); (Marin et al., 2005);
(Iwamoto and Zhao, 2003). Moreover, it was noted a
lack of related works related to model-based
refactorings.

Borger et al. (2001) developed a plug-in for the
CASE tool ArgoUML that support UML model-
based refactorings. The refactoring of class, states
and activities is possible, allowing the user to apply
refactorings that are not simple to apply at source-
code level. Van Gorp et al. (2003) proposed a UML
profile to express pre and post-conditions of source-
code refactorings using Object Constraint Language
(OCL) constraints. The proposed profile allows that
a CASE tool: i) verify pre and post-conditions for
the composition of sequences of refactorings; and ii)
use the OCL consulting mechanism to detect bad
smells.

The differential of this work in relation to others
is the proposal to construct an AO model
considering OO class models annotated with

stereotypes representing crosscutting concerns.
From the conducted case study was performed an

evaluation of the obtained results with the support of
AO metrics. It was realized that the use of proposed
refactorings allows to obtain high quality AO
models because: i) it provided a step by step guide to
modularization of certain CCC; and ii) the proposed
refactorings were elaborated considering good
design AO practices. Therefore, the use of these
refactorings can lead to build high quality AO
models, because it prevents software engineers to
choose inappropriate strategies for modularization of
crosscutting concerns. The limitations of this study
is considered: i) lack of a more quantitative
evaluation of the computational support and the
proposed refactorings; ii) the need for new metrics
to improve the evaluation process of the
refactorings; iii) lack of studies about the security
semantics of legacy software after the application of
refactorings; and iv) a little amount of refactorings
for CCC.

7 FINAL CONSIDERATIONS
AND FUTURE WORKS

The idea of using annotated OO class models to
build AO models was adopted because they can
bring the following benefits: i) it helps to visualizing
possibilities for modularization without using AO;
ii) provides higher level of abstraction by helping
the software understanding; iii) the generated
models serves as documentation for the AO software
and legacy ones and are independent of
programming language.

As future works we intend: i) to determine if, by
means of a controlled experiment, the AO project
model generated with the use of refactorings has
better benefits than an AO project only obtained
with code refactorings; ii) to develop new specific
refactorings for other types of concerns such as
security, exception handling, among others; iii) to
create a module for detecting the impacts that can
cause a refactoring on a particular software before
being applied; and iv) to proposed strategies for
guarantee the behavior-preservation of OO and AO
models after using the refactorings;

ACKNOWLEDGEMENTS

The authors would like to thank CNPq for the
financial support (Proc. No. 133140/2009-1 and
560241/2010-0).

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

56

REFERENCES

Analyse-it. Statistical analysis software for researchers in
environmental & life sciences, engineering,
manufacturing and education. Available in:
http://www.analyse-it.com/. Accessed on: Jan/2013.

Boger, Marko and Sturm, Thorsten. “Tools-support for
Model-Driven Software Engineering”, In Proceedings
of Practical UML-Based Rigorous Development
Methods. (2001).

Costa, H. A. X. ; Parreira Júnior, P. A. ; Camargo, V. V. ;
Penteado, R. A. D. . “Recovering Class Models
Stereotyped With Crosscutting Concerns”. In: Session
Tool of XVI Working Conference on Reverse
Engineering (WCRE), Lille, França. (2009).

Evermann, J. “A MetaLevel Specification and Profile for
AspectJ in UML”. Victoria University Wellington,
Wellington, New Zealand. AOSD - Aspect Oriented
Software Development. (2007).

Figueiredo E., Sant'Anna C., Garcia A., and Lucena C.
Applying and Evaluating Concern-Sensitive Design
Heuristics. In Proceedings of the 23rd Brazilian
Symposium on Software Engineering Fortaleza, 2009.

Gamma, E., Helm, R., Johnsn, R., Vlisside, J. “Design
Patterns: Elements of Reusable Object-Oriented
Software”. Addison-Wesley, (1995).

Hannemann, J., and Kiczales, G. Design Pattern
Implementation in Java and AspectJ. In Proceedings of
the ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA 2002) SIGPLAN Notices, Vol. 37, N°11,
ACM 161–173 (2002).

Hannemann, J.; Murphy, G. C.; Kiczales, G. Role-Based
Refactoring Of Crosscutting Concerns. In Procedings
of the Aspect-Oriented Software Development, New
York, Usa. P.135–146. (2005).

Hannemann, J. “Aspect-Oriented Refactoring:
classification and challenges”. In Procedings of the
International Workshop On Linking Aspect
Technology And Evolution, Bonn, Germany. p. 1-5
(2006).

Iwamoto, M.; Zhao, J. Refactoring Aspect-Oriented
Programs. In Procedings of the International
Workshop On Aspect-Oriented Modeling With UML,
Boston, USA P. 1-7 (2003).

JSpider. The Open Source Web Robot. Available in: j-
spider.sourceforge.net/. Accessed at: Jan. 2013.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J., Irwin, J. “Aspect-Oriented
Programming”. 11th European Conference on Object-
Oriented Programming. v. 241 de LNCS, p. 220-242.
Springer-Verlag (1997).

Marin, M.; Moonen, L.; Van Deursen, A. An Approach To
Aspect Refactoring Based On Crosscutting Concern
Types. Sigsoft Software Engineering Notes, V.30, N.4,
P.1–5. (2005).

Monteiro, M. P.; Fernandes, J. M. L. Towards A
Catalogue Of Refactorings And Code Smells For
Aspectj. Transactions On Aspect Oriented Software
Development (Taosd) - Lecture Notes In Computer

Science, N.3880, P.214–258 (2006).
Montgomery, D. C., Design and Analysis of Experiments,

5 ed., Wiley, 2000.
Parreira Júnior, P. A. “Recovering Aspect-Oriented Class

Models from Object-Oriented Systems by Model-
based Refactorings”. Master Dissertation. UFSCar.
São Carlos. Brazil. 2011 (available only in
portuguese).

Parreira Júnior, P. A.; Penteado, R. A. D.; Camargo, V.
V.; Costa, H. A. X. “Mobre: Refactoring from
Annotated OO Class Models to AO Class Models”. In:
CBSoft Tools Session, 2011, São Paulo/SP. II
Brazilian Conference on Software: Theory and
Practice (CBSoft), 2011 (to be publish in portuguese).

Piveta, E. K. et al. “Avoiding Bad Smells In Aspect-
Oriented Software”. In: International Conference On
Software Engineering And Knowledge Engineering -
Seke, Boston, Usa, 2007. Proceedings... Boston: Seke
2007. P.81–87.

Silva, B. et al. Refactoring Of Crosscutting Concerns With
Metaphor-Based Heuristics. Electronic Notes In
Theoretical Computer Science (Entcs), Vol. 233, P.
105-125. (2009).

Soares, S., Laureano, E., and Borba, P. “Implementing
distribution and persistence aspects with AspectJ”. In
Procedings of the 17th ACM Conference OOPSLA’02,
174 –190. (2002).

Van Gorp, P. Stenten, H. Mens, T. and Demeyer, S.,
“Towards Automating Source Consistent UML
Refactorings,” Proc. Unified Modeling Language
Conf. (2003).

Concern-based�Refactorings�Supported�by�Class�Models�to�Reengineer�Object-Oriented�Software�into�Aspect-Oriented
Ones

57

