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Abstract: A non-smooth optimization approach is considered for designing constant output-feedback controllers for
linear time-invariant systems with lightly damped poles. The design requirements carbiperformance
requirements with regional pole constraints excluding high frequency lightly damped poles. In contrast to the
usual (full) pole-placement (FPP) problem, the problem dealt here is one of Selective Pole Placement (SPP).
The latter design problem is frequently encountered in the control of aircraft with non-negligible aeroelastic

modes which are too fast to be handled by the control surface actuators. As in the FPP case, the pole constraints

are embedded in the design criterion using a transformation on the system model which modifiesitren

of the closed-loop system via a barrier function that is related to the closed-loop poles damping. Dissimilar to
the closed-loop solution that is designed for the FPP, in the SPP case, numerical calculations of the gradient of
the cost function is needed. The proposed method is applied to a flight control example of a flexible aircraft.

1 INTRODUCTION into account the whole range of damping coefficients.
One may conclude in such cases that the controller

The static output-feedback control problem has at- should minimize a perf_ormance criteri.on SUbj(?C.t to
tracted the attention of many in the past (Bernstein pole—pla_lc_ement constraints (e.g._dgmpmg coefiicient)
et al., 1989)-(Yaesh and Shaked, 1997). The main of the rigid modes poles. The rigid pole modes for

: : o hich pole-placement requirements are applied can
advantage of static output-feedback is the simplicity whic . ;
of its implementation and the ability it provides for be differed from the flexible modes poles, by their nat-

designing controllers of prescribed structure such asural frequency. Namely, poles Wh'.Ch possessa natura_l
Pl and PID. As in other control related fields, Pl and frequency aboye some pre specified bound are classi-
PID controllers are widely applied in the aerospace fied las bdelo,\rllgtllng tt?] flteX|bee modes and artt)a ngt t%tl%e
industry. When aircraft or missiles possess flexible re-placed. Noting that performance _(g.g. anawi )
modes which are within or close to the desired use- "eéduirements as well as robust stability requirements

ful system bandwidth, one may either try to damp the (e.9. gain and phase margin) can be achieved using

dynamic modes or just try to provide the control sys- Hw—porm minimization, one may _apply one of the
tem means to avoid excitation of these modes. The available tools that enable the design of static output-

latter is the common case, and it is widely encoun- feedback controllers ((Burke et_ al., 2006),(Apkarian
tered in practice due to bandwidth and slew rate lim- gnd NOII’ ??r?sz) In su::h (IJIeS|gns, trt]i cIosed-I(;opd
itations of the control surface actuators (e.g. electri- a(rjnrtl;]ng of € dominan p?j €s cq?hno edguadran eed
cal or hydraulic servo systems) and due to possibly and, tnerefore, one may end up with an under dampe

large uncertainties in the parameters (i.e. natural fre- closed-loop.

guency and damping) which characterize the flexible In (Yaesh and Shaked, 2012) tHg-optimization
modes. The uncertainty in the natural frequency is the problem with pole-placement constraints has been
result of modelling errors, which in turn are caused solved by adopting the non-smooth optimization ap-
by data inaccuracy of the mass distribution model. proach of (Burke et al., 2006) to deal with pole con-
Since the damping may possess a nonlinear behavstraints. There, the pole-placement requirement has
ior (e.g. large damping for large input amplitudes been used to modify thid.,-norm cost function using
and small one for small amplitudes), one has to take a barrier function (i.e. large penalty when constraints
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are violated) and the gradient of this barrier function
has been evaluated in closed-form, allowing efficient

the integeri = 1,2, ... is also used as index. Distin-
guishing between these two uses will be by the con-

use of (Burke et al., 2006). In the present paper, thetext. We also denote = x — iy which is not to be

application of the pole-placement requirements is re-

confused by e.gA which is just a notation of a real-

stricted only to the poles which are classified as the valued matrix. In this paper we provide all spaces
rigid modes of the plant whereas the flexible modes ®¥, k > 1 with the usual inner product -,- > and
remain untouched as much as possible. The designwith the standard Euclidean norfix ||. We denote

for this selective requirement on the poles is the sub-

ject of the present paper.

Since the choserH.-optimization method for
static output-feedback design is the one of (Burke

by £, the space of square-integrable functions. For
a transfer-function matriG(s) = C(sl — A)"'B+D
where A is Hurwitz, we denote by|G||« itS He -
norm. Note that|G||. <y with w andz being, re-

et al., 2006) some short (and not complete) survey of SPectively, the inpu; and OUtszt signals @f cor-
other methods may be in place. In this context, one "esponds both tdz]|3 —Y|wl|z <0forallwe £

should mention that the static output-feedback syn-

andsume 0[G(iQ]) whereo denotes the maximum

thesis problem is known to be non-convex, and that Singular Vaﬂ'“fr;‘- The gradient with respect to a ma-
: at > . : ; ’
many algorithms have been presented that combinetfix X € ™™ of a scalar functionf (x) is defined

convex methods with iterative solutions. One can
mention, at this context, the algorithm in (Iwasaki,

f(X+aef §)—f(X)

by 21X :— {G;; } whereGij = lims_o 3
The di-

oxX ", . .
where g is the i'th unit column vector.

1999) which, under some assumptions, is found to rectional derivative off (X) along the directiory e

converge in stationary infinite horizon examples with-

out uncertainty. The static output-feedback synthe-

sis problem is characterized in (lwasaki, 1999) by in-
equalities which are bilinear in the variable matrices.

Therefore, standard convex programming proceduresthat [M
could not be used in the past to solve the problem,
even in the case where the system parameters were all X _
known, and various methods were proposed to deal

with this difficulty (see e.g. (Peres et al., 1999) and
(Leibfritz, 2001)). Another approach is the one of di-

rect search which has been explored in (Simon, 2011)
and (Esquivel et al., 2011). Recently, a non-smooth

optimization approach tél.-optimization has been
suggested in (Apkarian and Noll, 2006) and (Burke
et al., 2006). These methods utilize recently de-

veloped quadratic programming techniques for non-

smooth functions.

R™™ which is defined bylims o *YOFX)

Tr{YT%}. Also note that in case of (X) —
f(X+A) =Tr{SA} + o(4), it is readily obtained
T

o i = |im5%0mse?61755}+0(5) = Sji. Namely,

= S'. We finally note that in order to avoid
confusion, the output vector of the linear system is
denoted by the boldfacewhile a complex scalar is
denoted just by.

2f(X)

2 PROBLEM FORMULATION

We consider the following linear system
X = AX(t) +Biw(t) + Bou(t), X(0) = Xo

y=Cox(t) @

The method of the present paper is successfully ith

applied to the control problem of a flexible aircraft
where the rigid mode control is designed to avoid both
modification and excitation of the flexible modes.

Notation: Throughout the paper the superscript
‘T’ stands for matrix transpositiorR " denotes th&
dimensional Euclidean space a®d*™ is the set of
all n x mreal matrices. For a symmetize ®"™",

P > 0 means that it is positive definite. The no-
tation col{a, b} for vectorsa andb represents the
augmented vectoja” b']T. For squareA € R™",
A(A) denotes its eigenvalues wherea@\) denotes
its spectral abscissa(Apkarian and Noll, 2006). For
two matricesA andB of the appropriate dimensions

Z(t) = Cj_X(t) + Dj_zu(t) (2
wherex € R" is the system state vectow € RY
is the exogenous disturbance signale R' is the
control input,y € ™ is the measured output and
ze R" C R"is the state combination (objective func-
tion signal) to be regulated. The matride81,C;,C;
andD12 are constant matrices of appropriate dimen-
sions.

We seek a controller

u=Ky, 3)

whereK is a constant gain matrix, that achieves a
certain performance requirement. The desigrKof

we denote the matrix product in the usual sense by Should comply with the following requirements:

AB and their Kronecker product b @ B. We also
denote by TfA} the trace of a matriA. For a com-
plex scalarz= x+ iy wherei? = —1. Also note that
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attenuation factoy should be guaranteed, so that
Je < 0 where ) )
Jo 1= ||2(t)[15 — ¥?/ ()13 4)

e The closed-loop poles damping ratio con-
straint: To define this design constraint one first
defines the maximum natural frequenoy (the
subscript R stands for "rigid”) so that when a pole
se C satisfieds) < wg, itis classified to be a mode

{ sin(B)A cos(e)g}
—cogB)A sin(B)A

Writing (10) more explicitly, we obtain

(AX — XAT) cog)

(AX 4 XAT)sin(6)
[ (AX 4 XAT)sin(8)

—(AX—XAT)cog0) } <0
(12)
The latter inequality guarantees the damping require-

of the rigid body dynamics. Then pole-placement ment. We, therefore, resort to the recently suggested

requirement is defined to ensure that the eigen-

valuesAj = rj€% j = 1,2,..n with natural fre-
quency smaller thaag of A+ B,KC, should pos-
sess large enough damping ratios:

)

mir\"guérelsj:l,z,...,n{Zj} > Cmin

wherelj := c0g0;

3 PROBLEM SOLUTION

The requirements of the previous section are on the

approach of non-smooth optimization (NSO) ((Ap-
karian and Noll, 2006) and (Burke et al., 2006)) and
define, to this end, a cost function which combines the
Hw-performance criterion and the criterion of min-
imum closed-loop poles damping. The combined
cost function is just théd,-norm of the closed-loop,
whenever the eigenvalugs = rje'ei ,]=1,2,..nof
A satisfy either{j > {min, Or rj > wr. Whenever
(j < {min andrj < wr the cost function is increased
monotonically withd nin — j, using a barrier function.
We note that one could suggest defining a subset

closed-loop system which is obtained by substituting Of Cr € C where anyre’® € (i satisfies either > rg

(3) into (1). The closed-loop system is

X = (A4 BoKCo)x(t) + Biw(t) := Ax+ Bw, x(0) = Xo
z=(C1+ D12KC)x(t) :=Cx
(6)

To solve the above problem of combindd.-

performance and closed-loop damping requirement

we should first put the latter in a tractable form. De-
noting, to this end,cog0) = {min, the latter pole-
placement requirement is equivalent ((Chilali and
Gahinet, 1996) ) tdp(z) < 0 where

in(0)(z+2 —cog8)(z—
@ o o g S| Wz
(7)
andwhereW_ sin®)  cogo) .
= [ _cog®) sin(8) } (8)

We next invoke the result of (Arzelier et al., 1993)

which states, for our case, that (7) is satisfied if and

only if there exist$ > 0 so that
WRAP+PWRAT <0 (9)
Moreover, it was shown in (Chilali and Gahinet,

1996) that the structure d? is block diagonal with
equal blocks, namely that the existence Pt 0

which satisfies (9) is equivalent to the existence of jts npatural-frequency

X > 0 so that
(w®/I){>é g]+[>é 2](w®/I)T<o
(10)
where . .
™ Ao | WA WA |
AW‘W‘X’A—[WiA MEA}— ah

or cog0) > Cmin and then finding a matriw/, replac-

ing the one of (8) by a neW\r, so that (10) will be
satisfied by\k. If suchWk could be found, one could
just apply the results of (Yaesh and Shaked, 2012) to
design static output-feedback controllers for flexible
aircrafts which satisfy the requirements of Section 2
above.

UnfortunatelyCr is not a convex set and, there-
fore, such\k does not exist. We, therefore, resort to
the analysis of the eigenvalugAy) of Ay. To this
end, we invoke the following property of the spectrum
of WRA.

Lemmal. LetAj,j=1,2,...,nandpy, 2 be re-
spectively the eigenvalues & andW. Then, the
eigenvalues oV @ AareAjl, j = 1,2,...,n, k=1,2.

Since, howeveilV of (8) is an orthogonal matrix,
we havely | = |u2| = 1 leading to

A (Aw)| = A (A)

The eigenvalues oA which are with natural fre-
quencies smaller than or equal d® are, therefore,
mapped to eigenvalues Afy with the same property.

Consider the spectral abscissa (see e.g.
(Apkarian and Noll, 2006)) of A and define
restricted  version,
ar(A) = max-12.nRealAj;|rj] < wr) where
Aj =r;€%,j = 1,2,...ndenote the eigenvalues Af
The following result is then readily obtained from (9)
and Lemma 1: _

Lemma 2. Consider the system= Ax. The in-
equality (5) is satisfied if and only éfr(Aw) < O.

We, therefore, consider the following cost func-

by
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tion : where f1(A,B,C) and f(A) are respectively com-

— — 1= — puted using the script fileBinfty.mand specabsc.m

F(K)=[[C(K) (sHAK)) BK) [l +PBI)ar(AW(K)) i (Burke et al., 2006). A, does not depend on
(1 B andC, the gradients off with respect toB,C are

wherep >>1is a scalar, and still computed usindhinfty.min (Burke et al., 2006)

B(K) { 0if C(R(A_\W(K)) <0 } whereas the gradient dfwith respect tA is derived
K)= : N i
lifa K)) >0 using
R(Aw(K)) > of oty  of
We note that in the script files that accompany A~ 9A | A

(Burke et al., 2006)}/C(sl _Aylg”‘” have been de- where the second term is computed using (15) and
fined, and both the value df and its gradients with (16). P g (15)

respect tOK’—B_’ 5ar_1dD are.provid_ed. Also there, the Remark 1: It may be seen at first sight, that the
functiona(A) and its gradient with respect #® are above closed-loop damping requirements can be al-
ways satisfied. Obviously, such a conclusion is wrong

provided.
The first part in the cost function (13), namely the due to the following reasons:

H. component, can therefore be computed by just us- ) )
ing the above formulae for the.,-norm and its gradi- o If the plant is uncontrollable, its uncontrollable
ent which are programmed in the script functhin- poles with natural frequency smaller tha,
fty.min (Burke et al., 2006). The second partin the  Must posses the minimum required damping ra-
cost function (13), which corresponds to the damp- 0.

ing component vieor(Aw(K)), is computed using ¢ Even if the latter condition is satisfied, there is

Lemma 1 above. Note that it requires the compu- . no guarantee that static output-feedback suffices
tation of all the eigenvalues &k For the gradient to place the poles according to the requirements.
of the Second_Compone_nt, we need to derive a for- In such a case, one may app|y either a full-state
mula for dar(Aw(K))/0A. We recall from (Yaesh feedback or under an appropriate observability as-
and Shaked, 2012) that for the case whexetends sumption, a full-order controller. Note that in
to infinity (namely all the poles are classified as rigid some cases, where static output-feedback does
body polespir() is replaced byi() and one may de- not suffice, reduced-order controllers maybe ad-
note H := da(Aw)/0A and partition the gradient of equate.

o(Aw) with respect tddy conformally with the parti-

tion of Ay in (11) as Remark 2: The cost function of (13) together

g with (4) involve a tradeoff between the disturbance
da(Aw) [ Gi1 Gi2 } (14) attenuationy and the required damping coefficient

oAy Gy1 Go2 {min- Since for large enough, the suggested solu-
i tion scheme involves minimization gfsubject to the
and obtain that damping coefficient constraint, one may explore the
H = G11Wi1 + G12Wi2 + G21Wor + GoWoz tradeoff by varyingtmin

However for finitewr one needs an explicit (and un-

fortunatelly CPU chongupi_n_g) numerical calculation of 4 FLEXIBLE AIR VEHICLE -
- Namely, use the definition, CONTROLLER DESIGN ON
H={Hj}i=12.nj=12..n (19 NOTCH FILTERED PLANT
where
Hij = dar(W X)A) /A (16)  This example deals with a flexible air vehicle, where
_ _ the suggested controller includesté 6rder bending-
= limg_o[ar(W Q) (A+ee] ) — ar(W (R A)]/d modes-filter (BMF) consisting of a cascade tffi 4r-
der notch filter and ard order low-pass filter, to at-
¢ tenuate the effect of the bending modes, and a simple
PID (Proportional + Integral + Derivative) controller
which operates on the filtered plant outputs.

and whereg € R" is thei'th unit column vector.
SinceG of (14) can then be computed using the scrip
file specabsc.nm (Burke et al., 2006) we can com-

ute
P o _ L _ The PI controller gains are then tuned using the
f(A,B,C) = ||C(K)(sl — A)1B||o + pBat(Aw) method of the present paper, where the original plant
= f1(A/B,C) + f2(A) is replaced by the augmented plant which includes the

a7 BMF in cascade.
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The suggested method avoids tuning of a higher We define the exogenous disturbance toabe- .
order controller which would be of order 7 including We note that the first component in the transference
the BMF (order 6) and the tracking error integrator. T, relatingw andz, corresponds to a weighted (via

If such a Th order controller were designed for dif-

5/s) version of the sensitivity(s) = (1+KP(s)) ™.

ferent flight conditions, the resulting controller would The second term there corresponds to the complemen-
be expected to possess an intricate dependence on th&ry sensitivityT (s) = 1— §(s) whereas the third term
flight condition parameters (e.g. Mach number, dy- is just the control effort transference relatingand
namic pressure and so on). In the suggested controlw = .

method, the central frequency of the notch filter, sim-

ply depends on thestorder flexible mode natural fre-

The overall plant consists of the airfran®(s)
cascaded with the BMF, the 2nd order mo@g|(s)

quency (which in turn depends on the fuel mass in the of the rate sensor (natural frequency ofr&@/sec
vehicle, its take off configuration etc.). The tuned pa- and damping coefficient of.025) and a pure delay
rameters are then the PID gains only, leaving 3 pa- of 2.5msecrepresented by 2nd order Pade’ approxi-

rameters only for gain scheduling.
We consider a single flight condition (Mach no.
0.62) of the vehicle where the airfram@,(s) =

Ca(sl — Ay) 1B, + D, state-space representation is :

—0.2064 —7026 001184 0 0
0.00737 —-0.54 0 0 0
A= 0 1473 0 0 0
0 0 0 0 1

—3.93 0 0 —64337 —3.551

B, = 0l{8.0128 17.66,0,0, 25433}

0 10 0 0037165

C=|0 0 1 0037165 O

and
D, = col{0,0}

The states in this representation ase =
col{v,r,\,q1,q2} wherev is the lateral component of
the airspeeds is the yaw-rate|} is the azimuth and

01,02 are the states of the 1st order bending mode.

The input in this representation is the rudder ardgle
and the outputs are the versionsnd ) of respec-
tively r and@ which are affected by the flexible dy-
namics.

The servo modebg(s) which generates the rudder
angled, from the corresponding commandis de-

scribed by a second order system with unit DC gain,

a natural frequency of 118d/secand damping coef-
ficient of 0.7.

The BMF is given byGemr () = 777 Glioten(9):

_ S 24ws+ WP
- P+ 20ws+ 0¥

where s = 0.005, {1 = 0.2,w = 21 x 40.4rad/sec
andt = 51 sec.

An integral weight on the azimuth angle ergpr
W is defined, as well as weights on the outgpuand
and the rudder command The minimized output is:

GNotch(s)

5
z= col{g(LIJ — W), w,0.3u}

mationGp(s). Itis given by :

P(S) = GR(S)GD (S)Gs(S)GBMF(S)Ga(S)

The measured outputs vector is chosen as :

y=col{ i, ¥, 3w} }

A couple of the PID-like controller designs are
compared :

e H., control without pole-placement (Burke et al.,

2006). The results of this attempt are illustrated
in Figures 1 - 4. We see in Fig. 1 a satisfying
step response, but somewhat low stability mar-
gins when loop is cut at control (about 7 db and
32 degrees phase margin (see Fig. 2). The stabil-
ity margins when loop is cut at the feedback (Fig.
3) are higher (about 13 db and 64 degrees phase
margin). Note that the low overshoot in the step
response tgJ. is associated with the high stability
margins when the loop is cut at the feedback. This
is since the transference frafp towisL/(1+L)
whereL is just the loop transfer function obtained
when cutting the loop in the feedback. The control
gainsarek = [ —1.1823 —11802 —148 ].

H. / SPP control with an attempt to place only
the poles with natural frequency smaller than
wr = 150rad/secto have damping ratio of.@

or larger : With the method of the present paper,
all poles within 150ad/secpossess damping ra-
tios greater than or equal tod The closed-loop
poles complying with the design requirements are
shown in Fig. 8 (see also Fig. 4 to compare to
the case where no pole-placement requirements
are imposed). The closed-loop step response is
depicted in Fig. 5, whereas the corresponding
Nichols chart when loop is cut in the feedback is
depicted in Fig. 7. The somewhat larger over-
shoot in the step response is due to the lower mar-
gins at the feedback cut. However, when loop is
open at the control signal (see Fig. 6) one no-
tices that the gain and phase margin are much
improved (1@lb and 62 degrees) with respect to
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the corresponding margins in design using the numerical example demonstrates that the suggested
original method of (Burke et al., 2006) without ~design method is very effective. A more efficient ap-
pole placement requirements . Since larger un- proach to derive the cost function gradient is left for a
certainties are expected at the plant input (aero- future research.

dynamic and flexible mode dynamics uncertain-

ties), where no significant uncertainties are ex-

pected in the feedback, one may conclude that REFERENCES

design with theH,, / SPP method of the present
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APPENDIX
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Figure 2: H. Optimization without Pole Placement -

Nichols chart - loop open at control.
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Figure 3: H. Optimization without Pole Placement -
Nichols chart - loop open at feedback d) Closed-loop eigen-
values.
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Figure 4: H. Optimization without
Closed-loop eigenvalues.
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Figure 5:H. Optimization with Pole Placement - Step Re-
sponse.
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Figure 6: H. Optimization with Pole Placement - Nichols
chart - loop open at control.
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Figure 7: H, Optimization with Pole Placement - Nichols
chart - loop open at feedback d) Closed-loop eigenvalues.
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Figure 8: Ho Optimization with Pole Placement - Closed-
loop eigenvalues.



