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Abstract: A non-smooth optimization approach is considered for designing constant output-feedback controllers for
linear time-invariant systems with lightly damped poles. The design requirements combineH∞ performance
requirements with regional pole constraints excluding high frequency lightly damped poles. In contrast to the
usual (full) pole-placement (FPP) problem, the problem dealt here is one of Selective Pole Placement (SPP).
The latter design problem is frequently encountered in the control of aircraft with non-negligible aeroelastic
modes which are too fast to be handled by the control surface actuators. As in the FPP case, the pole constraints
are embedded in the design criterion using a transformation on the system model which modifies theH∞-norm
of the closed-loop system via a barrier function that is related to the closed-loop poles damping. Dissimilar to
the closed-loop solution that is designed for the FPP, in the SPP case, numerical calculations of the gradient of
the cost function is needed. The proposed method is applied to a flight control example of a flexible aircraft.

1 INTRODUCTION

The static output-feedback control problem has at-
tracted the attention of many in the past (Bernstein
et al., 1989)-(Yaesh and Shaked, 1997). The main
advantage of static output-feedback is the simplicity
of its implementation and the ability it provides for
designing controllers of prescribed structure such as
PI and PID. As in other control related fields, PI and
PID controllers are widely applied in the aerospace
industry. When aircraft or missiles possess flexible
modes which are within or close to the desired use-
ful system bandwidth, one may either try to damp the
dynamic modes or just try to provide the control sys-
tem means to avoid excitation of these modes. The
latter is the common case, and it is widely encoun-
tered in practice due to bandwidth and slew rate lim-
itations of the control surface actuators (e.g. electri-
cal or hydraulic servo systems) and due to possibly
large uncertainties in the parameters (i.e. natural fre-
quency and damping) which characterize the flexible
modes. The uncertainty in the natural frequency is the
result of modelling errors, which in turn are caused
by data inaccuracy of the mass distribution model.
Since the damping may possess a nonlinear behav-
ior (e.g. large damping for large input amplitudes
and small one for small amplitudes), one has to take

into account the whole range of damping coefficients.
One may conclude in such cases that the controller
should minimize a performance criterion subject to
pole-placement constraints (e.g. damping coefficient)
of the rigid modes poles. The rigid pole modes for
which pole-placement requirements are applied can
be differed from the flexible modes poles, by their nat-
ural frequency. Namely, poles which possess a natural
frequency above some pre specified bound are classi-
fied as belonging to flexible modes and are not to be
re-placed. Noting that performance (e.g. bandwidth)
requirements as well as robust stability requirements
(e.g. gain and phase margin) can be achieved using
H∞-norm minimization, one may apply one of the
available tools that enable the design of static output-
feedback controllers ((Burke et al., 2006),(Apkarian
and Noll, 2006)). In such designs, the closed-loop
damping of the dominant poles can not be guaranteed
and, therefore, one may end up with an under damped
closed-loop.

In (Yaesh and Shaked, 2012) theH∞-optimization
problem with pole-placement constraints has been
solved by adopting the non-smooth optimization ap-
proach of (Burke et al., 2006) to deal with pole con-
straints. There, the pole-placement requirement has
been used to modify theH∞-norm cost function using
a barrier function (i.e. large penalty when constraints
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are violated) and the gradient of this barrier function
has been evaluated in closed-form, allowing efficient
use of (Burke et al., 2006). In the present paper, the
application of the pole-placement requirements is re-
stricted only to the poles which are classified as the
rigid modes of the plant whereas the flexible modes
remain untouched as much as possible. The design
for this selective requirement on the poles is the sub-
ject of the present paper.

Since the chosenH∞-optimization method for
static output-feedback design is the one of (Burke
et al., 2006) some short (and not complete) survey of
other methods may be in place. In this context, one
should mention that the static output-feedback syn-
thesis problem is known to be non-convex, and that
many algorithms have been presented that combine
convex methods with iterative solutions. One can
mention, at this context, the algorithm in (Iwasaki,
1999) which, under some assumptions, is found to
converge in stationary infinite horizon examples with-
out uncertainty. The static output-feedback synthe-
sis problem is characterized in (Iwasaki, 1999) by in-
equalities which are bilinear in the variable matrices.
Therefore, standard convex programming procedures
could not be used in the past to solve the problem,
even in the case where the system parameters were all
known, and various methods were proposed to deal
with this difficulty (see e.g. (Peres et al., 1999) and
(Leibfritz, 2001)). Another approach is the one of di-
rect search which has been explored in (Simon, 2011)
and (Esquivel et al., 2011). Recently, a non-smooth
optimization approach toH∞-optimization has been
suggested in (Apkarian and Noll, 2006) and (Burke
et al., 2006). These methods utilize recently de-
veloped quadratic programming techniques for non-
smooth functions.

The method of the present paper is successfully
applied to the control problem of a flexible aircraft
where the rigid mode control is designed to avoid both
modification and excitation of the flexible modes.

Notation: Throughout the paper the superscript
‘T ’ stands for matrix transposition,R n denotes then
dimensional Euclidean space andR n×m is the set of
all n×m real matrices. For a symmetricP ∈ R n×n,
P > 0 means that it is positive definite. The no-
tation col{a, b} for vectorsa and b represents the
augmented vector[aT bT ]T . For squareA ∈ R n×n,
λ(A) denotes its eigenvalues whereasα(A) denotes
its spectral abscissa(Apkarian and Noll, 2006). For
two matricesA andB of the appropriate dimensions
we denote the matrix product in the usual sense by
AB and their Kronecker product byA

⊗
B. We also

denote by Tr{A} the trace of a matrixA. For a com-
plex scalarz= x+ iy wherei2 = −1. Also note that

the integeri = 1,2, ... is also used as index. Distin-
guishing between these two uses will be by the con-
text. We also denote ¯z= x− iy which is not to be
confused by e.g.̄A which is just a notation of a real-
valued matrix. In this paper we provide all spaces
R k, k ≥ 1 with the usual inner product< ·, · > and
with the standard Euclidean norm|| · ||. We denote
by L2 the space of square-integrable functions. For
a transfer-function matrixG(s) = C̄(sI− Ā)−1B̄+ D̄
where Ā is Hurwitz, we denote by||G||∞ its H∞ -
norm. Note that||G||∞ < γ with w andz being, re-
spectively, the input and output signals ofG, cor-
responds both to||z||22 − γ2||w||22 < 0 for all w ∈ L2
andsupΩ∈R σ̄[G(iΩ]) whereσ̄ denotes the maximum
singular value. The gradient with respect to a ma-
trix X ∈ R n×m of a scalar functionf (x) is defined

by ∂ f (X)
∂X := {Gi j} whereGi j = limδ→0

f (X+eieT
j δ)− f (X)

δ
where ei is the i’th unit column vector. The di-
rectional derivative off (X) along the directionY ∈

R n×m which is defined bylimδ→0
f (X+Yδ)− f (X)

δ =

Tr{YT ∂ f (X)
∂X }. Also note that in case off (X) −

f (X + ∆) = Tr{S∆}+ o(∆), it is readily obtained

that [ ∂ f (X)
∂X ]i j = limδ→0

Tr{Sei e
T
j δ}+o(δ)
δ = Sji . Namely,

∂ f (X)
∂X = ST . We finally note that in order to avoid

confusion, the output vector of the linear system is
denoted by the boldfacez while a complex scalar is
denoted just byz.

2 PROBLEM FORMULATION

We consider the following linear system

ẋ= Ax(t)+B1w(t)+B2u(t), x(0) = x0
y=C2x(t)

(1)

with
z(t) =C1x(t)+D12u(t) (2)

where x ∈ R n is the system state vector,w ∈ R q

is the exogenous disturbance signal,u ∈ R ℓ is the
control input, y ∈ R m is the measured output and
z ∈ R r ⊂R n is the state combination (objective func-
tion signal) to be regulated. The matricesA,B1,C1,C2
andD12 are constant matrices of appropriate dimen-
sions.

We seek a controller
u= Ky, (3)

whereK is a constant gain matrix, that achieves a
certain performance requirement. The design ofK
should comply with the following requirements:

• The H∞-performance requirement: Assuming
that the exogenous disturbance signal is energy
bounded (i.e.w ∈ L2), a prescribed disturbance

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

154



attenuation factorγ should be guaranteed, so that
J∞ < 0 where

J∞ := ||z(t)||22− γ2||w(t)||22 (4)

• The closed-loop poles damping ratio con-
straint: To define this design constraint one first
defines the maximum natural frequencyωR (the
subscript R stands for ”rigid”) so that when a pole
s∈C satisfies|s|<ωR, it is classified to be a mode
of the rigid body dynamics. Then pole-placement
requirement is defined to ensure that the eigen-
valuesλ j = r jeiθ j , j = 1,2, ..n with natural fre-
quency smaller thanωR of A+B2KC2 should pos-
sess large enough damping ratios:

minr j≤ωR,, j=1,2,...,n{ζ j} ≥ ζmin (5)
whereζ j := cos(θ j).

3 PROBLEM SOLUTION

The requirements of the previous section are on the
closed-loop system which is obtained by substituting
(3) into (1). The closed-loop system is

ẋ= (A+B2KC2)x(t)+B1w(t) := Āx+ B̄w, x(0) = x0
z = (C1+D12KC2)x(t) := C̄x

(6)
To solve the above problem of combinedH∞-
performance and closed-loop damping requirement
we should first put the latter in a tractable form. De-
noting, to this end,cos(θ) = ζmin, the latter pole-
placement requirement is equivalent ((Chilali and
Gahinet, 1996) ) tofD(z)< 0 where

fD(z)=

[

sin(θ)(z+z̄) −cos(θ)(z−z̄)
cos(θ)(z−z̄) sin(θ)(z+z̄)

]

=WTz+Wz̄

(7)
and where

W =

[

sin(θ) cos(θ)
−cos(θ) sin(θ)

]

(8)

We next invoke the result of (Arzelier et al., 1993)
which states, for our case, that (7) is satisfied if and
only if there existsP> 0 so that

(W
⊗

Ā)P+P(W
⊗

Ā)T < 0 (9)

Moreover, it was shown in (Chilali and Gahinet,
1996) that the structure ofP is block diagonal with
equal blocks, namely that the existence ofP > 0
which satisfies (9) is equivalent to the existence of
X > 0 so that

(W
⊗

Ā)

[

X 0
0 X

]

+

[

X 0
0 X

]

(W
⊗

Ā)T < 0

(10)
where

ĀW =W
⊗

Ā=

[

W11Ā W12Ā
W21Ā W22Ā

]

= (11)

[

sin(θ)Ā cos(θ)Ā
−cos(θ)Ā sin(θ)Ā

]

Writing (10) more explicitly, we obtain
[

(ĀX+XĀT)sin(θ) (ĀX−XĀT)cos(θ)
−(ĀX−XĀT)cos(θ) (ĀX+XĀT)sin(θ)

]

< 0

(12)
The latter inequality guarantees the damping require-
ment. We, therefore, resort to the recently suggested
approach of non-smooth optimization (NSO) ((Ap-
karian and Noll, 2006) and (Burke et al., 2006)) and
define, to this end, a cost function which combines the
H∞-performance criterion and the criterion of min-
imum closed-loop poles damping. The combined
cost function is just theH∞-norm of the closed-loop,
whenever the eigenvaluesλ j = r jeiθ j , j = 1,2, ..n of
Ā satisfy eitherζ j ≥ ζmin, or r j > ωR. Whenever
ζ j < ζmin andr j ≤ ωR the cost function is increased
monotonically withζmin−ζ j , using a barrier function.

We note that one could suggest defining a subset
of CR ∈ C where anyreiθ ∈ CR satisfies eitherr > rR
or cos(θ)> ζmin and then finding a matrixW, replac-
ing the one of (8) by a newWR, so that (10) will be
satisfied byWR. If suchWR could be found, one could
just apply the results of (Yaesh and Shaked, 2012) to
design static output-feedback controllers for flexible
aircrafts which satisfy the requirements of Section 2
above.

UnfortunatelyCR is not a convex set and, there-
fore, suchWR does not exist. We, therefore, resort to
the analysis of the eigenvaluesλ(ĀW) of ĀW. To this
end, we invoke the following property of the spectrum
of W

⊗
Ā.

Lemma 1. Let λ j , j = 1,2, ...,n andµ1,µ2 be re-
spectively the eigenvalues ofA and W. Then, the
eigenvalues ofW

⊗
Ā areλiµk, j = 1,2, ...,n, k= 1,2.

Since, however,W of (8) is an orthogonal matrix,
we have|µ1|= |µ2|= 1 leading to

|λ j(ĀW)|= |λ j(Ā)|

The eigenvalues of̄A which are with natural fre-
quencies smaller than or equal toωR are, therefore,
mapped to eigenvalues of̄AW with the same property.

Consider the spectral abscissa (see e.g.
(Apkarian and Noll, 2006)) of Ā and define
its natural-frequency restricted version, by
αR(Ā) := maxj=1,2,...nReal(λ j ; |r j | < ωR) where
λ j = r j eiθ j , j = 1,2, ...n denote the eigenvalues of̄A.
The following result is then readily obtained from (9)
and Lemma 1:

Lemma 2. Consider the systeṁx = Āx. The in-
equality (5) is satisfied if and only ifαR(ĀW)< 0.

We, therefore, consider the following cost func-
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tion :

f (K)=||C̄(K)(sI−Ā(K))−1B̄(K)||∞+ρβ(K)αR(ĀW(K))
(13)

whereρ >> 1 is a scalar, and

β(K) =

{

0 if αR(ĀW(K))< 0
1 if αR(ĀW(K))≥ 0

}

We note that in the script files that accompany
(Burke et al., 2006),||C̄(sI− Ā)−1B̄||∞ have been de-
fined, and both the value off and its gradients with
respect toĀ, B̄, C̄ andD̄ are provided. Also there, the
function α(Ā) and its gradient with respect tōA are
provided.

The first part in the cost function (13), namely the
H∞ component, can therefore be computed by just us-
ing the above formulae for theH∞-norm and its gradi-
ent which are programmed in the script functionhin-
fty.m in (Burke et al., 2006). The second part in the
cost function (13), which corresponds to the damp-
ing component viaαR(ĀW(K)), is computed using
Lemma 1 above. Note that it requires the compu-
tation of all the eigenvalues of̄A. For the gradient
of the second component, we need to derive a for-
mula for ∂αR(ĀW(K))/∂Ā. We recall from (Yaesh
and Shaked, 2012) that for the case whereωR tends
to infinity (namely all the poles are classified as rigid
body poles)αR() is replaced byα() and one may de-
noteH := ∂α(ĀW)/∂Ā and partition the gradient of
α(ĀW) with respect toĀW conformally with the parti-
tion of ĀW in (11) as

∂α(ĀW)

∂ĀW
=

[

G11 G12
G21 G22

]

(14)

and obtain that

H = G11W11+G12W12+G21W21+G22W22

However for finiteωR one needs an explicit (and un-
fortunately CPU consuming) numerical calculation of
H. Namely, use the definition,

H = {Hi j }, i = 1,2, ...n, j = 1,2, ...,n (15)

where
Hi j = ∂αR(W

⊗
Ā)/∂Āi j (16)

= limδ→0[αR(W
⊗

(Ā+eie
T
j δ))−αR(W

⊗
Ā)]/δ

and whereei ∈ R n is the i’th unit column vector.
SinceG of (14) can then be computed using the script
file specabsc.min (Burke et al., 2006) we can com-
pute

f (Ā, B̄,C̄) = ||C̄(K)(sI− Ā)−1B̄||∞ +ρβα(ĀW)
:= f1(Ā, B̄,C̄)+ f2(Ā)

(17)

where f1(Ā, B̄,C̄) and f2(Ā) are respectively com-
puted using the script fileshinfty.mand specabsc.m
in (Burke et al., 2006). Asf2 does not depend on
B̄ andC̄, the gradients off with respect toB̄,C̄ are
still computed usinghinfty.m in (Burke et al., 2006)
whereas the gradient off with respect toĀ is derived
using

∂ f

∂Ā
=

∂ f1
∂Ā

+
∂ f2
∂Ā

where the second term is computed using (15) and
(16).

Remark 1: It may be seen at first sight, that the
above closed-loop damping requirements can be al-
ways satisfied. Obviously, such a conclusion is wrong
due to the following reasons:

• If the plant is uncontrollable, its uncontrollable
poles with natural frequency smaller thanωR,
must posses the minimum required damping ra-
tio.

• Even if the latter condition is satisfied, there is
no guarantee that static output-feedback suffices
to place the poles according to the requirements.
In such a case, one may apply either a full-state
feedback or under an appropriate observability as-
sumption, a full-order controller. Note that in
some cases, where static output-feedback does
not suffice, reduced-order controllers maybe ad-
equate.

Remark 2: The cost function of (13) together
with (4) involve a tradeoff between the disturbance
attenuationγ and the required damping coefficient
ζmin. Since for large enoughρ, the suggested solu-
tion scheme involves minimization ofγ subject to the
damping coefficient constraint, one may explore the
tradeoff by varyingζmin.

4 FLEXIBLE AIR VEHICLE -
CONTROLLER DESIGN ON
NOTCH FILTERED PLANT

This example deals with a flexible air vehicle, where
the suggested controller includes a 6th order bending-
modes-filter (BMF) consisting of a cascade of 4th or-
der notch filter and a 2nd order low-pass filter, to at-
tenuate the effect of the bending modes, and a simple
PID (Proportional + Integral + Derivative) controller
which operates on the filtered plant outputs.

The PI controller gains are then tuned using the
method of the present paper, where the original plant
is replaced by the augmented plant which includes the
BMF in cascade.
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The suggested method avoids tuning of a higher
order controller which would be of order 7 including
the BMF (order 6) and the tracking error integrator.
If such a 7th order controller were designed for dif-
ferent flight conditions, the resulting controller would
be expected to possess an intricate dependence on the
flight condition parameters (e.g. Mach number, dy-
namic pressure and so on). In the suggested control
method, the central frequency of the notch filter, sim-
ply depends on the 1st order flexible mode natural fre-
quency (which in turn depends on the fuel mass in the
vehicle, its take off configuration etc.). The tuned pa-
rameters are then the PID gains only, leaving 3 pa-
rameters only for gain scheduling.

We consider a single flight condition (Mach no.
0.62) of the vehicle where the airframeGa(s) =
Ca(sI−Aa)

−1Ba+Da state-space representation is :

Aa =













−0.2064 −702.6 0.01184 0 0
0.00737 −0.54 0 0 0

0 1.473 0 0 0
0 0 0 0 1

−3.93 0 0 −64337 −3.551













Ba = col{8.0128,17.66,0,0,2543.3}

Ca =

[

0 1 0 0 0.037165
0 0 1 0.037165 0

]

and
Da = col{0,0}

The states in this representation arex =
col{v, r,ψ,q1,q2} wherev is the lateral component of
the airspeed,r is the yaw-rate,ψ is the azimuth and
q1,q2 are the states of the 1st order bending mode.
The input in this representation is the rudder angleδr
and the outputs are the versions ¯r and ψ̄ of respec-
tively r andψ which are affected by the flexible dy-
namics.

The servo modelGS(s)which generates the rudder
angleδr from the corresponding commandu is de-
scribed by a second order system with unit DC gain,
a natural frequency of 113rad/secand damping coef-
ficient of 0.7.

The BMF is given byGBMF(s)= 1
(1+sτ)2 G2

Notch(s):

GNotch(s) =
s2+2ζ1ωs+ω2

s2+2ζ2ωs+ω2

whereζ1 = 0.005, ζ1 = 0.2,ω = 2π× 40.4rad/sec
andτ = 1

2π×60sec..
An integral weight on the azimuth angle errorψ−

ψc is defined, as well as weights on the outputψ and
and the rudder commandu. The minimized output is:

z= col{
5
s
(ψ−ψc),ψ,0.3u}

We define the exogenous disturbance to bew := ψc.
We note that the first component in the transference
Tzw relatingw andz, corresponds to a weighted (via
5/s) version of the sensitivityS(s) = (1+KP(s))−1.
The second term there corresponds to the complemen-
tary sensitivityT(s) = 1−S(s) whereas the third term
is just the control effort transference relatingu and
w= ψc.

The overall plant consists of the airframeGa(s)
cascaded with the BMF, the 2nd order modelGR(s)
of the rate sensor (natural frequency of 90rad/sec
and damping coefficient of 0.125) and a pure delay
of 2.5msecrepresented by 2nd order Pade’ approxi-
mationGD(s). It is given by :

P(s) = GR(s)GD(s)GS(s)GBMF(s)Ga(s)

The measured outputs vector is chosen as :

y= col
{

r̄, ψ̄, 5
s(ψ̄−ψc)}

}

A couple of the PID-like controller designs are
compared :

• H∞ control without pole-placement (Burke et al.,
2006). The results of this attempt are illustrated
in Figures 1 - 4. We see in Fig. 1 a satisfying
step response, but somewhat low stability mar-
gins when loop is cut at control (about 7 db and
32 degrees phase margin (see Fig. 2). The stabil-
ity margins when loop is cut at the feedback (Fig.
3) are higher (about 13 db and 64 degrees phase
margin). Note that the low overshoot in the step
response toψc is associated with the high stability
margins when the loop is cut at the feedback. This
is since the transference fromψc to ψ is L/(1+L)
whereL is just the loop transfer function obtained
when cutting the loop in the feedback. The control
gains areK =

[

−1.1823 −11.802 −14.8
]

.

• H∞ / SPP control with an attempt to place only
the poles with natural frequency smaller than
ωR = 150rad/sec to have damping ratio of 0.4
or larger : With the method of the present paper,
all poles within 150rad/secpossess damping ra-
tios greater than or equal to 0.4. The closed-loop
poles complying with the design requirements are
shown in Fig. 8 (see also Fig. 4 to compare to
the case where no pole-placement requirements
are imposed). The closed-loop step response is
depicted in Fig. 5, whereas the corresponding
Nichols chart when loop is cut in the feedback is
depicted in Fig. 7. The somewhat larger over-
shoot in the step response is due to the lower mar-
gins at the feedback cut. However, when loop is
open at the control signal (see Fig. 6) one no-
tices that the gain and phase margin are much
improved (16db and 62 degrees) with respect to
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the corresponding margins in design using the
original method of (Burke et al., 2006) without
pole placement requirements . Since larger un-
certainties are expected at the plant input (aero-
dynamic and flexible mode dynamics uncertain-
ties), where no significant uncertainties are ex-
pected in the feedback, one may conclude that
design with theH∞ / SPP method of the present
paper, has improved robust stability with respect
the design with (Burke et al., 2006) with no mod-
ifications. The improved stability margins are
achieved at the cost of some degradation in the
step response to command. One should, how-
ever, keep in mind that the command response
can be readily improved with a shaping filter (i.e.
2 degrees of freedom compensator) without any
cost regarding stability. The control gains are
K =

[

−0.47704 −2.0889 −1.4118
]

.
Remark 3: As noted above, the notch filterGNotch
attenuates the 1st order flexible mode (which is
included in the plant modelGa(s)) whereas the
second order low-pass filter 1

(1+sτ)2 in GBMF(s),

attenuates all other flexible modes which are of
higher order and frequency. This low-pass filter
and the SPP, which is aimed at avoiding damp-
ing high frequency modes, both reduce the risk
to spill-over which may result in right-half-plane
poles of higher order modes. Nevertheless, to rule
out spill-over one needs to perform higher order
modes identification and flight tests.

5 CONCLUSIONS

A non-smooth optimization approach for designing
static output-feedback controllers for a linear time-
invariant systems has been considered. The design
is aimed at achieving, for the closed-loop system,
a minimization of anH∞-norm bound together with
satisfaction of frequency-selective damping ratio re-
quirements. As in the case of non-selective pole-
placement, the design method applies a simple aug-
mentation of theH∞-norm to include a large penalty
whenever the regional pole-placement requirements
are violated. The augmented function is expressed in
terms of a modified version of the spectral abscissa
of the closed-loop transformed matrix. The stabil-
ity of this transformed matrix, is equivalent to the re-
quirements of the frequency-selective regional pole-
placement. The gradient of the resulting augmented
function is numerically calculated by defining the ap-
propriate directional derivatives. The new method has
been implemented within thehifoo software package
(Burke et al., 2006) and has been applied to a flexible
aircraft control example where the plant is first aug-
mented with bending mode rejection filters, and then
a static output-feedback controller is designed. This

numerical example demonstrates that the suggested
design method is very effective. A more efficient ap-
proach to derive the cost function gradient is left for a
future research.
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APPENDIX
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Figure 1: H∞ Optimization without Pole Placement - Step
Response.
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Figure 2: H∞ Optimization without Pole Placement -
Nichols chart - loop open at control.

−900 −800 −700 −600 −500 −400 −300 −200 −100 0
−200

−150

−100

−50

0

50

100

 6 dB 3 dB
 1 dB
 0.5 dB 0.25 dB

 0 dB

 −1 dB
 −3 dB
 −6 dB

 −12 dB
 −20 dB

 −40 dB

 −60 dB

 −80 dB

 −100 dB

 −120 dB

 −140 dB

 −160 dB

 −180 dB

 −200 dB

Phase [deg]
G

a
in

 d
B

Gm=13.322 dB, (w= 22.3802)   Pm=63.8673 deg. (w=6.2246)

Nichols open at feedback

Figure 3: H∞ Optimization without Pole Placement -
Nichols chart - loop open at feedback d) Closed-loop eigen-
values.
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Figure 4: H∞ Optimization without Pole Placement -
Closed-loop eigenvalues.
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Figure 5:H∞ Optimization with Pole Placement - Step Re-
sponse.
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Figure 6: H∞ Optimization with Pole Placement - Nichols
chart - loop open at control.
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Figure 7: H∞ Optimization with Pole Placement - Nichols
chart - loop open at feedback d) Closed-loop eigenvalues.
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Figure 8: H∞ Optimization with Pole Placement - Closed-
loop eigenvalues.
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