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Abstract: This paper presents the isotropic analysis of an optical mouse array for the velocity estimation of a mobile 
robot. It is assumed that there can be positional restriction on the installation of optical mice at the bottom of 
a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is obtained, and 
the resulting Jacobian matrix is analyzed symbolically. Second, the isotropic, anisotropic, and singular 
optical mouse placements are identified, along with the corresponding characteristic lengths. Third, the least 
squares mobile robot velocity estimation from the noisy optical mouse velocity measurements is discussed. 
Finally, simulation results for the isotropic placement of three optical mice are given. 

1 INTRODUCTION 

For the velocity estimation of a mobile robot, several 
attempts have been made to use optical mice that 
were originally invented as an advanced computer 
pointing device. In fact, an optical mouse is an 
inexpensive but high performance motion detection 
sensor with a sophisticated image processing engine 
inside. Optical mice installed at the bottom of a 
mobile robot, as shown in Fig. 1, can detect the 
motions of a mobile robot traveling over a plane 
surface. The mobile robot velocity estimation using 
optical mice is free from the problems of typical 
sensors: wheel slip in encoders, the line of sight in 
ultrasonic sensors, and heavy computation in 
cameras. 

A pair of optical mice was proposed as a simple 
but viable means for the mobile robot velocity 
estimation in the presence of wheel slip (Lee and 
Song, 2004; Bonarini et al., 2004). Using redundant 
velocity measurements of two optical mice, a simple 
procedure for error detection and reduction in the 
mobile robot velocity estimation was developed 
(Bonarini et al., 2005). The redundant number of 
optical mice was proposed to reduce the effect of the 
noisy velocity measurements of optical mice and to 
handle their partial malfunction (Kim and Lee, 
2008). Using the geometrical relationship among 
optical mice, the calibration for systematic errors 

and the selection of reliable velocity measurements 
were presented (Hu et al., 2009). 

 

Figure 1: A prototype of three optical mouse array for the 
mobile robot velocity estimation (Kim and Lee, 2008).  

For a mobile robot with a circular base, a regular 
polygonal array of optical mice can be a natural and 
desirable choice of the optical mouse placement. For 
instance, a pair of optical mice are placed to be 
symmetric about the center of a mobile robot. And, 
ܰሺ 3ሻ optical mice are placed in a regular 	ܰ-gonal 
array with its geometrical center coincident with the 
center of a mobile robot (Kim and Lee, 2008). 
However, there can be some restriction on the 
installation of optical mice, owing to a non-circular 
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base of a mobile robot or other structures pre-
installed on its base. With positional restriction on 
installation, a non-regular polygonal array of optical 
mice can be a better choice, compared with its 
regular polygonal counterpart (Cimino and Pagilla, 
2011).  

The performance of an optical mouse array for 
the mobile robot velocity estimation can be 
evaluated based on its Jacobian matrix. The Jacobian 
matrix maps the velocity of a mobile robot to the 
velocities of optical mice, which is a function of the 
installation positions of optical mice. Through the 
Jacobian matrix, the unit sphere in the optical mouse 
velocity space can be mapped into an ellipsoid in the 
mobile robot velocity space. For the optimal 
placement of optical mice, the volume of the 
ellipsoid can be one measure, and also its closeness 
to a sphere, so-called the isotropy, can be another 
measure. The concept of isotropy has been adopted 
for the optimal design of serial and parallel 
manipulators (Ranjbaran et al., 1995; Angeles, 1997; 
Chablat and Angeles, 2002; Zanganeh and Angeles, 
1997; Fattah and Ghasemi, 2002), as well as, 
omnidirectional mobile robots (Saha et al., 1995; 
Kim and Moon, 2006). 

This paper presents the isotropy analysis of an 
optical mouse array for the mobile robot velocity 
estimation. It is assumed that there can be positional 
restriction on the installation of optical mice at the 
bottom of a mobile robot. This paper is organized as 
follows. Section 2 obtains the velocity kinematics of 
a mobile robot equipped with optical mice, and 
Section 3 analyzes the resulting Jacobian matrix 
symbolically. Sections 4, 5, and 6 identify the 
isotropic, anisotropic, and singular optical mouse 
placements, along with the corresponding 
characteristic lengths. Section 7 discusses the least 
squares mobile robot velocity estimation from the 
noisy optical mouse velocity measurements. Section 
8 gives simulation results for the isotropic placement 
of three optical mice. Finally, the conclusion is made 
in Section 9. 

2 VELOCITY KINEMATICS 

The velocity of a mobile robot traveling on a plane 
can be estimated using the velocity measurements of 
ܰሺ 2ሻ  optical mice installed at the bottom of a 
mobile robot. Fig. 2 shows three coordinate frames 
that are used for the description of a mobile robot 
and the ݅௧  optical mouse. Let ܱௐ , ܺௐ , and ௐܻ 
denote the origin, the ݔ  and ݕ  axes of the world 
coordinate   frame,   respectively;  let ܱோ, ܺோ, and ோܻ   

 

Figure 2: Three coordinate frames for a mobile robot and 
the ݅௧ optical mouse. 

denote the origin, the ݔ  and ݕ  axes of the mobile 
robot coordinate frame, respectively; and, let ܱ, ܺ, 
and ܻ , ݅ ൌ 1,⋯ ,ܰ , denote the origin, the ݔ  and ݕ 
axes of the ݅௧  optical mouse coordinate frame, 
respectively. For simple description, the following 
assumptions are made. 1) Two origins, ܱௐ and ܱோ, 
are coincident with the center, denoted by ܱ, of a 
mobile robot. 2) The origin, ܱ , 	݅ ൌ 1,⋯ ,ܰ  is 
coincident with the installation position, ܲ , of the 
݅௧ optical mouse. 3) The world coordinate frame is 
aligned with the mobile robot coordinate frame, with 
which the ݅௧ optical mouse coordinate frame is also 
aligned. The position vector, p ൌ ሾݔ	ݕሿ௧ , 	݅ ൌ
1,⋯ ,ܰ, of the ݅௧  optical mouse can be expressed 
by 

p ൌ ቂ
ݔ
ݕ
ቃ ൌ ቂ

ߩ ൈ cos߮
ߩ ൈ sin߮

ቃ,  ݅ ൌ 1,⋯ ,ܰ (1)

where ߩ  and ߮  are the polar coordinates of the 
installation position ܲ of the ݅௧ optical mouse.  

Let ݒ௫  and ݒ௬  be two linear velocity 
components of a mobile robot long the ݔ axis and 
the ݕ  axis, respectively, and ߱  be its angular 
velocity component about the center ܱ of a mobile 
robot. And, let that ݒ௫  and ݒ௬ ,	݅ ൌ 1,⋯ ,ܰ,	be the 
lateral and longitudinal velocity measurements of 
the ݅௧  optical mouse. The velocity relationship 
between a mobile robot and the ݅௧  optical mouse 
can be presented by 

௫ݒ െ ߱ ൈ ݕ ൌ ݅ ,௫ݒ ൌ 1,⋯ ,ܰ (2) 
௬ݒ  ߱ ൈ ݔ ൌ ݅ ,௬ݒ ൌ 1,⋯ ,ܰ	 (3) 

From (2) and (3), the velocity kinematics of a 
mobile robot with an array of ܰ optical mice can be 
obtained by 

Aܞ ൌ 	௦ܞ (4) 

In the above, v ൌ ߱൧	௬ݒ	௫ݒൣ
௧
∈ ଷൈଵ܀  represents 

the velocity vector of a mobile robot, ܞ௦ ൌ
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ሾܞଵ
௧	ܞଶ

௧ ேܞ	⋯	
௧ ሿ௧ ∈ ଶேൈଵ܀  represents the velocity 

vector of ܰ  optical mice, with ܞ ൌ ௬൧ݒ	௫ݒൣ
௧
, 	݅ ൌ

1,⋯ ,ܰ  being the velocity measurement of the ݅௧ 
optical mouse; and, ۯ represents the Jacobian matrix 
mapping ܞ to ܞௌ, given by 

ۯ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
1
0
1
0
⋮
1
0

0
1
0
1
⋮
0
1

െݕଵ
ଵݔ
െݕଶ
ଶݔ
⋮

െݕே
ேݔ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

∈ Rଶேൈଷ	 (5) 

Note that the expression of ۯ is very simple as a 
function of the positions of ܰ  optical mice, p ൌ
ሾݔ	ݕሿ௧, ݅ ൌ 1,⋯ ,ܰ. 

3 SYMBOLIC ANALYSIS 

In the velocity kinematics of (4), the velocity vector 
of a mobile robot, 	ܞ is composed of two linear and 
one angular components, while the velocity vector 
of ܰ optical mice, ܞ௦, is composed of a total of 2ܰ 
linear components. To eliminate the physical 
inconsistency among velocity components, the 
characteristic length, denoted by ܮ , can be 
introduced (Angeles, 1997): 

ොܞۯ ൌ 	௦ܞ (6) 

where ܞො ൌ ܮሺ	௬ݒ	௫ݒൣ ൈ ߱ሻ൧
௧
∈  ൈ and܀

ۯ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
1ۍ 0 െ

1
ܮ
ൈ ଵݕ

0 1 				
1
ܮ
ൈ ଵݔ

1 0 െ
1
ܮ
ൈ ଶݕ

0 1 				
1
ܮ
ൈ ଶݔ

⋮ 	⋮ 								⋮						

1 0 െ
1
ܮ
ൈ ேݕ

0 1 				
1
ܮ
ൈ ےேݔ

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

∈ Rଶேൈଷ	 (7) 

Note that all elements of ۯ  are physically 
dimensionless. 

From (7), ۯۯ࢚ can be written as 

ۯ௧ۯ ൌ ܰ ൈ

ۏ
ێ
ێ
ێ
ێ
ۍ 1 0 െ

௬ܥ
ܮ

0 1
௫ܥ
ܮ

െ
௬ܥ
ܮ

௫ܥ
ܮ

ܴଶ

ଶܮ ے
ۑ
ۑ
ۑ
ۑ
ې

∈ Rଷൈଷ	 (8) 

where 

௫ܥ ൌ
1
ܰ
ݔ

ே

ୀଵ

	 (9) 

௬ܥ ൌ
1
ܰ
ݕ

ே

ୀଵ

	 (10) 

ܴ ൌ ඩ
1
ܰ
ሺݔ

ଶ  ݕ
ଶሻ

ே

ୀଵ

ൌ ඩ
1
ܰ
	ߩ

ଶ

ே

ୀଵ

	 (11) 

In the above, ܥ௫ and ܥ௬, respectively, represent the 
averages of the ݔ and ݕ coordinates of the position 
vectors, p ൌ ሾݔ	ݕሿ௧ , 	݅ ൌ 1,⋯ ,ܰ , of ܰ  optical 
mice, and ܴ represents the root mean square of the 
distances of ܰ optical mice from the center ܱ of a 
mobile robot.  

Using (8), the characteristic polynomial of ۯ௧ۯ 
is given by 

ሺߣ െ ܰሻ ቊߣଶ െ ܰ ቆ1 
ܴଶ

ଶܮ
ቇ  ߣ

ܰଶ ቆ
ܴଶ

ଶܮ
െ
௫ଶܥ  ௬ଶܥ

ଶܮ
ቇቋ ൌ 0	

(12) 

From (12), three eigenvalues of ۯ௧ۯ, denoted by λଵ, 
λଶ, and λଷ, are obtained by 

λଵ ൌ
ܰ
2
ቊቆ1 

ܴଶ

ଶܮ
ቇ 

ඨቆ1 െ
ܴଶ

ଶܮ
ቇ
ଶ


4ሺܥ௫ଶ  ௬ଶሻܥ

ଶܮ
ቑ 

(13) 

λଶ ൌ ܰ	 (14) 

λଷ ൌ
ܰ
2
ቊቆ1 

ܴଶ

ଶܮ
ቇ 

െඨቆ1 െ
ܴଶ

ଶܮ
ቇ
ଶ


4ሺܥ௫ଶ  ௬ଶሻܥ

ଶܮ
ቑ	

(15) 

It can be shown that there hold the following 
inequality relationships among three eigenvalues, λଵ, 
λଶ, and λଷ: 

ଷߣ  ଶሺൌߣ ܰሻ  	ଵߣ (16) 

regardless of the values of C௫, C௬, and ܴଶ, as well as 
Note that λଵ .ܮ  and λଷ  are the largest and smallest 
eigenvalues of ۯ௧ۯ , while λଶ  is its middle 
eigenvalue which remains constant as ܰ. 
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4 ISOTROPIC PLACEMENT  

For the 2ܰ ൈ 3 Jacobian matrix ۯ  with ܰ  2, the 
condition number can be defined by 

ߢ ൌ
ଵߪ
ଷߪ
ൌ ඨ

ଵߣ
ଷߣ
	 (17) 

where ߪଵ  and ߪଷ  represent, respectively, the largest 
and smallest singular values of ۯ , and λଵ  and λଷ 
represent, respectively, the largest and smallest 
eigenvalues of ۯ௧ۯ. Note that the condition number 
ߢ  can have values from unity to infinity. The 
Jacobian matrix ۯ is isotropic when ߢ ൌ 1, and ۯ is 
singular when ߢ ൌ ∞. 

The placement of ܰ  optical mice is said to be 
isotropic, if the isotropy of the 2ܰ ൈ 3  Jacobian 
matrix ۯ can be achieved: 

ۯ௧ۯ ൌ ܰ ൈ ۷ଷ	 (18) 

where ۷ଷ represents that 3 ൈ 3 identity matrix. Note 
that ۯ௧ۯ  has three identical eigenvalues of 
magnitude ܰ, that is,  λଵ ൌ λଶ ൌ λଷ ൌ ܰ, so that the 
condition number becomes unity, ߢ ൌ 1. From (8) 
and (18), the isotropy conditions for ۯ are given by 

௫ܥ ൌ
1
ܰ
ݔ

ே

ୀଵ

ൌ 0	 (19) 

௬ܥ ൌ
1
ܰ
ݕ

ே

ୀଵ

ൌ 0	 (20) 

ܴଶ

ଶܮ
ൌ
1
ଶܮ
ൈ
1
ܰ
	ሺݔ

ଶ  ݕ
ଶሻ

ே

ୀଵ

ൌ 1	 (21) 

In the above, (19) and (20) indicate that the 
geometrical center of ܰ optical mice coincides with 
the center ܱ of a mobile robot. And, (21) indicates 
that the squared value of the characteristic length 
should be equal to the average of the squared 
distances of ܰ optical mice from the center ܱ. 

Using (1), (19), and (20) can be written as: 

	ܘ

ே

ୀଵ

ൌ 0	 (22) 

Let ܵே be the isotropic set of the position vectors of 
ܰ optical mice, satisfying (22): 

ܵே ൌ ൝ܘ, ݅ ൌ 1,⋯ ,ܰ	 อܘ

ே

ୀଵ

ൌ 0ൡ	 (23) 

For given ܰሺ 2ሻoptical mice, Fig. 3 shows the 
isotropic sets of ܰ position vectors, ܘ, ݅ ൌ 1,⋯ ,ܰ. 
In the case of ܰ ൌ 2  shown in Fig. 3(a), the 
isotropic   set 		ܵଶ   can   be   parameterized   by   two  

(a) (b) 

(c) (d) 

Figure 3: The isotropic set of the position vectors of ܰ 
optical mice: (a) ܰ ൌ 2, (b) ܰ ൌ 3 , (c) ܰ ൌ 4 , and (d) 
ܰ  4. 

variables, ሺݕଵ, ܰ ሻ; in the case ofߠ ൌ 3 shown in Fig. 
3(b), the isotropic set ܵଷ  can be parameterized by 
four variables, ሺݕଵ, ,ଶݔ ,ଶݕ ሻߠ ; and, in the case of 
ܰሺ 4ሻ shown in Figs. 3(c) and 3(d), the isotropic 
set ܵே  can be parameterized by 2ሺܰ െ 1ሻ variables, 
൫ݕଵ, ,ଶݔ ⋯,ଶݕ , ,ேିଵݔ   ൯. Note that the rotationߠ,ேିଵݕ
of the isotropic set of ܰ position vectors by the angle 
 with respect to the center ܱ of a mobile robot are ߠ
also isotropic: 

Since the union of two isotropic sets is also 
isotropic, new isotropic sets for ܰሺ 4ሻ  position 
vectors can be obtained from existing isotropic sets 
known already: 

ܵே ൌ ܵேభ ⋃ 	ܵேమ 	 (24) 

where ܰ ൌ ଵܰ  ଶܰ , 2  ଵܰ, ଶܰ  ܰ െ 2 . For 
ܰ ൌ 5 optical mice, Fig. 4(a) shows the isotropic set 
ܵହ , which is obtained as the union of ܵଶ  and ܵଷ . 
However, note that (24) cannot produce all possible 
isotropic sets of ܰ position vectors, since ∑ ܘ

ேభ
ୀଵ ൌ

∑ ܘ
ே
ୀேభାଵ ൌ 0  is sufficient but not necessary for 

∑ ܘ
ே
ୀଵ ൌ 0 . It should be mentioned that the 

simplest isotropic set of ܰ  position vectors is a 
regular polygon, for which 

ଵߩ ൌ ଶߩ ൌ ⋯ ൌ 	ேߩ (25) 

߮ଶ െ ߮ଵ ൌ ߮ଷ െ ߮ଶ ൌ ⋯ ൌ ߮ଵ െ ߮ே 

ൌ
360°
ܰ

(26) 
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Fig. 4(b) shows the isotropic placement of ܰ =5 
optical mice, which from a regular pentagon. 

Once the isotropic placement of ܰ optical mice, 
denoted by ܘ

∗ ൌ ሾݔ
ݕ	∗

∗ሿ௧ , ݅ ൌ 1,⋯ ,ܰ , is 
determined from (19) and (20), the value of the 
characteristic length ܮ, required for the isotropy of 
the Jacobian matrix ۯ, can be determined, from (21): 

 
(a) 

 
(b) 

Figure 4: Two isotropic sets of ܰ ൌ 5 position vectors: (a) 
ܵଶ ∪ ܵଷ, and (b) a regular pentagon. 

∗ܮ ൌ ܴ∗ ൌ ඩ
1
ܰ
	ሺݔ

∗ଶ  ݕ
∗ଶሻ

ே

ୀଵ

		 (27) 

which is called as the optimal characteristic length. 
Note that the optimal characteristic length ܮ∗ is the 
root mean square of the distances of ܰ  position 
vectors, ܘ

∗, ݅ ൌ 1,⋯ ,ܰ,  from the center O of a 
mobile robot. 

5 ANISOTROPIC PLACEMENT 

For a given placement of ܰ optical mice, it may be 
impossible to achieve the isotropy of the 2ܰ ൈ 3 
Jacobian matrix ۯ . Seen from (15), the smallest 
eigenvalue of ۯ௧ۯ , λଷ , can be zero, and thus we 
consider the condition index, defined by 

ߛ ൌ
λଷ
λଵ
	 (28) 

which is the inverse of the condition number ߢ  of 
 ߛ given by (17). Note that the condition index ,ۯ௧ۯ
can have values between zero and unity, where ۯ௧ۯ 
is isotropic when ߛ ൌ 1, and ۯ௧ۯ is singular when 
ߛ ൌ 0 . For the placement of ܰ  optical mice, it is 
desirable to make the value of ߛ as large as possible. 

Using (13) and (15), (28) can be written as 

ߛ ൌ
ܣ െ ܤ√

ܣ  ܤ√
	 (29) 

with 

ܣ ൌ 1 
ܴଶ

ଶܮ
	 (30) 

ܤ ൌ ቆ1 െ
ܴଶ

ଶܮ
ቇ
ଶ


4൫ܥ௫ଶ  ௬ଶ൯ܥ

ଶܮ
	 (31) 

Setting 
డఊ

డ
 equal to zero, we have 

2
ܣ߲
ܮ߲

ൈ ܤ ൌ ܣ ൈ
ܤ߲
ܮ߲
	 (32) 

with 
ܣ߲
ܮ߲

ൌ 	ܮ2 (33) 

ܤ߲
ܮ߲

ൌ 4ሺܮଶ െ ܴଶሻ ൈ ܮ  8൫ܥ௫ଶ  ௬ଶ൯ܥ ൈ 	ܮ (34) 

Plugging (30), (31), (33), and (34) into (32), it 
follows that 

ሺܮଶ െ ܴଶሻ ൈ ൛ܴଶ െ ൫ܥ௫ଶ  ௬ଶ൯ൟܥ ൌ 0	 (35) 

As will be shown later, 

ܴଶ ് ௫ଶܥ  	௬ଶܥ (36) 

unless  ۯ௧ۯ is singular. From (35) and (36), using 
(11), the condition for maximizing the value of ߛ is 
obtained by 

ଶܮ െ ܴଶ ൌ 0	 (37) 

which results in 

#ܮ ൌ ܴ# ൌ ඩ
1
ܰ
ሺݔ

ଶ  ݕ
ଶሻ

ே

ୀଵ

		 (38) 

which is called as the suboptimal characteristic 
length. It should be noted that the expression of the 
suboptimal characteristic length ܮ#, given by (38), is 
the same as that of the optimal characteristic length 
 .given by (27) ,∗ܮ

With the suboptimal characteristic length ܮ# 
known, the maximum value of the condition index ߛ 
that can be achieved for a given anisotropic optical 
mouse placement can be obtained. Plugging (37) and 
(38) into (30) and (31) and using (29), we obtain 

#ߛ ൌ
#ܮ െ ඥܥ௫ଶ  ௬ଶܥ

#ܮ  ඥܥ௫ଶ  ௬ଶܥ
	 (39) 

which is called as the maximal condition index. Note 
that the maximal condition index ߛ# can have values 
between zero and unity, where ߛ# ൌ 1   when 
௫ܥ ൌ ௬ܥ ൌ 0 , and ߛ# ൌ 0  when ܮ# ൌ ඥܥ௫ଶ  ௬ଶሺൌܥ
ܴ#ሻ. 
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6 SINGULAR PLACEMENT 

The placement of ܰ  optical mice is said to be 
singular, if ۯ௧ۯ  falls into singularity, that is, the 
smallest eigenvalue of ۯ௧ۯ, λଷ, becomes zero: 

λଷ ൌ 0	 (40) 

for which the condition index becomes zero, ߛ ൌ 0. 
From (15) and (40), we have 

ቆ1 
ܴଶ

ଶܮ
ቇ ൌ ඨቆ1 െ

ܴଶ

ଶܮ
ቇ
ଶ


4൫ܥ௫ଶ  ௬ଶ൯ܥ

ଶܮ
(41) 

which leads to 

ܴଶ ൌ ௫ଶܥ  	௬ଶܥ (42) 

Plugging (9)-(11) into (42) and using (1), we have 

ሺܰ െ 1ሻߩ
ଶ

ே

ୀଵ

 

					െ2  ߩ ൈ ߩ ൈ

ே

ୀାଵ

ேିଵ

ୀଵ

cos߰, ൌ 0 

(43) 

(43) can be rearranged into 

  ൫ߩ
ଶ  ߩ

ଶ െ ߩ2 ൈ ߩ ൈ cos߰,൯

ே

ୀାଵ

ேିଵ

ୀଵ

 

					ൌ 0	

(44) 

where 

߰, ൌ ߮ െ ߮, 		݆ ൌ 1,⋯ ,ܰ െ 1, 
, , ݇ ൌ ሺ݆  1ሻ,⋯ ,ܰ 

(45) 

represents the angle between two position vectors, 
݆ ,ܘ  andܘ ൌ 1,⋯ ,ܰ െ 1, ݇ ൌ ሺ݅  1ሻ,⋯ ,ܰ.  

It can be shown that 

0		    ൫ߩ െ ൯ߩ
ଶ

ே

ୀାଵ

ேିଵ

ୀଵ

 

					   ൫ߩ
ଶ  ߩ

ଶ െ ߩ2 ൈ ߩ

ே

ୀାଵ

ேିଵ

ୀଵ

ൈ cos߰,൯ 

					   ൫ߩ  ൯ߩ
ଶ

ே

ୀାଵ

ேିଵ

ୀଵ

	

(46) 

In the above, the equality holds, when cos߰, ൌ 1 
or cos߰, ൌ െ1 , ݆ ൌ 1,⋯ ,ܰ െ 1 , ݇ ൌ ሺ݅ 
1ሻ,⋯ ,ܰ. In the former case, for which 

߰, ൌ 0, 	݆ ൌ 1,⋯ ,ܰ െ 1, 
݇ ൌ ሺ݅  1ሻ,⋯ ,ܰ	

(47) 

and, from (44), we have 

  ൫ߩ െ ൯ߩ
ଶ

ே

ୀାଵ

ேିଵ

ୀଵ

ൌ 0	 (48) 

which results in 

ଵߩ ൌ ଶߩ ൌ ⋯ ൌ 	ேߩ (49) 

Note that (47) and (49) indicate that ܰ optical mice 
are placed at the same position on a mobile robot. 
Next, in the latter case, for which 

߰, ൌ 180°, ݆ ൌ 1,⋯ ,ܰ െ 1, 
݇ ൌ ሺ݅  1ሻ,⋯ ,ܰ	

(50) 

and, from (44), we have 

  ൫ߩ  ൯ߩ
ଶ

ே

ୀାଵ

ேିଵ

ୀଵ

ൌ 0	 (51) 

which results in 

ଵߩ ൌ ଶߩ ൌ ⋯ ൌ ேߩ ൌ 0	 (52) 

(52) indicates that ܰ optical mice are placed at the 
center ܱ  of a mobile robot. At both singular 
placements of ܰ optical mice, one given by (47) & 
(49) and the other given by (52), it should be noted 
that the rank of the Jacobian matrix ۯ drops to two. 

7 LEAST SQUARES VELOCITY 
ESTIMATION 

Based the velocity kinematics of (6), the mobile 
robot velocity can be estimated from the noisy 
velocity measurements ࢙ܞ of ܰ optical mice by 

࢘ො෨ܞ ൌ 
௫ݒ
௬ݒ

ܮ ൈ ߱
 ൌ 	࢙ܞାۯ (53) 

where 

ାۯ ൌ ൫ۯ௧ۯ൯
ିଵ
௧ۯ ∈ 	ଷൈଶே܀ (54) 

Note that (53) with (54) represents the least squares 
solution to (6), which minimizes ฮۯܞො െ  .௦ฮܞ

Assume that the placement of  ܰ optical mice is 
isotropic,  with the isotropic position vectors 
ܘ
∗ ൌ ሾݔ

ݕ	∗
∗ሿ௧ , ݅ ൌ 1,⋯ ,ܰ , and the optimal 

characteristic length ܮ∗. Plugging (7), (18), and (27) 
into (53), we have 

ାۯ  

ൌ
1
ܰ


1
0

െ
ଵݕ
ܴ∗

0
1
ଵݔ
ܴ∗

1
0

െ
ଶݕ
ܴ∗

0
1
ଶݔ
ܴ∗

⋯
⋯
⋯

1
0

െ
ேݕ
ܴ∗

0
1
ேݔ
ܴ∗
	

(55) 

Using (55), from (53), the estimated velocity of a 
mobile robot is obtained by 
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௫ݒ ൌ
1
ܰ
ݒ௫

ே

ୀଵ

	 (56) 

௬ݒ ൌ
1
ܰ
ݒ௬

ே

ୀଵ

	 (57) 

߱ ൌ
1
ܰ
߱

ே

ୀଵ

	 (58) 

where 

߱ ൌ
1
ܴ∗ଶ

ൈ ൫െݕ
∗ ൈ ௫ݒ  ݔ

∗ ൈ  ,௬൯ݒ

											݅ ൌ 1,⋯ ,ܰ	
(59)

represents the angular velocity component 
experienced by the ݅௧  optical mouse, which is 
equivalent to the velocity measurement ܞ ൌ
௬൧ݒ	௫ݒൣ

௧
, ݅ ൌ 1,⋯ ,ܰ . Seen from (56)-(58), two 

linear and one angular components of the esimated a 
mobile robot velocity can obtained by the averages 
of the corresponding components of ܰ optical mice. 
Note that such a computational simplicity in the 
mobile robot velocity estimation is attributed to the 
isotropic placement of ܰ optical mice. 

 

Figure 5: The symmetrical placement of three optical mice 
along an elliptical path. 

Now, let us discuss the role of the characteristic 
length ܮ in the least squares mobile robot velocity 
estimation, given by (53) with (54), which involves 
the inversion of ۯ௧ۯ. Seen from (8), it is apparent 
that the selection of ܮ will affect the conditioning of 
ۯ௧ۯ , for a given optical mouse placement, ܘ ൌ
ሾݔ		ݕሿ௧, ݅ ൌ 1,⋯ ,ܰ. For instance, if ܮ is chosen to 
be too small,  ۯ௧ۯ becomes close to singularity. This 
may lead to numerical instability during the 
inversion process of ۯ௧ۯ, so that the accuracy of the 
estimated mobile robot velocity can be unacceptably 
poor. On the other hand, the proper selection of ܮ, 
most preferably ܮ ൌ  given by (39), can improve ,#ܮ
the conditioning of ۯ௧ۯ, even when a given optical 
mouse placement is near singular. 

8 SIMULATION RESULTS 

Suppose that three optical mice(ܰ ൌ 3) are placed 
on an elliptical path, given by 

ߗ ൌ ൜ሺݔ, ሻݕ | ቀ
ݔ
ܽ
ቁ
ଶ
 ቀ

ݕ
ܾ
ቁ
ଶ
ൌ 1ൠ	 (60) 

where the first optical mouse is fixed on the 
principal axis along the ݕ axis, but the second and 
third optical mice that are symmetric with respect to 
the ݕ axis, as shown in Fig. 5 where ܽ ൌ 25	cm,  
ܾ ൌ 16	cm, and 0°  ߙ  90°. Using (19) and (20), 
the isotropic optical mouse placement can be found 
at ߙ∗ ൌ 120° , corresponding to ሺ߮ଵ∗, ߮ଶ

∗, ߮ଷ
∗ሻ ൌ

ሺ90°, 210°, 330°ሻ. Note that three optical mice form 
an equilateral triangle in general, but they will form 
a regular triangle if the elliptical path ߗ  becomes 
circular, that is, ܽ ൌ ܾ. And, using (27), the optimal 
characteristic length is obtained by ܮ∗ ൌ

ට ଷ

ଶே
ሺܽଶ  ܾଶሻ ൌ 20.99	cm . On the other hand, 

using (47) and (49), the singular optical mouse 
placement can be found as ሺ߮ଵ, ߮ଶ, ߮ଷሻ ൌ
ሺ90°, 90°, 90°ሻ. 

Next, let us examine the least squares velocity 
estimation of a mobile robot for a given placement 
of three optical mice. Assume that a mobile robot is 
commanded to move forward along the ݕ axis at the 
velocity of ݒ௫ ൌ 0	cm/sec, ݒ௬ ൌ 20	cm/sec, and 
߱ ൌ 0	deg/sec . To simulate the noisy velocity 
measurements of three optical mice, normally 
distributed random numbers, ݊௫ and ݊௬, ݅ ൌ 1,2,3, 
with mean 0 and variance 0.2  are added, 
independently, to the nominal values of the ݔ and ݕ 
velocity components of each optical mouse. With 
ܞ ൌ ሾ0	20	0ሿ௧ , using (4), the noisy velocity 
measurements of three optical mice are obtained by 

௦ܞ ൌ ܞۯ  	௦ܖ (61) 

where ܖ௦ ൌ ሾܖଵ
௧ ଶܖ	

௧ ଷܖ	
௧ ሿ௧ ∈ ൈଵ܀ with ܖ ൌ

ൣ݊௫	݊௬൧
௧
, ݅ ൌ 1,2,3 , represents the random noise 

vector experienced by three optical mice. For the 
isotropic optical mouse placement, Fig. 6 shows the 
velocity measurements of the first optical mouse, and 
the resulting least squares velocity estimation of a 
mobile robot, using (53) with (54). Note that a total of 
10,000 samples are taken in our simulation, but for 
better visibility, only 500 samples are plotted in Fig. 
6. Overall, it can be observed that the effects of noisy 
velocity measurements of three optical mice are 
reduced significantly. The noise levels of two linear 
components, ݒ௫  and ݒ௬ , of the estimated mobile 
robot velocity amount to about 58% of those of two 
linear velocity components of each optimal mouse. 
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(a) 

 

(b) 

Figure 6: The least squares mobile robot velocity 
estimation from the noisy optical mouse velocity 
measurements: (a) the measured velocity components, ݒଵ௫ 
and ݒଵ௬, and (b) the estimated velocity components, ݒ௫, 
∗ܮ ,௬ݒ ൈ ߱, and ߱. 

9 CONCLUSIONS 

In this paper, we presented the isotropy analysis of 
an optical mouse array for the mobile robot velocity 
estimation. Positional restriction on the installation 
of optical mice at the bottom of a mobile robot is 
assumed. The main contributions of this paper can 
be summarized as 1) the symbolic analysis of the 
Jacobian matrix, mapping the mobile robot velocity 
to the optical mouse velocities, 2) the identification 
of the isotropic, anisotropic, and singular optical 
placements along with their corresponding 
characteristic lengths, and 3) the application to the 
least squares mobile robot velocity estimation from 
the noisy optical mouse velocity measurements. The 
results of this paper can be helpful especially for the 
development of personal robot mobile platforms 
having a non-circular base. 
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