An EDF-based Scheduling Algorithm for Real-time Reconfigurdle
Sporadic Tasks

Hamza GharsellaotjiMohamed Khalgdiand Samir Ben Ahméd
1INSAT Institute, University of Carthage, Tunis, Tunisia
2FST Faculty, University of Tunis El Manar, Tunis, Tunisia

Keywords: EDF-based Scheduling Algorithm, Real-time Reconfigurable Sporadic Tasks, Intelligent Agent, Automatic
Reconfigurations.

Abstract: This paper deals with the problem of scheduling the mixed workload of both homogeneous multiprocessor
on-line sporadic and off-line periodic tasks in a hard reconfigurable real-time environment by an optimal
EDF-based scheduling algorithm. Two forms of automatic reconfigurations which are assumed to be applied
at run-time: Addition-Removal of tasks or just modifications of their temporal parameters: WCET and/or
deadlines. Nevertheless, when such a scenario is applied to save the system at the occurrence of hardware-
software faults, or to improve its performance, some real-time properties can be violated at run-time. We
define an Intelligent Agent that automatically checks the system’s feasibility after any reconfiguration scenario
to verify if all tasks meet the required deadlines after a reconfiguration scapgifio € 1..M, we assume
that we have M reconfiguration scenarios), was applied on a multiprocessor embedded system in the case of
shared memory. Indeed, if the system is unfeasible, then the Intelligent Agent dynamically provides precious
technical solutions for users to send sporadic tasks to idle times, by modifying the deadlines of tasks, the
worst case execution times (WCETS), the activation time, by tolerating some non critical tasks m among n
according to the (m,n) firm and a reasonable cost, by sending some tasks from their current processors to
be scheduled in other processors, or in the worst case by removing some soft tasks according to predifined
heuristic. We implement the agent to support these services in order to demonstrate the effectiveness and the
excellent performance of the new optimal algorithm in normal and overload conditions.

1 INTRODUCTION tems as an independent discipline. Each system is a
subset of tasks. Each task is caracterized by its worst

. case execution times (WCETE"", an offset (re-
Nowadays, due to the growing class of portable | i Pk .(dTp,Lph @)od deadii @p,(wh
systems, such as personal computing and commu-c € imejy™™, a period; anda deadlin®

nication devices, embedded and real-time systems‘cor each reconfiguration Sce”a“"h' (h € 1.M, we .
contain new complex software which are increasing assume that we have M reconfiguration scenarios)
by the time. This complexity is growing because and on each processor p, ¢pL.K, we assume that
many available software development models don't we have K |der!t|cal processors numbered from 1 to
take into account the specific needs of embeddedK)’ and n real-time tasks numbered from 1 to n that
and systems development. The software engineeringcomposeo| a feasible subset of tasks entiflgg and

principles for embedded system should address need to be scheduled. The general goal of this paper

specific constraints such as hard timing constraints, IS to hbe r(.aasstl;]req th?t anyt r?conflcf:]l.tllzatlon Ec%r:jar(ljo
limited memory and power use, predefined hardware U changing the implementation o e_em. edde
platform technology, and hardware costs. On the system qloes nqt violate real-time con_stramts. i.e. .the
other hand, the new generations of embedded controISySterT]l IS fe?]smle gtr1d_ melets retalt-_tlme cc(j)r;stramts
systems are adressing new criteria such as flexibility even 1 we change Its impiementation and to cor-
and agility (H. Gharsellaoui and BenAhmed, 2012). rectly_ allow the minimization of the response time
For these reasons, there is a need to develop tools,Of this system .after any reconfiguration scenario
methodologies in embedded software engineering (H. Gharsellaoui and BenAhmed, 2012). To obtain

and dynamic reconfigurable embedded control sys- this optimization (minimization of response time),

Gharsellaoui H., Khalgui M. and Ben Ahmed S.. 377
An EDF-based Scheduling Algorithm for Real-time Reconfigurable Sporadic Tasks.

DOI: 10.5220/0004432003770388

In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 377-388

ISBN: 978-989-8565-68-6

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

we propose an intelligent agent-based architecture inthe intelligent agent calculates the residual tlﬁ-’i’é’“
which a software agent is deployed to dynamically before and after each addition scenario and calculates
adapt the system to its environment by applying the minimum of those proposed solutions in order to
reconfiguration scenarios. A reconfiguration scenario gptain Res;ﬁ‘”’h optimal notedResQ”w“Opt. Where

(P means the addition, removal or update of tasks proPt - .

in order to save the whole system on the occurrenceReS[S is the minimum of th? response time .Of
of hardware/software faults, or also to improve its the current system yppderstudygwen by the following
performance when random disturbances happen atequation: Resﬁf’wh = min(Res;i’i“h, Resrﬁj’“,
run-time. SporaolLic task is described by minimum in- Resgfy", Resgy", Res§2", Resg", Resgy").
terarrival timeP™*" which is assumed to be equal to To calculate these previous vaIueRes;ﬁ‘i“h,

. . . p’LIJh . ,
e CWGETICP™ forcch reconfiouration sconano ReSHe's Resis", Resgl, Resglh, Resf,

i guration scenario m .
Wh and on each processor p. A random disturbance is2"d Resp7", we proposed a new theoretical con-
defined in the current paper as any random internal cepts R>¥", gP¥n P#n - P and LPY for the
or external event allowing the addition of tasks that case of real-time sporadic operating system (OS)
we assume sporadic or removal of sporadic/periodic tasks. Wher&®"¥" is the residual time of tasP ",
tasks to adapt the system’s behavior. Indeed, a hardS"*" denotes the first release time of tasR"",
real-time system typically has a mixture of off-line s”¥" is the last release time of tagg™¥, P4
and on-line workloads and assumed to be feasible denotes the estimated finishing time of tas,’f(wh,
before any reconfiguration scenatj{qa. The off-line and Lip,luh denotes the laxity of tasbip,wh for each
requests support the normal functions of the system reconfiguration scenarip, and on each processor p.

while the on-line requests are sporadic tasks to ' A {go| RT-Reconfiguration is developed at INSAT

handle external events such as operator commandsy;ityte in university of Carthage, Tunisia, to support
and recovery actlon§ Whl_ch are_usually unpredictable. 5| the services offered by the agent. The minimiza-
For this reason and in this original work, we propose o of the response time is evaluated after each

a new optimal scheduling algorithm based on the econfiguration scenarig, and on each processor p
dynamic priorities scheduling Earliest Deadline First i, e offered by the agent.

(EDF) algorithm principles on each processor p

and for each dynamic reconfiguration scenafio gection 2 introduces the related work of the proposed
in order to obtain the feasibility of the system at 555r04ch and gives the basic guarantee algorithm. In
run-time, meeting real-time constraints and for the gection 3, we present the new approach with deadline
optimization of the response time of this system. (gjarance for optimal scheduling theory. Section 4

Indeed, many real-time systems rely on the EDF eqents the performance study, showing how this
scheduling algorithm in the case of uni-processor \ oy is a significant extension to the state of the

scheduling theory. This algorithm has been shown 4t of EDF scheduling and discusses experimental
to be optimal under many different conditions. For reqits of the proposed approach research. Section
example, for independent, preemptable tasks, on ag gymmarizes the main results and presents the

uni-processor, EDF is optimal in the sense that if any ¢ncjusion of the proposed approach and describes
algorithm can find a schedule where all tasks meet 1,4 intended future works.

their deadlines, then EDF can meet the deadlines
(Dertouzos, 1974).

According to (Brocal V., 2011), a hyperperiod
is defined asHP = [{, 2% LCM +], where LCM 2 BACKGROUND
is the well-known Least Common Multiple of the
o ol s e e . W presen eted ot dealng it recofiura
radic tasks span no more than one hyperperiod of theltlons and rea[-tlme scheduling of embedded systems.
periodic taskgHP(Pn) = [7(P4n) 2% CM + Z(Ph)], Today, real-time embedded systems are found in
where LCMPY is the well-known Least Common Many diverse application areas including; automotive
Multiple of tasks periods an@(P¥) is the largest electronics, avionics, telecommunications, space
task offset of all task$|’2’lth for each reconfiguration systems, medical imaging, anq consumer eIectromcs.
scenarioy, on each processor p. The problem is In all of these areas, the.fe_ is rapid technolog|_cal
to find which solution proposed by the agent that progress. Companies building embedded real-time

reduces the response time. To obtain these results SyStems are driven by a profit motive. To sucpeed,
they aim to meet the needs and desires of their cus-

The organization of the paper is as follows.

378

An EDF-based Scheduling Algorithm for Real-time Reconfigurable Sporadic Tasks

tomers by providing systems that are more capable, &g is feasible, e.g. the execution of each instance in
more flexible, and more effective than their competi- each processor is finished before the corresponding
tion, and by bringing these systems to market earlier. deadline and the tasks are not assumed to be arranged
This desire for technological progress has resulted in any specific order.
in a rapid increase in both software complexity and Every processor p assigns a set of periodic tasks
the processing demands placed on the underlyingT S = {Tf, Tg,...,tﬁ}. This allocation is made with
hardware (Brocal V., 2011). To address demands for an allowance algorithm at the time of the design,
increasing processor performance, silicon vendorsfor example by using one of the well known tech-
no longer concentrate wholly on the miniaturisation niques: first-fit (FF), next-fit (NF), best-fit (BF),
needed to increase processor clock speeds, as thisvorst-fit (WF). These tasks are independent and can
approach has led to problems with both high power be interrupted at any time. Every ta$R has an
consumption and excessive heat dissipation. Insteadexecution time (Worst Case Execution Tinﬁéﬁ, one
there is now an increasing trend towards using period Tip, a deadlineDip which is assumed to be
multiprocessor platforms for high-end real-time less than or equal to its period,elgfg'l’ip. Every
applications (Brocal V., 2011). task instance k has to respect its absolute deadline,
For these reasons, we will use in our work the namely thek" authority of the taskrip, namedrfk

case of real-time scheduling on homogeneous multi- must be completed before ti”EiPk = (|<.1)‘|'ip + Dip.
processor platforms. Before presenting our original e express all the measures of time (e.g. periods, the
contribution, we will present some definitions below. deadlines, the calculations) as being multiple of the
According to (H. Gharsellaoui and BenAhmed, tick of the processor clock. Every processor p will
2012), each periodic task is described by an initial execute its tasks in local by using EDF, it means that
offset & (activation time), a worst-case execution -the prioritiesP” of periodic tasks are dynamic and the
time (WCET)G;, a relative deadlin®; and a period scheduler guarantees that every instance of every task
Ti. will run before its deadline. These tasks are handled
According to (Buttazzo and Stankovic, 1993), py a global scheduler (GS), which assigns them to
each sporadic task is described by minimum in- processors by using the state informations of the
terarrival timePR which is assumed to be equal to |ocal schedulers. Moreover, under EDF scheduling,
its relative deadlind;, and a worst-case execution g task will fit on a processor as long as the total
time (WCET)Ci. Hence, a sporadic task set will ytjlization of all tasks assigned to that processor does
be denoted as followsSys = {6i(Ci, Di) }, i = not exceed unity (the total utilization factor = 1).
1 to m. Reconfiguration policies in the current Finally, for reasons of simplicity, we assume that all
paper are classically distinguished into two strate- the overheads of context exchange, scheduling of
gies: static and dynamic reconfigurations. Static tasks, the preemption of the tasks and the migration
reconfigurations are applied off-line to modify cost of the tasks are equal to zero.
the assumed system before any system cold start,
whereas dynamic reconfigurations are dynamically \We assume now the arrival at run-time of a sec-
applied at run-time, which can be further divided gng subse€ew Which is composed of m real-time
into two cases: manual reconfigurations applied tasks at timet; (t; =t + At). We have a system
by users and automatic reconfigurations applied by Currents,{t;) composed oh+ mtasks. In this case a
intelligent agentS (H Gharsellaoui and BenAhmed, reconﬁguration Scenarwh is app“ed The reconfig_
2012), (X. Wang and L, 2011). This paper focuses yration of the systenSy¥» means the modification

on the dynamic reconfigurations of assumed mixture of jts implementation that will be as follows at tirte
of off-line and on-line workloads that should meet

deadlines defined according to user requirements. " m W
The extension of the proposed algorithm should be &% = Currenigy{t1) = &oid U &new

straightforward, when this assumption does not hold \yhere %o is a subset of old tasks which are not

and its running time is O(n + m) (T. Tia, 1994). affected by the reconfiguration scenatig (e.g. they

Tp illustrate the key point of the proposed dy- implement the system before the timg andéﬂ’gwa
namically approach, we assume that there are K gpset of new tasks in the system. We assume that an
identical processors numbered from 1 to K, and n updated task is considered as a new one at time

real-time tasks numbered from 1 to n that composed \wnen the reconfiguration scenanig, is applied at
a feasible subset of tasks entitlegy and need to be timet;, two cases exist:

scheduled. At time t and before the application of the

reconfiguration scenaripy,, each one of the tasks of " .
o If tasks ofE¥h = &4 U Endy are feasible, then no

379

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

reaction should be done by the agent, as a motivational exampleSys = 1, g, andSys

= 0c, Op, andog. Ta andtg are periodic tasks and
all the rest 6¢c, op, andog) are sporadic tasks. Each
task can be executed immediately after its arrival and
must be finished by its deadline. First, at tim&yg

is feasible because the processor utilization factor U
= 0.30< 1. We suppose after, that a reconfiguration
scenario is applied at time t1 to add 3 new sporadic
Nowadays, several interesting studies have been pUbTaSkSO'C, Op, andog. The new processor utilization
lished to develop reconfigurable embedded control pecomes U = 1.2 1 time units. Therefore the
systems. In (C. Angelov and Marian, 2005) Marian system is unfeasible. In the following tables (table
et al. propose a static reconfiguration technique for 1 and table 2), the first column represents the task
the reuse of tasks that implement a broad range ofigentifier, the second column represents the release
systems. The work in (M. N. Rooker and Ebenhofer, time, the third column represents the deadline of
2007) proposes a methodology based on the humaneach task which is less than or equal to its period in
intervention to dynamically reconfigure tasks of these examples of real time tasks, the fourth column
considered systems. In (Al-Safi and Vyatkin, 2007), represents the period and the five column represents

an ontology-based agent is proposed by Vyatkin et al. the worst case execution time (WCET) of each task.
to perform system reconfigurations according to user * p js the inter-arrival time.

requirements and also the environment evolution.

e Otherwise, the agent should provide different so-
lutions for users in order to re-obtain the system’s
feasibility.

2.1 State of the Art

Window-constrained scheduling is proposed in (West Table 1: The characteristics of the 5 tasks.
and Schwan, 1999), which is based on an algorithm Task| a | D [i=P* [G
named dynamic window-constrained - scheduling A 0 | 10 10 2
(DWCS). The research work in (P. Balbastre and B 0 | 20 20 2
Crespo, 2002) provides a window-constrained-based

; . . C 5 | 15 - 5
method to determine how much a task can increase its 5) 5 8 - 2
computation time, without missing its deadline under E 1112 - 1

EDF scheduling. In (P. Balbastre and Crespo, 2002),
a window-constrained execution time can be assumed
for reconfigurable tasks in n among m windows of Running Example 2:
jobs. In the current paper, a window constrained In this section, we demonstrate the performance of
schedule is used to separate old and new tasks thabur proposed approach for both periodic synchronous
assumed sporadic on each processor p and after eachnd asynchronous, and sporadic tasks. The simula-
reconfiguration scenarig,. Old and new tasks are tion runs on our tool RT-Reconfiguration and proved
located in different windows to schedule the system by the real-time simulator Cheddar (J. Legrand,
with a minimum response time. In (X. Wang and 2004) with a task set composed of old taskgd)
L, 2011), a window constrained schedule is used to and new tasksE@é”d\',“) on the processor p for each
schedule the system with a low power consumption. reconfiguration scenarigy,. We illustrate with a
In the following, we only consider periodic and spo- simplified example to ease the understanding of our
radic tasks. Few results have been proposed to deabpproach. The task set considered for this example
with deadline assignment problem. Baruah, Buttazo is given in table 2 and is composed of 10 tasks. The
and Gorinsky in (H. Gharsellaoui and BenAhmed, sum of utilization of all tasks is given in table 2 and
2012) propose to modify the deadlines of a task set is equal to 426.1%. We have 3 identical processors
to minimize the output, seen as secondary criteria of in our system to schedule these tasks. In this case,
this work. So, we note that the optimal scheduling we assume that each task’s deadline is less than
algorithm based on the EDF principles and on the or equal to its period. The worst case execution
dynamic reconfiguration scenarigy, is that we times, deadlines, and the time periods of all tasks are
propose in the current original work in which we generated randomly. In this experiment, the system
give solutions computed and presented by the intel- runs for time units equal to hyper-period of periodic
ligent agent for users to respond to their requirements. tasks.

In this experiment, our task set example is ini-

Running Example 1: tially implemented by 5 characterized old tasks
To illustrate the key point of the proposed dynamic (§oiq = {T1; T2; T3; T4; T5}). These tasks are fea-
reconfiguration approach, we consider= Sys |J sible because the processor utilization factor U =

Sys a set of 5 characterized tasks, shown in Table 1 1.19 < 3. These tasks should meet all required

380

An EDF-based Scheduling Algorithm for Real-time Reconfigurable Sporadic Tasks

deadlines defined in user requirements and we havedp =t;

FeasibilityCurreng_,(t)) = True Inserta, in the ordered task linked list;
Firstly, tasks are partitioned; tasl is partioned on & =¢ oy

first processorn, andts are partitioned on processor k = position ofg, in the task set

2 while taskt4 andts are partitioned on processor for each taslo; “such that &> k do{

3. We have three sets of local tasks. As thereisonly R =R _1 + (d; - di_1) - G;

one task on first processor then task utilization if (Ri < 0) then return ("Not Guaranteed”);
factor is the same as the first processor 1 utilization }

factor (u¥ = 0.285< 1) while utilization factors of return ("Guaranteed”);

processor 2 and processor 3 are calculated as followsend

u20=5@’ S = 0.372< 1,

¢
2
T

0 o 3 NEW APPROACH WITH
U0 =35 75=0533<1, DEADLINE TOLERANCE

we suppose that a first r_econflguranon SCeNaro | this section we will present some preliminaries
Wi (h = 1) is applied at timety 10 add 5 new ;qhcents and we will describe our contribution after.

tasks &néw = {Te; 7: Ta; 19,110&. The new pro. (Buttazzo and Stankovic, 1993), Buttazo and
cessor 'ut|I|zat|0n becomes) | = 4'_261 =~ 3_ Stankovic present the Guarantie Algorithm without
time_ units. The{pelzfore the system is unfeasible. 1o otion of deadline tolerance, and then we will ex-
Fea5|b|l|ty(Curren.tZ (t1)) = False Indeed, if the tend the algorithm in our new proposed approach by
number of tasks increases, then the overload of theincluding tolerance indicator and task rejection pol-

system increases too. Our optimal earliest deadlineicy. For this reason, and in order to more explain these

Table 2: Task Parameters. notions we will present some preliminaries.
Task | G | Dj | TT=PF N .

w279 - 3.1 Preliminaries

IZ 2 291 290 & denotes a set of active sporadic taskerdered by

3 increasing deadline in a linked ligt; being the task
Ta 2 |13 10 . .
3115 5 with the shortest absolute deadline.

15 a; denotes the arrival time of task, i.e., the time at

T | 1421 19 which the task is activated and becomes ready to exe-

17 10 | 24 16 cute.

T8 8 | 18 18 Ci denotes the maximum computation time of task

To [13]16| 17 oi, i.e., the worst case execution time (WCET) needed
Ti0 | 5 |11 12 for the processor to execute tasl without interrup-

tion.
first (OEDF) algorithm is based on the following c¢; denotes the dynamic computation time of tagk
Guarantee Algorithm which is presented by Buttazo i.e., the remaining worst case execution time needed
and Stankovic in (Buttazzo and Stankovic, 1993). for the processor, at the current time, to complete task
Indeed, OEDF algorithm is an extended and ame- o; x without interruption.
liorate version of Guarantee Algorithm that usually d; denotes the absolute deadline of tagki.e., the
guarantee the system’s feasibility. time before which the task should complete its execu-
tion, without causing any damage to the system.
D; denotes the relative deadline of task i.e., the
2.2 Guarantee Algorithm time interval between the arrival time and the abso-
lute deadlineS denotes the first start time of task
The dynamic, on-line, guarantee testin terms of resid- i.e., the time at which task; gains the processor for
ual time, which is a convenient parameter to deal the first time.5 denotes the last start time of tasgk
with both normal and overload conditions is presented i.e., the last time, before the current time, at which

here. taska; gained the processor.

Algorithm GUARANTEE(&; 03) fi denotes the estimated finishing time of taski.e.,
begint = get current time(); the time according to the current schedule at which
Ry =0; task o; should complete its execution and leave the

381

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

system.

L;j denotes the laxity of taski, i.e., the maximum
time tasko; can be delayed before its execution be-
gins.

R denotes the residual time of tagk i.e., the length
of time between the finishing time of and its abso-

and the lemma follows.

Lemma 2. A task g; is guaranteed to complete
within its deadline if and only iR > 0 (Buttazzo and
Stankovic, 1993).

lute deadline. Baruah et al. (S. Baruah and Shasha,Theorem 3. A set¢ = {cj, i = 1 to m} of m
1991) present a necessary and sufficient feasibility active sporadic tasks ordered by increasing deadline
test for synchronous systems with pseudo-polynomial is feasibly schedulable if and only® > 0 for all o;

complexity. The other known method is to use re-

€ &, (Buttazzo and Stankovic, 1993).

sponse time analysis, which consists of computing In our model, we assume that the minimum inter-
the worst-case response time (WCRT) of all tasks in a arrival time P, of each sporadic task is equal to its
system and ensuring that each task WCRT is less tharrelative deadlineD;, thus a sporadic tas& can be

its relative deadline. To avoid these problems, and to completely characterized by specifying its worst
have a feasible system in this paper, our proposed toolcase execution tim€; and its relative deadlin®;.
RT-Reconfiguration can be used. For this reason, weHence, a sporadic task set will be denoted as follows:

present the following relationships among the param-

eters defined above:

d=a+D; (1)

Li=di-a-C (2

R=d-fi (3)

fi=t+c; fi=fii+gVvVi>1 (4)

§€={0i(C,Di)},i=1tom.
3.2 Feasibility Analysis for Tasks

By considering real-time tasks and as we mentioned
before, the schedulability analysis should be done

The basic properties stated by the following lemmas in the hyperperiodHP(P¥n) = [Z(PUn) 2*LCM +
and theorems are used to derive an efficient O(n+m) z(P¥n)] where LCMP¥n is the well-known Least

algorithm for analyzing the schedulability of the spo-

Common Multiple of tasks periods arigP¥h) is the

radic task set whenever a new task arrives in the sys-jargest task offset of all task§"““ for each reconfig-

tems.
Lemma 1. Given a set{ = {01,02,...,0n} Of ac-

tive sporadic tasks ordered by increasing deadline in aandal“h

linked list, the residual tim&; of each taslo; at time

t can be computed by the following recursive formula:
Ry=d;-t-c1(5)

R =R_1+(di—di_1)-¢.(6) (Buttazzoand

Stankovic, 1993)

Proof. By the residual time definition (equation 3) we

have:

R =d - fi.
By the assumption on sét at time t, the tasks; in

uration scenarigi, on each processor p.
Let n+ mbe the number of tasks respectivel\éiig

new BY assuming unfeasible system at titae
and every processor p will execute its tasks in local by
using EDF, the following formula is satisfied:

gmm o

i—1 T > K, where K is the number of identical
i

processors.

Our proposed algorithm provides guarantees to both
old and new tasks in each processor p if and only if,

Cpakllh

. ~PWh
n—j G n+m
o + Yicn-ji17por <=1

1

Yi-1 T

execution and cannot be preempted by other tasks inwhere

the set€, hence its estimated finishing time is given
by the current time plus its remaining execution time:

fi=t+c
and, by equation (3), we have:
Ry=d;-fi=d;-t-cq.
For any other tasks;, with i > 1, each taslo; will

start executing as soon as_1 completes, hence we
can write:

fi = fifl +G (7)
and, by equation (3), we have:
R=d-fi=d-fi_1-c =
di-(di-1-R-1)-c=R_1+(di-di-1)-¢i

382

n-j ¢
2i=1 TPWR
.| . . .
tasks in processor p for each reconfiguration scenario
Yy, and,

denotes sum of utilization factor ofold

p.Wh
n+m Ci . .
YiZn-j+1 TPUR denotes sum of utilization factor

of new arrivalm tasks to the processor p for each
reconfiguration scenariy.

We propose, for each reconfiguration scenapjg

to add the tasks ofgq to a linked Iisthj'Jl’;j that we
sort on the increasing order of their utilization factor
values. Letj¥n be the first j tasks ofry.

Approach for each j%n € [0,n. When we add
the first j(P¥n) tasks ofL{P\" to £, there are

An EDF-based Scheduling Algorithm for Real-time Reconfigurable Sporadic Tasks

three different solutions exist for the feasibility of tasks are added & P¥-1). After each addition, the
the system. In such case, jifn = 0, then no tasks tasks are logically divided into two subsets. One
to be added toéfh,. After each reconfiguration contains the so called new sporadic tasks which are
scenarioyl, the agent suggests the new parametersadded to the system, and the rest of tasks taken from
for new tasks. After that, the agent selects tasks from £(P¥n-1) are considered as old tasks to form the sec-
linked list which are sorted on their utilization factor ond subset. After any addition scenario, the response
time can be increased and/or some old/new tasks miss
| their deadlines. When a reconfiguration scenario
on the processor p. Tasks from linked list are moved is automatically applied at run-time, the proposed
to be inserted and executed with new tasks. Wheneveragent logically decomposes the physical processor
Ia_lntold task |sc;nO\f/ed fror? Ilrllked list to ctjrrenétvrveé\g}ll_ of &P into two virtual processorypip"““) and

ist composed of new tasks, parameters) ! . e ‘
periods/deadlines) are recalculated and presented b)y PZ(pwh) with different utilization factorsUVPiWh)

the agent to the user for each reconfiguration scenarioandUV Pz(p’w to adapt the system to its environment
Wn. In this case, addition of old task, neither causes with a minimum response time. For more explaining,
new tasks to miss their deadlines nor misses its own after any reconfiguration scenario and in order to

PUn
(Uip’LIJh = c'(p—th)) with respect to this order to execute
)

deadline. keep only two virtual processors in the systéf,
the proposed intelligent agent automatically merges
. . E (pﬂl—'h—l) (p7l']"h*l) H (pawh>
3.3 Contribution: An Algorithm for VPR andV P into VP ™™ and creates
Feasibility Testing with Respect also a newv P5? namedv PP, to adapt old and
to Sporadic Task Systems new tasks, respectively. THéPép’L““) is assumed

to be alocated logical poolinidle periods\bP{p"““).

In the current paper, we suppose that on each
processor p, each systeffP) can be automatically ~ FO' €xample, we assume that k = 1 and we re-
and repeatedly reconfigured at each reconfigurationSIréint in this case to a uni-processor system, and
scenariapn. £(P) is initially considered ag(®® and ~ We have 2 initial ta&lg)srl a?o? T2 in an assumed
after thehy, reconfigurationf(P turns into i(p*“h), systemsyg with £9 = £ = {1;, 1o}. First,
where he 1.M. We definev PP¥ andvPP¥ two ~ we add{os, 04 andos} to £© that automatically
virtual processors to virtually execute old and new turns into€ ¥t = {11, 15, 03, 04 andos}. In &Y (h
sporadic tasks, implementing the system after the =1), subsef{1s, T2} is considered as old tasks to be
hyy reconfiguration scenario for each processor p. In executed by pi‘“l), whereas subsdbs, 04 andos}
&P all old tasks fromg(P¥n-1) are executed by s considered as new sporadic tasks to be executed by
the newly updated/ pr’mh) and the added sporadic VPz(l“l). VPZN”) is located in idle periods cWprl).
tasks are executed byPZ(P-,UJh)_ The proposed We propose thereafter, the arrival of new sporadic

intelligent agent is trying to minimize the response tasksds andoy to be added t@¥1) that evolves into
opt

time Res¥"™" of £Wn) after each reconfiguration &2 = {11, T2, 03, 04, 05, 0 andov}. VP* and
scenariapy and for each processor p. VP2<L'J1) are automaticlly merged intVPf“Z) where

_ - ~ subset{ty, T2, 03, 04 andas} is considered as old
For example, after the first addition scenario, tasks to be executed by this virtual processor. In this
&(PO) turns mto&1<p’1>. g(PY) |15 automatically decom- case, subseiog, 07} is executed by the second newly
posed intav P*" andv P{™" for old and new tasks created virtual process®tP,¥2) which is located in

with the processor utilization factotsVPip’l) and idle periods of\/PiL'JZ).

uv Pz(p’l) respectively on each processor p.

After each addition scenario, the proposed in-
Formalization telligent agent proposes to modify the virtual
We assume in this work asystgﬁ/ﬁ)) to be composed processors, to modify the deadlines of old and new
of a mixture of n(P periodic andm(® sporadic tasks, the WCETs and the activation time of some
tasks on each processor p. An assumed systerfasks, to send some tasks from processor i to another
£(PUn-1) = {T<1p>’ T(2p>’___Ir(1p)} turns after a reconfig- processor j, or to remove some soft tasks as following:
i i W) = (7P (P _(P) (P)) ,)
uration scenario tg P¥ = {1,”, ,”,..1a” oY), e Solution 1: Moving some arrival tasks to be

(P .,oﬁ,ﬂ)m} by considering thamP new sporadic scheduled in idle times for each reconfiguration

Ony2r-

383

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

scenarioyy and on each processor p. (idle times are
caused when some tasks complete before its worst= APYnt > t + CP¥n - gP¥h - pPUn,
case executiontime) (S1)
e Solution 5: Tolerate some non critical Tasks

Or, to obtain a feasible system after a reconfiguration I.” = H, Hard task,
scenarid¥, the following formula must be enforced: 1P = S, Soft task,
Rip‘”Jh > 0 on each processor p.

e Solution 2: maximize thedip"““ for each re- mP among (n+ m)P (according to the (m,n) firm
configuration scenarig, and on each processor p model), on each processor p for a reasonable cost,
(S2) and for each reconfiguration scenatip (S5)
By applying equation (3) that notices: &P = {tP(CP,DP,mP IP),i = 1tonP}.
R =d; - fi, we have: mp =1, it tolerates missing deadline,
RPYnh = gP¥h . cP¥n, =0, it doesn't tolerate missing deadline,

l

e Solution 6: Migration of some tasks from a

By this result we can write:diﬁ’g’vc -t- Cip‘”Jh > processor source i in order to be scheduled on another
0, Wheredi’r’{gvc = dip*mh + eip-wh_ processor destination j for each reconfiguration
So,dP¥ + Pt cP¥h > 0= scenariapn (S6) _ _ _

The agent proceeds now as a sixth solution to migrate
eip-wh ZHCID,wh _dip,wh' some tasks oERé"dP and zgld on the processor p

for each reconfiguration scenaris,. Indeed, the
e Solution 3: minimize the ¢ for each recon- agentis responsible for allocating the tasks to the K

figuration scenariap, and on each processor p computing processors in an optimal way.

(S3) Run-time task migration can be defined as the
By applying equation (3) that notices:

R =d; - fj, we have: | i Tielligent Agent \

Rip-,UJh - dip-,UJh _t- Cip-wh. :‘mignﬂe request | 2

Or, to obtain a feasible system after a reconfiguration sori C/ 5, (J 5 \:@- - [
scenario, the following formula must be enforced: TR L« Reaction Time |~ /.

RM" > 0. i ssusssEscs

By this result we can writed®¥" - t - cP¥ > g, Destination

Whel’eCiﬁ’ngC - clp,lth + Bip,lth.

SO,dip’wh —t- Cip-,lJJh _ Bip-,lbh >0= dip,lth —t- clp,lth >
paLIJh
i

Task migration sequence.

Figure 1: The Task Migration Sequence.

= P < gP¥n ¢ P relocation of an executing task from its current
_ _ _ location, the source processor i, to a new location,
e Solution 4. Enforcing the release time to the destination processor j#j; i,j = 1..K) that must

come backaP¥" — al¥h — (aP¥h = gP ¥ + APUn) belong to the inclusion set. We need by inclusion
for each reconfiguration scenarip, and on each set in paper, the set of processors in which tasks can
processorp (S4) be scheduled after any reconfiguration scengsio

when a migration request has done and in this case
By applying equation (1) that notices: all the relevant state information of that migration
di = & + Dj, we have: is transferred to the new processor. Otherwise,
RP¥h = gP¥h 4 pP¥n . cPYN, it is called exclusion set. This allows the OS to
Or, to obtain a feasible system after a reconfiguration e.g., minimize energy savings and response time
scenario, the following formula must be enforced: of the whole system. It also enables processors
RP¥ > 0= aP¥h + D - t-cP¥n > 0. management by moving tasks away from processors

I |

with a high amount of workload or which have their
By this result we can write: utilization factors> 1. The architectural differences

between the source processor i and destination source
aiﬂw\,@ + Dip’wh -t- Cip’wh > 0, where aiﬂ’g\,@ = processor j are masked by capturing and transferring
aP¥h + APUnt, the logical task state, shown by figure 1. In order to
So, we obtainaip’”’h + APWnt + Dipv”’h -t- cipv”’h > 0. relocate a task, the intelligent agent notifies the task

by means of a migration request sigal Whenever

384

An EDF-based Scheduling Algorithm for Real-time Reconfigurable Sporadic Tasks

that signaled task reaches a migration point (MP), it solution,

checks if there is a pending migration request or the Res@?’“ = the response time calculated by the
destination processor j belongs to the exclusion group seventh solution,

of the current migrated task for each reconfiguration \we define now,Res;ﬁ"“h optimal notedRes;ﬁ"““om

scenariapp. In such case of these two reasons, all the according to the previous seven solutions calculated
relevant state information of that migration point is by the intelligent Agent (Solution 1, Solution 2,

transferred to the intelligent agéfit Consequently, Solution 3, Solution 4, Solution 5, Solution 6 and
the intelligent agent will instantiate the same task on Solution 7) by the following expression:

a di.ff_erer.lt processor. The new task in;tantiatipn will Res;ﬁ"““om - min(Res;ﬁ““, Res;ﬁ‘g’h, Res;ﬁ’g’h,
be initialized using the state information previously m m "o W g W
captured by the intelligent agéfit Finally, the task Resg,", Resifs", Resg¢" and Resgy") (the

resumes execution at the corresponding migration m|n|mur(r)1ptof the seven values). So, the calculation of
point (MP). Res;ﬁ"“h allows us to obtain and to calculate the
One of the main issues in homogeneous (we supposeninimizations of response times values and to get
before that all the processors are identical) task the optimum of these values. In conclusion, we can
migration is the overhead incurred by checking for a deduce that by arrival ofif, tasks at run-time and
pending migration request during normal execution the whole system become unfeasible, the following
(i.e. when there is no pending migration request). formula based on (A.K.MOK, 1983) is satisfied for
Especially since a task requires frequent migration €ach reconfiguration scenagp:

points in order to reduce the reaction time. The

reacti(_)n time (Figure 1.) is Fhe time elapsed between z_(zmﬂ’h 93’; > K. where K is the number of
selecting a task for migration and the selected task ! T)

reaching the next migration point. In order to mini- identical processors.

mize the checking overhead during normal execution, Then, after the reconfiguration scenanjms, was
further denoted as migration initiation, we propose a applied at run-time to the whole system by the
novel technique for the new generation of embedded inteligent agent, our proposed algorithm provides
systems, that uses the inclusion and exclusion groupguarantees to both old and new tasks if and only if,
informations of each task for each reconfiguration we have in each processor p for each reconfiguration
scenario), in order to reduce the area search feasi- scenariajy:

blity of such systems and to minimize the reaction

time and consequently the response time will be

minimized too. (o) (PR
(n+m)(PEh) G .
Sic1 ~pwy < 1, in each processor p for each
: - T.Ph
° Solyuon 7: Removal of some non critical tasks (to réconfiguration scenaripn,
be rejected) for each reconfiguration scengsicand ()Pt
on each processorp (S7) Moreover, we have caIcuIatedep’ n
P = {Tip(olp, Dip, nﬁ |ip)7 i=1tonP}. min(Ri((pquh) Rf(pz-wh) Rf(péwh) Ri((l'zl“h) Rf(péwh)
P.Yh — i feal . 5 ’ 8 ! 8 ' 8 ’ 8 ’
mp W Lt tolerates missing Qea}dllne, _ Rl((péw andR‘((p;W); S0 we obtain also:
m™*" = 0, it doesn't tolerate missing deadline, ’ ’
|P¥h = H, Hard task (
)) (o) c(P¥h) .
rlqp’w“ =S, Soft task, zfl{m) " % < 1, in each processor p for each
For every solution the corresponding response time reconfiguratilon scenariph with 1 < p<K,1<h<

M.

is:
Wh — i ;
Resgil the response time calculated by the first Now by adding the following formulas, we have:

solution,

Res;ﬁé“h = the response time calculated by the (s m) L) Lo
second solution, 2i-1 oy <1,
Res;ﬁ’é““ = the response time calculated by the third T
solution, (npmy(@om) cZ0) .
Res;ﬁ;‘f“ = the response time calculated by the fourth i=1 Ti(ZJUh) '
solution, <
Res;ﬁ,’g““ = the response time calculated by the fifth
solution, -

Res;ﬁ’g“ = the response time calculated by the sixth =~

385

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

(n+m) (1 ¥n) c,“_‘”’“) < k = position ofay in the task sefP¥h*;
=1 o for each taslo” " “such that i> k do
{
Rip,LIJh — eridih + (dip Un _ diriuth) _ Cip Lth'
<. if (R™¥" > 0) then
(nrmy(wn) v return ("Guaranteed”);
i=1 Koy < 1,
|
% elsereturn _ _
fl{m) oo <lti+l+..+1 ("You can try by using solution 1, or,
' Ktimes You can try by using solution 2, or,
(n+m¥n ¥ K You can try by using solution 3, or,
= 2ict indl <K You can try by using solution 4, or,

You can try by using solution 5, or,
You can try by using solution 6, or,
" You can try by using solution 7 !");

}

This work, concentrates on the context of sys-
tems containing a set of tasks which is not feasible
The reconfiguration was applied in order not only
to obtain the system’s feasibility, but also to get the
performance of the system by reducing the response

time of the processes to be tolerated in interactive ©® ComputeRes;ﬁ“ ");
environment in order to minimize the response time Why.
of the studied reconfigurable embedded system at ¢ ComputeRes@z)
run-time for each reconfiguration-scenatig and in . ComputeResﬁ’g’“);
each processor p.

We callan observepthat our proposed approach provides * ComputeResﬁf)
an optimal global scheduling algorithm which sched- 4 ComputeRes;ﬁ”g’h);
ules tasks according to EDF in each processor p for '
each reconfiguration scenarjg. All tasks meettheir ~ ® ComputeRes@’é’h);
deadlines after a reconfiguration scenatip was Why.
applied at run-time. We can also observe, that our ¢ ComputeRes;ﬁ’J)
proposed algorithm selects tasks to migrate from one 4 Generatd{(es;ﬁ’whom);
processor source i to another processor destination
j in an optimal way such that overall utilization of end

task set is minimum. Parameters of tasks i.e., perlod,_l_he extension of the proposed algorithm should

deadline and worst case execution time, are generateq)e straightforward. when this assumption does not
randomly. We have illustrated that our proposed al- hold ang its runniﬁg time i@(n+m)2p So. Intu-

gorithm outperforms other scheduling multiprocessor itively, we expect that our algorithm performs better

algorithms and a number of scheduling events are :
much lower than appearing in others. than the Buttazo_and Stankovic one. We show the
results of our optimal proposed algorithm by means
. of experimental result’'s evaluation.
3.4 The General OEDF Scheduling
Strategy

4 EXPERIMENTAL RESULTS

When dealing with the deadline tolerance faatgr
each task has to be computed with respect to theln order to evaluate our optimal OEDF algorithm, we

deadline tolerance facton. consider the following experiments.
Algorithm GUARANTEE(&; 0a) 4.1 Experiments

For eachhin [1..M] Do

be%int = get current time(); Running Example 1:

P =0, We apply our contribution to this first running exam-
dg’wh =t; ple on the particular case of uni-processor systems
Inserto, in the ordered task list; (k = 1) and we could observe that the recalculation
EPUn = EPUn | oy points of the utilization factor, when parameters of

386

An EDF-based Scheduling Algorithm for Real-time Reconfigurable Sporadic Tasks

new tasks are modified, decreases and becomes lesef the arrival of sporadic tasks, our proposed algo-
than or equal to 1 and we can deduce that the systemrithm is optimal and gives better results than others

is now feasible. for a big number of arrival sporadic tasks and in over-
load conditions, butin a small number of tasks or light
Running Example 2: workload, OEDF algorithm is optimal but not strictly

We apply our contribution to this second running since it gives results close to that of the solutions of
example and we could observe that the recalculation MIN, OPASTS and HPASTS algorithms, but it is ef-
points of the utilization factor, when parameters of ficient and effective.

new tasks are modified, decreases and becomes lesMoreover, if the number of solutions presented by the
than or equal to k on the case of multiprocessor intelligent agent to the user increases, then chances
systems and we can deduce that the system is nowof executing more new added tasks increase and the

feasible. performance of the real time scheduling is more effi-
cient. This is due to the fact that the reconfiguration
4.2 Simulations issues are increased, the user selects the best solution

which gives the minimum utilization factor of the sys-

To quantify the benefits of the proposed approach tem and ameliorates the response time and hence the
(OEDF algorithm) over the predictive system shut- chances of executing more new tasks are increased as
down (PSS) approach, over the MIN algorithm, the Well. i . ;

OPASTS algorithm and over the HPASTS algorithm. The agent should define the different solutions for the
We performed a number of simulations to compare USer. In this case, the user can choose the best solu-
the response time and the utilization processor undertion that satisfies functional requirements. T_hese re-
the four strategies. The PSS technique assumes théults were suggested by the tool RT-Reconfiguration
complete knowledge of the idle periods while the and give a feasible system which is proven also by
MIN algorithm assumes the complete knowledge Cheddar.

of the arrivals of sporadic tasks. For more details

about both four techniques, you can see (Mani

B. Srivastava, 1998). The OEDF schedulingresultis 5 CONCLUSIONS

shown in figure 2.

This paper deals with reconfigurable homogeneous
multiprocessor systems to be implemented by hybrid
systems composed of a mixture of periodic and spo-
S radic tasks that should meet real-time constraints. In
this paper, we propose an optimal scheduling algo-
g ——ar rithm based on the EDF principles and on the dynamic
. reconfiguration for the minimization of the response
time of sporadic and periodic constrained deadline
i real-time tasks on multiprocessor systems and proven
= ‘ it correct. Finally, our important future work is the
Figure 2: Processor Utilization. generalization of our contributions for the Reconfig-
urable real-time embedded systems.

uuuuuuuuuuuuuuu

|
a0

4.3 Discussion

In experiments, if the resulting U 1, we setU(t)to REFERENCES

be 1. We varied the average processor utilization from

the light workload (10 tasks) to heavy workload (100 A.K.MOK (1983). Fundamental Design Problems of Dis-
tasks) generated randomly. We observe that our ap- tribute_d Systems for The HardReal-Time Environmc_ent
proach, by the solutions of the OEDF algorithm gives I:gg’:;g:yﬁ%ﬁ"’&m‘;-u':"e'rTé'-c(i:eSrgeR'ﬁz’s g:rli; ;g(tatsslslh
us the minimum bound for response time and utiliza- . ’ i
tion factor. This observation \E)vas proven by the re- stitute of Technology, Massachusetts, USA.

. . . Al-Safi, Y. and Vyatkin, V. (2007). An ontology-based
sults given by OEDF algorithm which are lower (bet- reconfiguration agent for intelligent mechatronic sys-

ter) than these of the solutions given by the predic- tems Int. Conf. Hol. Multi-Agent Syst. Manuf., vol.
tive system shutdown approach, the MIN algorithm, 4659, pp. 114-126, Regensburg, Germany, 4th edition.
the OPASTS algorithm and the HPASTS algorithm. Brocal V., BalbastreP., B. R. R. L. (2011Yask period se-
Also, we observe that, when we have no knowledge lection to minimize hyperperiod, Emerging Technolo-

387

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

gies& Factory Automation (ETFA), IEEE conference
on, pp.1-4, 2011 doi: 10.1109/ETFA.2011.6059178,
Toulouse, France, 16th edition.

Buttazzo, G. and Stankovic, J. (199%ED: Robust Earli-
est Deadline Schedulingnt. Workshop On Respon-
sive Computing Systems, Austin, 3rd edition.

C. Angelov, K. S. and Marian, N. (2005Design models
for reusable and reconfigurable state machinésT.
Yang etal., Eds., Proc. of Embedded Ubiquitous Com-
put.

Dertouzos, M. (1974).Control Robotics: The Procedural
Control of Physical ProcessesProceedings of the
IFIP Congress.

H. Gharsellaoui, M. K. and BenAhmed, S. (2012).
Feasible Automatic Reconfigurations of Real-Time
OS Tasks IGI-Global Knowledge, USA, isbnl3:
9781466602946 edition.

J. Legrand, L. (2004).Cheddar : a Flexible Real Time
Scheduling Framework ACM SIGAda Ada Letters,
volume 24, number 4, pages 1-8. Edited by ACM
Press, ISSN:1094-3641.

M. N. Rooker, C. Subder, T.'S. A. Z. O. H. and Ebenhofer,
G. (2007). Zero downtime reconfiguration of dis-
tributed automation systems: The CEDAC approach
Int. Conf. Indust. Appl. Holonic Multi-Agent Syst.,
Regensburg, 3rd edition.

Mani B. Srivastava, Miodrag Potkonjak, I. H. (1998pn-
Line Scheduling of Hard Real-Time Tasks on Vari-
able Voltage Processorinternational Conference on
Computer-Aided Design (ICCAD '98), San Jose, Cal-
ifornia, USA, 8th edition.

P. Balbastre, I. R. and Crespo, A. (20025chedulability
analysis of window-constrained execution time tasks
for real-time control 14th Euromicro Conf. Real-
Time Syst., 14th edition.

S. Baruah, G. Koren, B. M. A. R. L. R. and Shasha, D.
(1991). On-line Scheduling in the Presence of Over-
load. IEEE Symposium on Foundations of Computer
Science, San Juan, Puerto Rico.

T. Tia, J. W.-S. Liu, J. S. a. R. H. (1994)A linear-time
optimal acceptance test for scheduling of hard real-
time tasks Technical report, Department of Computer
Science, University of illinois at Urbana-Champaign,
Urbana-Champaign.

West, R. and Schwan, K. (1999).Dynamic window-
constrained scheduling for multimedia applications
IEEE 6th Int. Conf. Multi. Comput. Syst., 6th edition.

X. Wang, M. K. and L, Z. W. (2011) dynamic low power
reconfigurations of real-time embedded systerims
Proc. Pervas. Embedded Comput. Commu. Syst., Al-
garve, Portugal, 1st edition.

388

