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Abstract: The performance of modern flour mills depends crucially on value-engineering decisions involving optimal 
mixing of up to 80 intermediate product streams into at most 6 final product streams during continuous 
operation. Optimal mixing decision depends on given physical properties and yields of intermediate 
streams, goals and constraints on physical properties and yields of final streams, physical and quality 
constraints on mixing decision variables, and qualitative judgments relating value of final streams to their 
physical properties. In a previous work, the authors presented an interactive tool that guided the production 
personnel towards an optimal decision for fractions of each intermediate stream that should be piped to each 
final stream. This tool could exploit multiple Linear Programming computations and graphic user-interface 
to enable scenario overview and manoeuvring with no perceptible time lag. However, it cannot be used in a 
majority of flour mills where each intermediate stream is diverted to a single final stream using physical 
flaps. The mixed-integer programming required in this case renders the tool too slow for interactive use. In 
this work, a new tool is developed for the prevalent case of discrete decision variables, which enables 
computations and graphic interface for scenario manoeuvring without prohibitive time lag.  

1 INTRODUCTION 

Modern flour mills usually process a mixture of 
different wheat grains through about a dozen 
processing stages connected in series and parallel. In 
each stage, grain particles are ground further and the 
resulting particles are separated into various streams, 
some of which go on to further processing stages 
while some others are withdrawn as intermediate 
product streams. This generates about 30 – 80 
intermediate streams with different physical 
properties and yields. These intermediate product 
streams are mixed in continuous operation to 
generate a mere 4 – 6 final product streams, which 
are stored in product silos and then packed for 
shipping.  

The decision, how to mix the many intermediate 
streams into a few product streams, is crucial for 
generation of maximal sales value while accounting 
for many constraints on the physical properties and 
yields of the final streams, as well as on the mixing 

decision variables. Since usually the sales value of 
the final streams is not known as a function of their 
physical properties, but can only be judged 
qualitatively by the production personnel, tools are 
needed to guide the decision process by showing 
overviews of the compromises involved in the 
various scenarios and letting decisions be made 
successively and iteratively for each final stream. 
This involves prolonged interactive use of the tool 
until the final decision is reached. The tool must 
therefore not only offer an intuitive and convenient 
graphic interface, but also be computationally fast in 
order to show scenario overviews and to allow 
manoeuvring through scenarios without debilitating 
time lag. 

In a previous work (Keller and Agarwal, 2012), 
the authors presented a tool that solved the above 
challenges and was successfully tested in a real flour 
mill. The tool dealt with the computational speed by 
using multiple Linear Programming optimizations 
implemented with an accelerated algorithm. 
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However, this solution is not applicable to a majority 
of flour mills where each intermediate stream is 
completely diverted to a single final stream, and no 
splitting of an intermediate stream to multiple final 
streams is possible due to constraints of the physical 
flaps installed in the piping. In this work, therefore, 
a new tool is developed for the situation involving 
integer mixing-decision variables.  

For the mixed-integer programming problem at 
hand, many well-known algorithms already exist, in 
principle. Some of these algorithms are summarized 
in Chen et al. (2010). Employing these algorithms to 
the problem at hand would mean optimizing up to 
480 binary variables (for upto 80 intermediate 
streams multiplied by up to 6 final streams). Since, 
for binary variables, the Linear Programming 
algorithm must be coupled with a Branch-and-
Bound procedure, this high number of binary 
variables involves prohibitive computational time. 
To circumvent this drawback, the problem is solved 
here not for all final streams together, but for one 
final stream at a time. This decoupling is feasible 
and sensible for the problem at hand, because the 
production personnel needs to specify physical-
property constraints for each final stream, and 
prefers to do this only by specifying them (and 
obtaining results) for one final stream at a time, 
starting with the most valuable final stream. 

Solving the decoupled problem for one single 
final stream is similar to the problem addressed in 
recent literature for distributed power-network 
operation (Borghetti et al., 2011). The latter, 
however, deals only with power as a single “physical 
property” and with a-priori known, fixed constraints 
for this physical property, whereas the problem at 
hand involves up to 6 different physical properties, 
and, more importantly, their constraints are not 
known and cannot be specified a priori. The main 
special feature of the problem at hand is that the user 
needs to see the Pareto-optimal solution for all 
possible physical-property constraints, so that he can 
specify (actually, select) the constraints in an 
informed manner, knowing the feasibility and the 
influence of his choice on the final solution.  

Precisely this special feature makes the use of 
existing solutions computationally prohibitive for 
the current problem. Computing and displaying all 
binary solutions for the entire range of physical-
property constraints would be extremely time 
consuming. To circumvent this issue, a new solution 
strategy is used in this work that presents to the user 
not the binary solutions, but instead a continuous-
solution space for the entire range of constraints. 
Computation of the continuous-solution space 

involves only Linear Programming, but no Branch-
and-Bound procedure, and is consequently fast. The 
user can then conveniently analyse the solution 
space and specify a (usually much narrower) range 
of feasible constraints that she wants to focus on. 
The solution procedure then generates all binary 
solutions in the vicinity of the continuous solution. 

The new tool circumvents the prohibitive 
computational burden for the mixed-integer 
programming problem by dividing the problem into 
several sub-problems, by exploiting the continuous-
decision-variable solution as an anchor, and by using 
an efficient procedure that employs Linear 
Programming and Branch-and-Bound methods 
intermittently to obtain binary solutions in the 
vicinity of the anchor. A special graphic interface is 
additionally designed to present flexible overviews 
of resulting scenarios to the user. The new tool 
allows fast, interactive decision making for the 
considerably more challenging situation of discrete 
decision variables. The tool was tested successfully 
on real plant data. 

2 PROBLEM FORMULATION 

The production personnel in modern flour mills is 
faced with, among others, the following crucial 
decision. For each of the 30 – 80 intermediate 
product streams withdrawn continuously from the 
mill, the personnel has to decide, which of the 4 – 6 
final product streams it should be diverted to. In a 
majority of flour mills, this is an integer decision 
that can take up to 6 values for each intermediate 
stream (see Fig. 1). 

The following facts render this decision difficult. 
All intermediate and final streams are characterized 
by identical physical quality parameters, 4 – 6 in 
number. These properties are independent of each 
other. Each property “mixes” linearly with respect to 
the weight fractions. The yields (or flow rates) and 
the physical properties of the intermediate streams 
are given, whereas those of the final streams depend 
on the decision and are subject to various 
constraints. For example, a particular final stream 
may represent a high-purity flour constrained by an 
upper limit on the physical property “ash content”. 
Another final stream may have a low yield limit due 
to an already known sales to a particular customer, 
or a high yield limit due to physical limitations of 
piping, silo, or inventory. In addition, the flaps used 
to divert an intermediate stream to a particular final 
stream may have limitations in that a flap can 
physically  output  only  to  certain  final  streams  or  

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

496



 

Figure 1: The decision problem. 

quality constraints forbid it to output to certain final 
streams. The decisions for all intermediate streams, 
all final streams, all physical properties, and all 
yields are interconnected in a complex way. 

The decision making is complicated further by 
the fact that, ultimately, the final streams should 
have the highest possible sales value, but 
characterization of this value is elusive, since the 
function relating the sales price to the physical 
properties is not fixed, or at least not known. The 
user can only judge this value in a qualitative, 
comparative way. 

Obviously it is not possible even for an expert 
personnel to make this decision in a near optimum 
way. The decision is therefore usually determined by 
on-line trial-and-error based on experience. It is far 
from trivial to develop an appropriate decision-
support tool for this decision, since the tool must 
optimize possible solutions for the entire range of 
goal specifications, present all options and 
compromises to the decision-maker in facilitating 
overviews allowing for multiple dimensions, 
conserve maximum flexibility for further steps while 
making decisions in a particular step, and recompute 
and redisplay all outputs without prohibitive time lag 
when any user-input is changed. 

A tool for supporting the above decision faces 
several challenges. 

1. Qualitative Judgement of Value: Since the value 
of flours cannot be formulated explicitly as a 
function of the flour properties and yields, a 
decision-support tool cannot simply output a 
unique optimal answer. Instead, the tool must 
present all non-inferior outcomes and 
compromises.  

2. High Dimensional Space: Since large numbers 
of properties, yields, intermediate streams and 
final streams are involved in the decision-
making, the resulting high dimensionality is 
challenging for the tool not only 
computationally, but also in view of the 2D 
graphic interface.  

3. Need for Quick Reaction: The entire decision-
making with the support of the tool involves 
scores of clicks and inputs from the user, while 
each time the user appraises the tool output 
before making the next click or input. The tool 
must therefore respond within 15 – 20 seconds 
after each click or input, so that the new result is 
quickly visible for appraisal. Even then, the user 
needs dozens of minutes of interactive use to 
arrive at the complete final solution. 

3 SOLUTION PROCEDURE 

In principle, for the given problem, the tool must 
calculate and display all discrete non-inferior 
solution points, covering all intermediate and final 
streams simultaneously. This is a formidable task 
that would require unimaginably high computation 
time, even using super computers.  

3.1 Solution Strategy 

A new solution strategy is developed that avails 
itself of several accelerating improvements, so as to 
achieve computation times of 15 – 20 seconds for 
displaying the needed results. 

Decision: 
Each intermediate stream should be directed to which final stream? 

Goal: 
Maximize final stream value under a-priori unknown constraints. 

_  _  _  _  _  _

30 – 80 intermediate streams with known properties & yields. 

4 – 6 final streams with a-priori unknown properties and yields 
that are determined interactively between the user and the tool. 

Performance�Optimization�in�Intelligent�Manufacturing�-�Decision�Support�System�for�Value�Engineering�in�Flour�Mills

497



 

3.1.1 Stepwise Decision for each Final 
Stream 

The decision in the above mixed-integer problem 
involves up to 80 decision variables (one for each 
intermediate stream), each of which can take up to 6 
discrete values (one for each final stream). The 
mixed-integer problem is broken down to up to 6 
sub-problems (one for each final stream). In each 
sub-problem, each of the up to 80 decision variables 
can take only 2 discrete values (yes/no, indicating 
whether that intermediate stream is directed to the 
sub-problem final stream or not). The massively 
complex mixed-integer problem is thus reduced to a 
few much simpler, mutually decoupled binary 
problems. The consequence of this reduction is that 
the decisions for each final stream can be made only 
successively, and not all at once.  

It turns out that, as in the previous work (Keller 
and Agarwal, 2012), this poses no limitation for the 
user, but is indeed in line with what the user would 
prefer anyway. Due to the complexity of the given 
problem, the user cannot simultaneously make 
decisions for all final streams, even with the help of 
a tool. The decision-making is therefore preferably 
performed in steps, one step for each final stream, 
usually beginning with the most valuable flour 
stream and ending with the least valuable. The above 
problem reduction allows the user to make a step 
decision based on the results of previous step 
decisions, as well as to revert to and re-adjust a 
previous step decision.  

3.1.2 Continuous Solution as Anchor 

Even for a reduced sub-problem (for a single final 
stream) as stated above, the number of possible 
combinations of all binary decision variables is 
formidably large. Computing all non-inferior 
combinations for a sub-problem is therefore not 
practical. A further insight into the problem leads to 
a considerable relief in this respect. 

Even a cursory reflection of the problem reveals 
that the final solution of the binary-variable problem 
must lie close to the solution of the continuous-
variable problem in the decision-variable space. This 
holds not only from the process point-of-view, but 
also from the viewpoint of the user. From the 
process aspect, a unique optimal solution does not 
even exist a priori, since the judgment of “value” is 
merely qualitative and comparative, but not 
absolute, i.e. the “optimal” solution is essentially 
chosen by the user as a best-judged compromise. 
From the user viewpoint as well, it is easier to first 

“choose” a continuous solution, and then choose an 
implementable binary solution in its vicinity. 

The solution strategy thus lets the user first select 
a sub-problem solution in the continuous space, as in 
the previous work (Keller and Agarwal, 2012). Fig. 
2 shows an example selection from the previous 
work.  

 

Figure 2: An example of the selection of a solution point 
by the user in the continuous decision space (Keller and 
Agarwal, 2012). (Figures 2 and 4 show realistically 
created artificial data for illustration, since the actual 
industrial data used for the tests is classified.) 

The solution strategy in the current work thus 
can use the selected point in the continuous space as 
an anchor, and needs to merely compute all non-
inferior binary solutions in a reasonable vicinity of 
this point. The computational burden is reduced 
considerably through this anchoring, but is still 
exorbitant. 

3.1.3 Linear Programming with Relaxation 
and Branch-and-Bound  

The problem of finding binary solution points in the 
vicinity of the continuous solution anchor point is 
not amenable to Linear Programming (LP) solely, 
since the latter delivers continuous values for the 
decision variables. Finding binary points in the 
vicinity would involve setting each continuous-value 
decision variable to either 0% or 100%. This gives a 
set of branches, for each of which another LP 
problem with fewer decision variables is solved. The 
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branches with significantly poorer result than the 
anchor are terminated, and in the remaining 
branches the decision variables with continuous 
values are set again to 0% and 100%, creating the 
next set of combinatorial branches. This Branch-
and-Bound procedure, coupled with an LP solution 
at each branch, and subsequent reduction in the 
number of decision variables in each branching 
stage, is repeated until no more branches are left. 

The above procedure is still computationally 
prohibitive, since the LP solutions at each branch 
continue to involve a large number of decision 
variables with continuous values. This large number 
represents the number of basic variables in the LP 
problem and equals the number of properties 
involved plus one yield (i.e. up to 7). The solution 
strategy therefore resorts to a relaxation method that 
introduces auxiliary relaxation variables that can 
take continuous values by becoming basic variables, 
thereby relieving (at least) a corresponding number 
of decision variables, which in turn become non-
basic, take a discrete 0-or-1 value, and lead to no 
new branches. In practice, it was noticed that, when 
yield is included as a relaxation variable, a 
significantly higher number of decision variables is 
“relieved” in this way, since not only the auxiliary 
relaxation variables, but also several other auxiliary 
variables in the LP formulation then become basic 
variables.  

The relaxation can be introduced for yield and/or 
property variables, and allows that the value of these 
variables in the anchor can be violated to a certain 
extent. This “extent” can be specified with certain 
weights, which could be optimized or selected by 
trial-and-error. Two cases were tried in this work: 
relaxation of yield only, and relaxation of yield as 
well as all properties. In the first case, the relaxation 
weights could easily be set by trial-and-error, since 
their value is not very sensitive with respect to the 
final result. In the latter case, however, setting the 
relaxation weights for the properties is much more 
difficult, not only because of the higher number of 
coupled weights involved, but more so because the 
choice of these weights is extremely sensitive with 
respect to the final result. This solution avenue was 
therefore dropped in favour of relaxation only with 
respect to yield. 

The above relaxation procedure is a variation of 
the relaxation methods reported in the literature 
(Guan et al., 2003; Lee et al., 2009). In these 
methods, the Lagrangian relaxation weights serve to 
penalize the constraint violation, i.e. for the problem 
at hand, it would penalize the deviation of the yield 
and property values from the anchor values. In the 

procedure used above, the relaxation weights serve 
to reduce the number of decision variables that come 
out to be basic variables and consequently lead to 
new branches. 

3.2 Definitions 

nF number of intermediate streams 

nP number of final streams 

nk number of properties 

i index for intermediate streams 

p index for final streams 

k index for properties 

ci cost of i-th intermediate stream 

rk 
weighting factor for scaling of k-th 
property 

Fi,p 
yield of i-th intermediate stream that is 
directed to the p-th final stream 

Fi,max 
maximum yield of i-th intermediate 
stream that is available 

Pp yield of p-th final stream 

Pp,d increment for p-th final stream 

wk,i 
weight fraction of k-th property in the 
i-th intermediate stream 

Xk,p 
weight fraction of k-th property in the 
p-th final stream 

Xd weight fraction of properties in Pp,d 

Sr 
matrix to select streams optimized 
using LP in the mixed-integer problem 

Sf 
matrix to select streams with fixed 
given values that are not optimized 

nf 
number of streams with fixed given 
values that are not optimized 

V 
vector with fixed given values for 
streams selected using Sf.  
(0 = not used,  1 = used) 

zi 
fraction of a selected stream,  iz 0,1  

with 0 = not used and 1 = used. 
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In addition, let: 

 
   
 

   

k,i w F

k,p k p P k,p k

p i,p F

T

m

W w , n n

X x , n n ,X x , n 1

F F , n 1

1 1 1 1 , m 1

   
         
   

 

(1)

3.3 LP Formulation for Splittable 
Intermediate Streams 

For the p-th final stream, the basic LP-problem with 
splittable intermediate streams can be formulated as 
follows: 

 

F

F

p p p

T
n p p

T
pn

p
p p

p,i i,max

i p,i
i

P p

W F X P

1 F P

P1
als Matrix : F

X PW

0 F F , i

J c F

F : arg max J F







   
   
  

  

 





 

(2)

Here, the objective function J is represented as a cost 
criterion for intermediate streams. The cost factors ci 
can thereby represent either actual costs of these 
flours or the strength of the user's a-priori 
preference for wanting to use a particular 
intermediate stream. 

i k,p k,i k
k

c x w r


   (3)

The above formulation is completely defined and 
solvable when the yields and properties of the final 
streams are predefined. But as mentioned above, this 
is not the case here.  

For the mixed-integer optimization in the present 
situation, it is necessary to redefine the LP 
formulation such that intermediate streams that are 
predefined to be zero or Fi,max  get removed a priori. 

 
p,r r p

p,f f p

F S F

F S V F



 
 (4)

Here Sr selects streams that can be varied in the 
range 0 to Fi,max, and Sf  selects streams that are set 
to 0 or Fi,max depending on the value 0 or 1 in the 
vector V. The LP formulation then becomes: 

 

 

 

k

F,r F,f

r pT T
r P n p,min p f f max

p

r pT T
n p n f max

p

p,i i,max

p p,max

i p,i
i

r p p r p p

S F
W S P I X P WS S V F

X

S F
1 0 P 1 S V F

X

0 F F , i

0 X X

J c F

S F X : arg max J S F X



 
     

 
        

  

 

 

      







 

 

(5)

or in matrix form: 

 
 

 

F,r F,f

k

T T
n p n f maxr p

T T
pr P n p,min p f f max

p,i i,max

p p,max

i p,i
i

p p p p

1 0 P 1 S V FS F

XWS P I X P WS S V F

0 F F , i

0 X X

J c F

F X : arg max J F X



    
     

        

  

 

 

      




 

 

 

 

(6)

 

3.4 LP Formulation with Relaxation  

The above formulation now needs to be modified to 
include relaxation for yield, so as to force the 
streams to be close to 0 or 100% of the intermediate 
stream yield (see section 3.1.3). This is achieved by 
allowing certain tolerances in the constraints. From 
LP perspective, this creates additional basic 
variables, such that the streams will take only 
discrete values at either the upper or the lower 
bound. For this purpose, define: 

Fi  =  zi*Fi,max 

p p,soll p, p,P P P P     
(7)

where Pp,soll represents a given minimal yield that 
must be reached and Pp,+ and Pp,- represent relatively 
small corrections to it. The latter appear in the 
formulation as products with the property weight 
fractions, leading to a bilinear optimization problem. 
In order to avoid this bilinearity, the property weight 
fractions in these cross-terms should be fixed. This 
can be achieved by iterating the values of the 
property weight fractions starting from the anchor 
value.  

The following LP formulation then results: 
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 

 

k

max F,f
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pT T
max,diag r P,soll n d d p,min p,soll f f max

p,

p,

r

p TT T
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p,

p,
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p f p,max

p, max p, m

S z

X
WF S P I X X X P WS S V F

P

P

S z

X
F S 0 1 1 P 1 S V F

P

P

0 z 1, i

0 X X

0 P P , 0 P P











 

 
 
        
 
  

 
 
       
 
  
  

 

   







 

 

 

ax

i i,max F, p, F, p,
i

r p p, p, r p p, p,

J c z F P P

S z X P P : arg max J S z X P P
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

   

   

      



 

(8)

or in matrix form: 

 
 

 

F ,fmax

k

r

TT T

p,min n f maxr p

T T
p,dmax,diag r P,min n d p,min p,min f f max

p,
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r

T pT

max r F, F,

p,

S z

P 1 S V FF S 0 1 X1

PXWF S P I X X P WS S V F

P
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0 X X

0 P P

S z

X
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P







 



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  

 

 

   

 
                  
 

  

 



 


  T T

max m m

p,

r p p, p,

c F S S z

P

S z X P P : arg max J





 





 
 
 
 
 
 

  





(9)

3.5 Mixed-Integer Procedure for  
Non-Splittable Intermediate 
Streams 

In the proposed solution procedure for the mixed-
integer problem at hand, the solution to the LP 
problem in Eq. 9 is taken as the anchor starting point 
to search for binary variable solutions in its vicinity. 
The above LP problem comprises np+3 equations 
and nF-nf+2 variables that determine the split of the 
intermediate streams. The chosen form for the 
solution of this LP problem generates additional 
np+3 auxiliary variables based on the number of 
equations. When the LP problem has been solved, 
out of all variables precisely np+3 variables emerge 
as basic variables and take values that do not lie on 
the constraints. If one of these np+3 basic variables 
belongs to the set zi, then the corresponding 
intermediate stream gets split.  

Since this split is not acceptable for the mixed-
integer problem at hand, a combination with the 
Branch-and-Bound method is used. Branch-and-
Bound methods have a long history (Lawler and 
Wood, 1966) for solving mixed-integer problems not 
only in conjunction with Linear Programming using, 
e.g., rules (Hansen et al., 1992) or heuristics 
(Wolsey, 1980), but also for quadratic (Vielma et al., 
2008) and nonlinear (Leyffer, 2001) problems. 

Using the Branch-and-Bound method for the 
problem at hand, when one or more of the np+3 basic 
variables belong to the set zi, then several new LP 
problems are generated using all possible integer-
value (0 or 1) combinations as a-priori fixed values 
of these variables. All these LP problems are then 
solved, and those branches are discarded that lead to 
a considerably poorer objective-function value than 
the source-branch LP solution. Generation of further 
LP problems with new branching ends when all 
branches get discarded. 

3.6 Formal Solution Procedure 

The above procedure is formalized as follows. 
Analogous to the definition of Sr and Sf, define Ir 

and If as sets of indices for streams that are 
optimized and that are fixed, respectively, and I as 
the set of indices for all streams. Define 
corresponding vectors zr and zf indicating fractions 
of the intermediate stream that go into a final stream. 
The vector zf containing fixed streams thus only 
comprises values 0 and 1, whereas the vector zr 
starts out with real values and approaches the values 
0 or 1 during the optimization.  

Let the kth mixed-integer LP problem, LPm,k, 
determine zr, Ir, and the objective function value as: 

(zr,k, Ir,k, Jm,k)  =  LPm,k(zf,k, If,k) 
In the resulting vector zr,k, the indices for which the 
value is not 0 or 1 form an index set Ir,k. Next, all 
(0,1)-combinations are determined for each zr,k,i with 
i  Ir,k. This generates a set of vectors Zp,k that must 
then be combined with the corresponding fixed-
value vector zf,k, together with its associated index 
set If,k. The result is a set Lk+1 of pairs (zf,k+1, If,k+1) 
for zf,k+1  Zp,k  zf,k and If,k+1 = Ir,k  If,k. Each of 
these pairs is then solved as an independent LP 
problem.  

This procedure is repeated until all intermediate 
streams take only the values 0 or 1, i.e., until If,k+1 
comprises indices for all intermediate streams. 

A flow diagram for the procedure is shown in 
Fig. 3. During the computation, the size of the set L 
is shown to the user, and the user can adjust the sub-
optimality parameter  to influence the number of 
solutions that would be generated. 

4 GRAPHIC INTERFACE 

The graphic interface must present all options and 
compromises to the user in facilitating overviews. 
The  user  begins  with  a  search  in  the continuous- 
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Figure 3: Schematic flow diagram for the mixed-integer search procedure. 
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Figure 4: Graphic interface for integer solutions in the vicinity of the anchor continuous solution. 

solution domain in order to specify an anchor, for a 
particular selected  final product  stream. This search 
is guided by well-structured graphic overviews and 
flexible input possibilities as shown in the previous 
work (Keller and Agarwal, 2012). After a 
continuous-solution anchor has been selected for the 
final product stream, the user clicks a button to 
switch to the integer-solution mode, which 
calculates and displays the mixed-integer solutions 
in the vicinity of the anchor continuous solution, 
using the solution procedure described above. 

The user interface for displaying these results is 
shown in Fig. 4. Since slightly sub-optimal solutions 
might get prefered by the user based on 
considerations not available in the above problem 
formulation, and since several near-optimal 
solutions might yield objective-function values quite 
close to each other, the tool displays all such results 
in a convenient overview, and allows the user to 
flexibly and comfortably select the particular 
solution that is best in view of the other 
considerations. 

On the left-hand side of the graphic interface in 
Fig. 4, the user sees, for the particular final product 
stream at hand, which intermediate product streams 
would be used (value 1, colour green, shade light 
gray) and which would not be used (value 0, colour 
red, shade dark gray). Each relevant solution is 
thereby shown in a single column. At the bottom of 
this part of the display, the user can provisionally 
select one particular solution by clicking it green (or

shade light gray). 
On the right-hand side of the graphic interface, 

the user sees, for the various solutions, the values of 
the physical properties versus the yield of the final 
product stream at hand. Thereby, the solution 
selected on the left-hand side, as well as the anchor 
solution (as intersecting dash-dotted lines), are 
highlighted for easier judgment. At the bottom of 
this part of the display, the user can select a range of 
yields in order to narrow down the number of 
solutions that are displayed on the left-hand side.  

5 RESULT 

Tests in industrial cases confirmed that the tool 
fulfils the requirements of ease-of-use and 
flexibility. The results shown in the overview 
graphics were judged by the users as extremely 
useful. A decisive factor for the positive judgment 
by the users and their eagerness to use the tool was 
the relative quick reaction time of the computation 

 in the range of 10 – 20 seconds, whenever the 
user klicks the button for computing discrete 
solutions around the continuous-solution anchor, 
and 

 without any perceptible delay, whenever the user 
changes any other input. 

Compared to the manual decision making, the 
tool-supported decision showed a value increase of

Selected solution

Selection of streams

Physical property for chosen solution

Selected yield range

Split-mode solution
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 about 5%, which is considerable in this industry. 

6 CONCLUSIONS 

A novel decision-support tool is presented that 
solves the problem of optimally allocating each of 
many intermediate product streams in flour mills to 
one of a few final product streams, while accounting 
for uncorrelated physical properties of the streams, 
a-priori unknown properties and yields of the final 
product streams, and the lack of explicit formulation 
of "value" of the final product streams with respect 
to their physical properties. A fast solution strategy 
is developed that decouples the original problem into 
simpler problems for each final product stream, uses 
a fictitious continuous-space solution as an initial 
facilitating anchor, and computes several integer 
solutions in the vicinity of the anchor by combining 
Branch-and-Bound with multiple Linear 
Programming steps complemented by a relaxation 
scheme. The developed optimization solution 
enables display of results without annoying time lag, 
whenever the user changes any input in the user-
interface.  

In many mills, the relevant physical properties of 
the intermediate and the final product streams may 
include properties that do not “mix” linearly. The 
linearity with respect to the physical properties is a 
fundamental assumption in the above solution 
procedure, so that the tool cannot be used in cases 
where one or more properties “mix” nonlinearly. 
Fundamentally different solution procedures have 
been devised and implemented for this situation, and 
are currently being tested and refined. 
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