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Abstract: This paper presents a new methodical approach to the problem of collision avoidance of mobile robots 
taking advantages of multi-agents systems to deliver solutions that benefit the whole system. The approach 
proposed is based-on the information interchange among the involved agents. The implemented method has 
the next phases: collision detection, obstacle identification, negotiation, agreement, and collision avoidance. 
In addition of simulations with virtual robots, in order to validate the proposed algorithm, an 
implementation with real mobile robots has been developed. The robots are based on Lego NXT, and they 
are equipped with a ring of proximity sensors for the collisions detections. The platform for the 
implementation and management of the multi-agent system is JADE. 

1 INTRODUCTION 

The area of artificial intelligence (AI) has expanded 
considerably in recent years. It not only dominates 
the area of games versus computers, but nowadays it 
applies in many sectors like databases management 
or web pages. As it is well known, the main topic of 
AI is the concept of intelligent agent defined as an 
autonomous entity which observes through sensors 
and acts upon an environment using actuators 
(Russell, 2009). This definition is very close to 
services that a robot can provide, so the concept of 
agent often is related with robots, (Bruce et al., 
1997), (van Leeuwen, 1995), (Michalewicz, 1996). 

On the other hand, detecting and avoiding a 
collision is a previous step for overcoming the 
motion planning problem. In fact, collision detection 
has been inherently connected with the motion-
planning algorithms from the very beginning. 
Current planning algorithms require the collision 
detection of mobile and nondeterministic obstacles.  

Collision-detection techniques for mobile robots 
and obstacles can be divided into discrete collision 
detection (DCD), and continuous collision detection 
(CCD).  

The DCD algorithms involve stepping the 
motion of both the mobile robot and the mobile 
obstacle at a sample time rate. Collision tests are 

then checked for such configurations. A recent 
example is found in (Urmson et al., 2008). 
Nevertheless, the DCD algorithms may miss a 
collision between two consecutive configurations. 
This problem, termed tunneling, is overcome by 
using a dynamic time-step strategy (Schwarzer, 
Saha, Latombe, 2005). 

The CCD techniques are more effective because 
motions are not stepped. CCD algorithms basically 
make a return if a collision between the motion of 
two given objects is presented or not; and if a 
collision is going to occur then, the instant in time of 
the first contact is returned (Schwarzer et al., 2005); 
(Choi et al., 2006); (Redon et al., 2002); (Cameron, 
1990); (Tang et al., 2009); (van den Bergen, 2005), 
and (Bernabeu, 2009). 

In this paper, local collision detection strategies 
of autonomous mobile robots based on (Bernabeu et 
al., 2001) are improved with artificial intelligence 
and multi-agent coordination strategies to offer a 
new method of collision avoiding management.  

Two representative local collision-detection 
methods are ORCA (van den Berg, et. al., 2011) and 
DRCA (Lalish and Morgansen, 2008). These 
methods estimate the velocities of the nearby objects 
by means of a sensor system. In the presented work, 
the information perceived by each agent or robot is 
transmitted only to the in-sight agents using wireless 
communications. Then, the collision avoidance 
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technique in this paper combines local with quasi-
global strategies. 

2 METHODOLOGICAL 
APPROACH 

This paper expects to present a new methodical 
approach to the problem of collision avoidance of 
mobile robots, taking advantages of multi-agents 
systems (MAS) to deliver solutions that benefit the 
whole system. The method is divided into three 
basic concepts (see Figure 1) which are merged in 
this paper: obstacle detection by a mobile robot, the 
concept of abstraction robotic agent as a software 
agent within MAS, and distributed artificial 
intelligence as a method of communication and 
negotiation between these software agents. 

 

Figure 1: Diagram of the connection between concepts.  

Nowadays, the obstacle detection by mobile 
robots is not a new problem. In fact, there are many 
sensors on the market that allow, with more or less 
certainty, robots to know if there is an obstacle that 
stands between them and its trajectory, and where is 
that obstacle. This process is local, i.e. it is 
performed inside the robot. In the case of two 
mobile robots at the same scenario, each one 
represents an obstacle to the other, but neither is 
aware of it because it is handled as a local process. 
Therefore, the concept of robotic agent in a multi-
agent robotic system is proposed as a next level or 
upper layer to fix it and to manage a more intelligent 
solution. 

Multi-agent robot systems (MARS) represent a 
complex distributed system, consisting of a large 
number of agents-robots cooperating for solving a 
common task. Each agent of MARS is an 
independent system which manages subsystems like 
tasks execution, perception of environment by 
sensors, trajectory control, robots communications, 
etc. In this case, each agent of MARS represents a 
real physical mobile robot that informs its software 
agent of all it perceives. 

The ability of the MAS to provide intelligent 
solutions in a distributed architecture is well known. 
The ability of communication, cooperation and 
coordination between the agents, allows 
conversations, negotiations and deductions that local 

system itself could not perform. 
When a group of individual agents is involved in 

a MAS, it is necessary a mechanism for the agents 
coordination and communication. There are two 
main coordination mechanisms: one for cases in 
which the agents have common objectives and, 
therefore, they have to cooperate, and in other cases 
for which the agents are competitive and objectives 
are conflicting with each other, for which purpose, 
negotiation mechanisms are required (Huhns and 
Malhotra, 1999); (Singh and Huhns, 1999). Some of 
the negotiations mechanisms more used in the 
literature are the coalition, market mechanisms, 
bargaining theory, voting, auctions and allocation of 
tasks between two agents. More specifically, for 
automated negotiation techniques (Fatima et al., 
2001), (Rahwan et al., 2004) there are mainly three 
ones, based on: game theory, heuristics and 
argument.  

Communications have a very important role 
because negotiations depend directly on an effective 
communication. There are different agent 
communication languages (Austin, 1962); (Searle, 
1969), FIPA-ACL (FIPA Agent Communication 
Language) and KQML (Knowledge Query and 
Manipulation Language). 

In the development of methodologies for the 
design of multi-agent systems, researchers have 
focused their efforts on extending existing 
methodologies. These extensions have been made 
mainly on two areas: on the object-oriented 
methodologies and on Knowledge Engineering 
(Iglesias et al., 1999). A MAS is inherently 
multithreaded, each agent has at least one thread of 
control (Wooldridge, 2002). These characteristics 
make the MAS particularly suitable for the 
development of systems that operate in complex, 
dynamic and unpredictable environments. 

3 AVOIDING COLLISION 
METHOD 

The aim of this section is showing a review for 
obtaining the instant in time when two robots or 
agents in motion will be located at their maximum-
approach positions while they are following straight-
line trajectories (Bernabeu et al., 2001). 

The mentioned maximum approach is also 
calculated. Therefore, if the involved robots do not 
collide while they are following their respective 
motions, then their minimum separation is returned. 
Otherwise, their maximum penetration is computed 
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as a minimum translational distance (Cameron and 
Culley, 1986). 

A remarkable aspect is that both the instant in 
time and the corresponding minimum separation or 
maximum approach are computed without stepping 
any involved trajectory. 

Some collision avoiding configurations for the 
involved robots or agents are directly generated from 
the computed instant in time and maximum 
penetration. These collision-free configurations are 
determined in accordance with a given coordination 
between the robots or agents. 

3.1 Obtaining the Instant in Time 
and the Maximum Approach 

Consider two robots or agents in motion each one 
enveloped or modeled by a circle. Let A be a circle 
in motion whose start position at time ts is 
A(ts)=(cA(ts),rA), where cA(ts)2 is the A’s center at 
ts and rA is its radius. A is following a straight-
line trajectory whose final position at tg is given by 
A(tg)=(cA(tg),rA). Let vA2 be the A’s velocity for 
the time span [ts,tg]. 

Let B be a second circle in motion whose start 
and goal positions at the respective instants in time ts 
and tg are B(ts)=(cB(ts),rB) and B(tg)=(cB(tg),rB). The 
B’s velocity for the time span [ts,tg] is vB2. 

All the infinite intermediate positions of the 
mobile circle A for t[ts,tg] while A is in motion is 
parameterized by  with [0,1], as follows:  

 

 ))()((λ)()λ( :)),λ(()λ( sAgAsAAAA tctctccrcA 
 

(1)

and . [0,1]λ  ;  )λ(  sgs tttt  

Note that the positions A() and A(t), with 
t=ts+(tgts), are equal for all t[ts,tg] and [0,1]. 
All the infinite intermediate positions of the mobile 
circle B are analogously parameterized for [0,1] 
as indicated in (1). 

Observing equation (1) is easy to conclude that 
the maximum approach dM between in-motion 
circles A and B will be obtained by finding the 
parameter c[0,1] that minimizes 

 )(||)λ()λ(|| BABA rrcc   (2)
 

Once c is obtained, dM and the associated instant in 
time tM are computed as 
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Note that dM might be negative. If dM is negative, 

then dM holds a penetration distance and, 
consequently A and B will collide and the maximum 
penetration dM will be given at tM. If the maximum 
approach, dM, is zero, then A and B will be in contact 
at tM. Finally, if dM is strictly greater than zero, A and 
B will not collide for t[ts,tg], being its minimum 
separation dM at tM. 

The parameter c[0,1] is simply obtained by 
minimizing ||cA()cB()|| for all [0,1], i.e. by 
computing the distance from the origin point O to 
the straight-line cA()cB() (Bernabeu, Tornero, 
Tomizuka, 2001). Graphically, the previously 
explained distance computation is shown in Figure 
2, in accordance with equation (1), 
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Note that cA()cB() for all [0,1] is really a 
segment whose extreme points are respectively 
cA(ts)cB(ts) and cA(tg)cB(tg). These points are now 
referred to as c0=cA(ts)cB(ts) and c1=cA(tg)cB(tg). 
Then, the parameter c[0,1] is obtained by 
projecting O onto mentioned segment, O, as 
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The projected O is then  

 )(λ 010 cccO c   (7)
 

If the obtained c verifies c[0,1], then the instant 
in time when A and B will be located at their 
maximum approach positions is out of the given 
time span [ts,tg]. 

In case of collision, the positions where A and B 
present their maximum penetration are, as 
mentioned, cA(c) and cB(c) respectively. One of 
these positions can be minimally translated in order 
to bring both circles into contact by using the unit 
vector MTDv̂ , with 1||ˆ|| MTDv ,  

. 
||||

ˆ
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Figure 2: Finding the parameters c, dM, O, and MTDv̂ .  

3.2 Determining Avoiding Collision 
Configurations 

Let two circles A and B be considered enveloping 
two mobile robots or agents, and following the 
straight-line trajectories previously shown. 
Assuming that the previous distance-computation 
technique returns the parameters: c[0,1], dM<0, 
tM[ts,tg], and the unit vector MTDv̂ , then a collision 

between both mobile robots or agents has been 
predicted. The A and B positions where they would 
be at their maximum penetration dM, are respectively 
A(tM) and B(tM) with  
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An avoiding-collision configuration (position and 
time) for mobile circles A and B are generated by 
simple translating A(tM) and B(tM). Let Af(tM) and 
Bf(tM) be the mention collision-free configurations, 
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where cA(tM) and cB(tM) has been defined by (9). 
Parameter 1 is a safety threshold. If =1, then 
configurations cAf(tM) and cBf(tM) will be in contact. 
Finally, parameter [0,1] configures the degree of 
motion modification applied to each mobile robot or 
agent. In this way, if =1, then cB(tM) and cBf(tM) are 
equal and, consequently, mobile robot or agent B do 
not change its current motion. A graphical example 
is shown in Figure 3. 

The original A and B motions are divided in 
order to avoid a predicted collision. Therefore, A’s 
first submotion is defined from start position cA(ts) at 
time ts to goal position cAf(tM) at time tM. Meanwhile, 
A’s second submotion is defined from start position 

cAf(tM) at time tM to goal position cA(tg) at time tg. B’s 
motion is analogously divided. 

 

Figure 3: Avoiding collision configurations with =0.7 
and =1.03.  

4 HYBRID CONTROL 
COLLISION AVOIDANCE 

The implementation of the collision avoidance 
proposed methodology has six phases (see Figure 4). 
A scenario where multiple robots follow a path 
infinite straight line between two target points is 
considered. These two points are alternated when 
they are achieved. All robots have their 
representation as a software agent in the MAS which 
encompasses the whole system, so there is no 
moving object within the scene that is not a software 
agent. 

 

 

Figure 4: Phases of the proposed methodology.  
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Observing equation (1) is easy to conclude that 
the maximum approach dM between in-motion 
circles A and B will be obtained by finding the 
parameter c[0,1] that minimizes 

 

 Phase 1: Detection. The local system (each 
robot) has defined a detection object area. In the 
first phase, the local system of the robot detects 
an obstacle that may be a threat of collision at 
some point (from now threat-object) and 
calculates the position of threat-object in the 
global scenario. This position is sent to the agent 
who represents the local system in MAS to 
manage the threat as is described below. 

 Phase 2: Obstacle Identification. When an agent 
receives the position of a threat-object (from now 
threat-position) by the local system, it must 
identify what kind of threat it is: a moving object 
or a static object. To know this, it adds a distance 
(formula) to the threat-position to create a 
circular area of position of threat-object. The 
agent detects the threat (from now detector-
agent), consults the other agents to know who is 
located within that area of threat. If there is not 
any agent within that area, then the threat is 
identified as a static object threat (static-threat) 
and directly the Phase 4 is performed. Otherwise, 
the threat-agent is identified through 
communication among agents and the Phase 3 
starts.  

 Phase 3: Time to Talk, Negotiate and Resolve. 
When the two involved agents in a possible 
threat have been identified, the communication 
between them is used to obtain the information 
needed to apply the detection algorithm 
presented in 3.1. As already mentioned, the 
inputs of the algorithm are four: the positions of 
each of the agents involved in that instant (cA(ts), 
cB(ts)) and the target positions where they will be 
at time tg (cA(tg), cB(ts)).  The problem is that this 
time tg must be the same for the two robots and 
each one may take a different time to reach the 
assigned destination. Therefore, to calculate the 
time tg, the agents communicate to each other to 
know which one reaches its destination before. 
The agent that plans to take more time to reach 
their destination calculates an intermediate 
destination from its current trajectory and the 
arrived time of the other agent to its destination. 
In this way the two agents shared the time it 
takes to reach their destination and collision 
detection algorithm can be implemented. 

 Phase 4: Collision Detection Algorithm 
Application. As already mentioned, the input 

requirements to implement collision detection 
algorithm are: current position coordinates of 
detector-agent (cA(ts)), its destination, (cA(tg)), 
current position of threat-object (cB(ts)) and its 
destination (cB(tg)). If in the Phase 2, the threat-
object was identified as a static-threat, the target 
is the same as the initial position (cB(ts)= cB(tg)). 
Therefore the inputs are applied to the algorithm 
and it returns the probability of collision with the 
threat-object. In case there is no collision, threat 
is discarded and the method ends but if a 
collision is detected, the method informs to 
detector-agent the time of maximum penetration 
(tM) to be produced. 
The next step is to avoid the collision by the 
method described in section 3.2. If the object is a 
static-threat, the detector- agent should take over 
the entire cost of the collision avoidance (=1) 
and jump to Phase 6. Otherwise the negotiations 
between the two agents involved are opened to 
decide how much charge is allocated to each 

 Phase 5: Negotiation. To decide the load 
percentage () that each robot will have in the 
collision avoidance, the two agents communicate 
with each other and exchange parameters such as 
priority, the weight of the transported load, the 
difficulty of manoeuvring, speed at which each 
one moves, etc. In summary, they exchange a 
number of parameters that define the easiness or 
availability that each agent offers to change its 
trajectory and avoid collision. Once each agent 
agreed with the selection of , the detector-agent 
runs the last method described below. 

 Phase 6: Solve the Collision. The detector-agent, 
by the method 3.2, computes the two new 
positions that the robot should be achieve at time 
tM to avoid collision. The threat-agent receives, 
from the detector-agent, the avoidance position 
(cBf(tM)) and the time in which must be achieve. 
Both change their trajectories to go to the new 
destination partial (cAf(tM), cBf(tM)) at the right 
time. Once it’s reached, the collision is resolved, 
each robot continues its original path and the 
method ends. 

 

In order to test the effectiveness of this method, 
different scenarios with mobile robots has been 
simulated. Figures 5 and 6 show the executions 
obtained in two simulations. In the first one four 
robots (circles green, blue, black and pink) are 
considered. The robot initial positions are the 
corners of the arena, and they must arrive to the 
opposite corner (marked by a star). The figure also 
shows the detection area (a trapezoid in front of each 
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robot), and the final path described by the robot for 
the first seconds of the simulation. 

 

Figure 5: Simulation 1: Collision avoidance simulation 
with four robots. 

Figure 6 shows a similar situation but in this case 
there are four static obstacles, marked with black 
squares. 

 

Figure 6: Simulation 2: Collision avoidance simulation 
with four robots and static obstacles. 

5 PRACTICAL 
IMPLEMENTATION WITH 
MOBILE ROBOTS 

A practical implementation with mobile robots has 
been developed in order to test the robustness of the 
presented algorithm. The mobile robots used are 
LEGO Mindstosrms NXT and the platform for the 
management of MAS chosen was JADE. 

The JADE platform is completely implemented 
in JAVA. It supports coordination of multiple agents 
according to FIPA specifications and provides a 
standard implementation of agent communication 
language FIPA-ACL. 

JADE (http://jade.tilab.com) was originally 
developed by Telecom Italia and is distributed as 
free software being completely compatible with Java 
Development Kit (JDK) 1.4 or higher, including the 
functionality for basic agents, scheduling agents’ 
behavior, the implementation of FIPA ACL 
specification for sending and receiving messages, 
classes useful for programming FIPA protocols, 
information management using ontologies, etc… In 
addition, the platform also provides FIPA (AMS, 
directory facilitator and MTS) to run on one or more 
Java Virtual Machine (JVM) where each JVM is 
seen as an environment where agents can execute 
concurrently and exchange messages, organizing 

containers. 
On the other hand, LEGO Mindstorms NXT 

(http://mindstorms.lego.com) was introduced by on 
the International Consumer Electronics Show in 
2006 and nowadays is often used in the research 
community to prove theories and carry out practical 
developments. The firmware of the robot chosen to 
program this work has been LeJOS 
(http://lejos.sourceforge.net) because it offers object-
oriented programming in JAVA. 

For the practical experiment, two LEGO 
differential wheeled mobile robots have been built 
(Campion, Bastin, Dandrea-Novel, 1996). Each 
robot has defined two destinations points. In order to 
achieve the trajectory, a control strategy based on a 
pure pursuit algorithm (Wallace, et. al., 1985) was 
implemented in the robots. The LEGO robots have 
been equipped with a ring of proximity sensors to 
detect possible obstacles. Each ring has four SHARP 
IR (www.sharpsma.com) proximity sensors as 
peripherals of an I2C multi-master serial single-
ended computer bus. Those sensors provide a 
detection range over forty centimeters. 

Robots are connected to their software agents 
(computers) via Bluetooth and those computers are 
part of a network that forms the overall MAS 
through JADE. The connection diagram is presented 
in Figure 7. Each robot carries a triangle to detect its 
position from an overhead camera located at the top 
of the scenario. This camera is also used to 
monitoring and minimizing odometry problems. 

 

Figure 7: Control architecture for the practical 
experiments. 

These robots have multiple threads running 
different functional modules. Each of them has one 
module to control the robot trajectory, a second one 
for detection that manages the IR sensors and a third 
one for communication that receives and sends 
information to the software agent (see Figure 8). 

While IR sensors does not detect anything, the 
robot follows its fixed trajectory, but when 
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something is detected by IR, the communication 
module informs to the software agent and expects a 
solution to the possible collision from MAS. If the 
solution leads to a new destination for the robot, the 
communication module receives the new destination 
and sends it to the control module for change the 
path. 

The management of the agents in JADE is 
simple. When a software agent receives the position 
of a detected threat, the agent asks everyone if 
anyone is located in the threat area. Thus, if other 
robot is the threat, it’s identified as the threat agent 
and they exchange their destinations and speeds to 
verify if there will be a collision or not.  If finally 
there is it, they negotiate the way to avoid it and 
send the new destinations and speeds to their 
respective robots. 

In http://idecona.ai2.upv.es, a video 
demonstration of practical experiment with Lego 
robots (Robots Móviles folder, at videos multimedia 
gallery) and two compiled versions of the platform 
that allow the simulation with robots (Desarrollos de 
Software folder, at Results option, Project menu) can 
be obtained. The video shows how the robots try to 
follow their trajectories but they have to change 
them in order to avoid the collisions. 

 

Figure 8: Modules connection scheme between the robot 
and the MAS. 

6 CONCLUSIONS 

A collision avoidance method that takes advantages 
and benefits of MAS has been presented in this 
work. This method is located one level above the 
traditional methods of obstacle avoidance where the 
management is performed locally and the possible 
communications between the local systems are 
solved functionally. The application of techniques 
provided by the area of artificial intelligence to the 
robotic area opens a wide range of possibilities that 
offers more natural results and gives human 
characteristics of communication like negotiation 
between robots.  

This paper also introduces a degree of flexibility 
and negotiation between two agents or robots by 
means of a parameter, , in the collision avoidance 
strategy. This parameter quantifies the percentage of 
the original trajectory deviation of an agent while 
avoiding a predicted collision. In a future work, this 
percentage will be negotiated in accordance with an 
optimization of the dynamics and kinematic 
properties of the involved agents. 

This work has succeeded in unifying concepts of 
agent theory with concepts from the area of mobile 
robotics, providing more intelligence to robots and 
offering solutions that otherwise cannot be provided. 
The methodology has been tested both in 
simulations and in real executions with mobile 
robots. 

The kinematic configuration of the used agents is 
holonomic, then considering only linear trajectories 
might be acceptable. However, as a future work, the 
collision detection using another kind of movements, 
like natural Splines and Bezier curves are being 
considered. In this way, collision detection involving 
more than two agents are also being developed.     
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