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Abstract: This work tackles the problem of the localization of a robot in in large and cooperative environments using 
real-time data coming either from the robot onboard sensors or/and from the sensors in the environment. 
The paper focuses on the 3-DOF localization of a mobile robot that is to say the estimation of the robot 
coordinates (xmr, ymr, θmr) in a 2D-environment. The problem of nonlinear bounded-error estimation is 
viewed as a set inversion. The paper presents the theoretical formulation of the localization method in a 
bounded-error context and the parameter estimation based on interval analysis. Simulation results as well as 
real experiments show the contributions of the method. The method is able to easily integrate a large variety 
of sensors, from the roughest to the most complex one. The method takes into account a heterogeneous set 
of measurements, a flexible number of measurements, a statistical knowledge on the measurements limited 
to the tolerance, and the fact the measurements are acquired both from the robot onboard sensors and the 
environment sensors. The way that environment model inaccuracies can be taken into account is also 
presented. 

1 INTRODUCTION 

The ability of a mobile robot to perform various 
home services for human beings in cluttered or 
dynamically changing environment requires a 
reliable robot localization. In the context of the 
ubiquitous robotics many studies have attempted to 
improve the accuracy and the reliability of robot 
localization using the redundancy given by a sensor 
network. Works are divided into three approaches: 
localization based on homogeneous sensor network, 
localization based on hybrid sensor networks and 
localization based on sensor networks and onboard 
robot sensors. (Zhang et al., 2007) exploited a 
distributed and homogeneous sensor network using 
infrared sensors. The infrared sensors were 
suspended from the ceiling. (Han et al., 2007) 
proposed a localization system for mobile agents 
using passive RFID tags that were arranged on the 
floor of an indoor space. Others authors as (Shenoy 
and Tan, 2005) addressed the localization algorithm 
with a hybrid sensor network. For accurate 
localization the existing research might fuse sensor 
networks and general sensors, (Choi and Lee, 2009); 
(Choi and Lee, 2010) proposes a localization scheme 

based on RFID and a Sonar system. At last robot 
localization can be based on sensor homogeneous or 
hybrid sensor networks and onboard robot sensors 
(Murtra et al., 2010). 

The paper addresses the global localization of 
mobile robots operating in an indoor cooperative 
environment. The set of home sensors and robot 
onboard sensors builds a cooperative network robot 
space. Global localization refers to the problem of 
estimating the position of a robot (xmr, ymr ,θmr) in 
a 2D reference frame, given  the real-time data from 
the robot onboard sensors and the real-time data 
coming from sensors located in the environment. 

The paper describes a localization method based 
on interval analysis In the context of bounded-error. 
The method takes account: i) heterogeneous 
measurements, ii)a flexible number of 
measurements, iii) no statistical knowledge about the 
inaccuracy of measurements, only an admissible 
interval specified by lower and upper values; he 
interval is deduced from the sensor tolerance given 
by manufacturers and iv) measurements both 
coming from the robot onboard sensors and from the 
home sensors. 

The precise characterization of the measurements 
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errors is conceivable in a laboratory but not at a 
large scale in the framework of cooperative network 
space. 

The number and the diversity of sensors are 
obviously a difficulty for such specific 
characterization. The errors are usually expressed in 
terms of stochastic uncertainty models. Due to 
incomplete information about measurement process, 
a stochastic error approach is questionable. (Brahim-
Belhouari et al., 2000) proposes that the 
measurement error is no longer considered as a 
random variable with known probability density 
function but assumed as bounded between lower and 
upper values. The set representation is thus poorer 
but it requires less statistical knowledge on the 
variables. When the error of measurement on 
experimental data is known only in the form of a 
tolerance, which is often the case for the sensors or 
the network of sensors used in house automation and 
more generally in the context of ambient 
intelligence, the set approach is a well-suited 
approach. On the contrary and moreover if the 
problem is a linear and Gaussian problem, this 
approach is not justified because well solved by 
probabilistic approaches. 

The set approach gives a guaranteed result i.e. 
the solution contains surely the value. The set 
approach remains little used in the field of mobile 
robotics. (Jaulin et al., 2002) was interested in the 
localization of a robot starting from measurements 
of ultrasonic sensors by using the interval analysis 
and by proposing a treatment of the outliers under 
certain conditions. (Drocourt, 2002) uses the interval 
analysis for modelling inaccurate measurements of 
two omnidirectional sensors. This work only uses 
the measurements provided by onboard sensors for 
robot localization. This idea has been applied by 
[10] for locating a vehicle with inaccurate telemetric 
data. More recently, in the field of urban vehicles, 
works uses various sources of outside or onboard 
measurement (Reynet et al., 2009). (Gning, 2006) 
was interested in multisensor fusion by propagation 
of constraints on the intervals of measurement 
provided by the hybridization of a GPS, a gyrometer 
and an odometer. (Drevelle and Bonnifait, 2010) 
focused on the robustness of set methods in presence 
of outliers for multi-sensory localization. Our 
solution is based on works of (Jaulin, 2002), more 
precisely on the algorithm RSIVIA which allows the 
calculation of solutions by tolerating a number q of 
outliers. Although the advantages of the probabilistic 
methods, by far the most used and the best known 
ones, we have chosen a bounded-error approach 
based on the interval analysis for the following 

reasons.  
The only assumption to verify is that all the 

errors are bounded. The respect of this assumption is 
difficult to prove but there are techniques to reject 
outliers (Jaulin, 2009). If this assumption is verified, 
then the result is guaranteed. Moreover, as the 
dimension of the state vector, in our case the x and y 
position and the orientation of the robot, is equal to 
three, the data processing is relatively simple and 
fast.  

(Lambert et al., 2009) presents a bounded-error 
state estimation (BESE) to the localization problem 
of an outdoor vehicle. Authors claim that the biggest 
advantage of the BESE approach is the ability to 
solve the localization problem with better 
consistency than Bayesian approach such as particle 
filters. Experiments point out that the particle filter 
can locally converge towards a wrong solution due 
to bias measurements which lead to a huge local 
inconsistency. Similar experiments with an Extend 
Kalman Filter (EKF) show the same phenomenon. 
EKF strongly underestimates its covariance matrix 
in presence of repeated biased measurements. The 
efficiency and accuracy of the particle filter depend 
mostly on the number of particles. If the 
imprecision, i.e. bias and noise, in the available data 
is high, the number of particles needs to be very 
large in order to obtain good performances. This 
may give rise to complexity problems for a real-time 
implementation (Abdallah et al., 2008). 

The paper is organized as follows. Section 2 
describes the principles of the localization method 
by multiangulation based on interval analysis and set 
inversion. Section 3 widens the method to 
heterogeneous measurements not only generic 
goniometric measurements but also range, the 
position given by a tactile tile, and dead reckoning 
measurements. We propose a way to use dead 
reckoning for data synchronisation. We also explain 
how to handle environment model inaccuracies. The 
simulation and experimental results which are 
respectively described in section 4 and 5 provide 
information about the accuracy and the computing 
time of the method. 

2 SET METHOD USING 
GONIOMETRIC 
MEASUREMENTS 

The objective of our work is the localization of a 
mobile robot by using measurements available at a 
given moment and the a priori known coordinates of 
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the markers or the sensors. The goal is not the 
building of an environment map but the localization 
of an assumed-lost robot. The environment is 
modelled by the coordinates of the home markers 
seen by the robot onboard sensors and by the 
coordinates of the home sensors able to detect the 
robot. The markers and the sensors are known by 
their identifier which makes it possible to establish 
their location in the building. 

The localization process is divided into two 
steps. The first step consists in finding the room of 
the building in which the robot is located by using 
the specific identifier associated to each measure. As 
said before all sensors and markers are labelled by a 
specific identifier and associated to one room of the 
building. The second step localizes the robot inside 
the room by the set approach described below. The 
paper focus on this second step. 

2.1 Set Inversion for Estimating 
Parameters 

Interval analysis (Lambert et al., 2009) is based on 
the idea of enclosing real numbers in intervals and 
real vectors in boxes. The analysis by intervals 
consists in representing the real or integer numbers 
by intervals which contain them. This idea allowed 
algorithms whose results are guaranteed, for 
example for solving a set of non-linear equations 
(Abdallah et al., 2008); (Jaulin, 2009); (Kieffer et 
al., 2000) 

An interval [x] is a set of IR which denotes the 
set of real interval 

 

[x] = {x  IR | x− x x+, x− IR, x+ IR} (1)
 

x− and  x+  are respectively the lower and upper 
bounds of [x].  

The classical real arithmetic operations can be 
extended to intervals. Elementary functions also can 
be extended to intervals. 

Given f: IR IR, such as f  {cos, sin, arctan, 
sqr, sqrt, log, exp, …}, its interval inclusion [f]([x]) 
is defined on the interval [x] as follow : 

 

[x]  [f]([x]) = [{f(x) | x  [x]}] (2)
 

In addition, if f is only composed of continuous 
operators and functions and if each variable appears 
at most once in the expression of f, then the natural 
inclusion function of f is minimal. The periodical 
functions such as trigonometric function require 
specific treatment. The inclusion function is 
evaluated by dividing f into a continuous set of 
monotonic subfunctions.  

A subpaving of a box [x] is the union of non-

empty and non-overlapping subboxes of [x]. A 
guaranteed approximation of a compact set can be 
bracketed between an inner subpavingX- and an 
outer subpaving X+ such as X-  X  X+. 

Set inversion is the characterisation of 
X = {xIR n | f(x) Y} = f-1(Y) (3)

 

For any Y  IRn and for any function f admitting a 
convergent inclusion function [f], two subpavings 
X- and X+ can be obtained with the algorithm 
SIVIA (Set Inverter Via Interval Analysis). To 
check if a box [x] is inside or outside X, the 
inclusion test is composed of  two tests : 

If [f ] ([x])Y then[x] is feasible 
If [f ] ([x])Y =  then[x] is unfeasible 
Else [x]is ambiguous that is feasible, infeasible 

Boxes for which these tests failed are bisected 
except if they are smaller than a required accuracy . 
In this case, boxes remain ambiguous and are added 
to the X subpaving of ambiguous boxes. The outer 
subpaving is X+ = X-X. The box is assumed to 
enclose the solution set X. 

The inversion set algorithm can be divided into 
three steps:  
– Select the prior feasible box [x0]assumed to 

enclose the solution set X; 
– Determines the state of a box, feasible, 

unfeasible or ambiguous;   
– Bisect box for reducing X. 

 

Algorithm #1: SIVIA ([x0]). 

1  if ( [f] ([x0]) Y), [x0] is feasible ; 

2  else if  [f] ([x0]) Y = , [x0] is 
unfeasible ; 

3          else if ( ( [x0] <),  [x0] is 
ambiguous ; 

4                  else 

5                            bisect [x0], [x1], [x2]) ; 

6                            SIVIA ([x1]); 

7                            SIVIA ([x2]) ; 

8                 endif 

9          endif 

     10 endif 
 

This recursive algorithm ends when [x]<. The 
number N of bisection is less than  

 

  n
x

N 







 10




 (4)
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with [x0] the prior feasible box and n the dimension 
of the vector [x]. Since in the case of the mobile 
robot localization the dimension of [x] is three, the 
solution can be computed with respect to real time.   

2.2 Application to Localisation by 
Multiangulation 

The robot localization is computed from several 
goniometric measurements by multiangulation. 
Measurements are provided either by robot onboard 
sensors or/and by home sensors. Onboard robot 
sensors detect markers located in the environment. 
Markers can be either RFID tags or visual tags such 
as Datamatrix, or reference images.  On the contrary, 
what we call home sensors are able to detect the 
robot and are fixed on a wall, a ceiling or a corner of 
the rooms. Whatever sensors, the measurement 
model can be represented by a cone inside which the 
presence of the robot is guaranteed. This model is 
simple enough for including a large variety of 
bearing sensors such presence detector, laser and US 
telemeters, camera, RFID… 

In the context of bounded-error method, a 
measurement λi is defined by an interval bounded by 
the lower and upper limits: 

 

   iiiii   ,  (5)
 

The variables to be estimated are the components of 
the state vector  

 

x =(xR, yR, θR)T (6)
 

which defines the position and orientation of the 
robot relatively to the reference frame  Reof the 
environment.  

The coordinates of the environment markers 
Mj = (xj,yj) and the coordinates and orientation of  
the environment sensors Cj= (xj,yj, θj) are supposed 
to be known , to be precise coordinate interval is 
restricted to a scalar value, for sake of readability. 
However the method we propose can easily take into 
account inaccuracies on the marker and sensor 
coordinates. 

In our case the problem can be described by two 
types of equation. In one hand, if a robot sensor 
detects an environment mark Mi, the measurement 
depends on the marker coordinates Mi (xi,yi,) and the 
state vector. 

R
iR

iR
i xx

yy
tg  




  )(1  (7)

 

In the other hand (Fig.1b), if the robot is detected by 
an environment sensor Ci, the measurement depends 

on the sensor coordinates and orientation Cj (xj,yj,θj) 
and the state vector. 
 

j
jR

jR
j xx

yy
tg  




  )(1  (8)

 

The state vector x = (xR, yR, θR)T is then to be 
estimated from the M observations λ = (λ1, …, λM) 
with the associated bounded errors [λ] = ([λ1], …, 
[λM]) and the known data xi= (xi,yi) and xj = (xj,yj,θj).  

Estimating state vector x consists in looking for 
the set S of all admissible values of x that are 
consistent with the equations (7) and/or (8) and (5).  

In summary, the principal characteristics of the 
problem are:  
- A variable number of nonlinear equations  
- Two or three unknown parameters (xR, yR) or 

(xR, yR,θR) 
- A bounded error modelling 
- A initial unknown parameter space that can be 

large 
- A Real time constraint (less than one second)  
 

Multiangulation algorithm based on the algorithm 
SIVIA uses f(x) = tg-1(x) which is a discontinuous 
function on the interval [0,2π]. The estimation of the 
arctangent inclusion function takes into account both 
the discontinuities and the border effects due to the 
fact we manipulate intervals and not values. If we 
want to consider most of cases, the range of angular 
measurement can be λi [0,2π] and Δλimax = π/2. 
Indeed, a presence detector can cover an angular 
sector up to π radians.  

For each available measure λi, the inclusion test 
is done using data associated to λi. The test fusion is 
based on the following rule: 

 

Algorithm # 2: Fusion rule of  n inclusion tests. 

1  if (T1 = = T2 = = … = = Tn ),  
Fusion_test = T1 ; 

2  else if ((T1 = =  unfeasible) or … or  
(Tn= = unfeasible), Fusion test = 

unfeasible ; 
3          else Fusion_test = ambiguous ; 

4          endif 

5  endif 

 

This rule leads to reject the result of the 
algorithm when existing outliers. For processing 
outliers the fusion rule must to be modified (Kieffer 
et al., 2000). 
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3 METHOD USING 
HETEROGENEOUS 
MEASUREMENTS 

3.1 Heterogeneous Measurements 

The approach is able to take into account 
heterogeneous set of measurements. The inclusion 
test is the same as in the algorithm #1. It only 
requires another inclusion function well suited to the 
measurement type. The right inclusion function is 
selected thanks to the identifier associated to the 
sensor. The identifier defines the type of 
measurement. Combining several measurements is 
performed by the algorithm # 2. 

The following examples are taken from home 
automation sensors. Figure 1 shows the features of 
the three types of measurement with the additional 
inaccuracy. A ring for goniometric measurement 
(Fig.1a), a ring and a cone for goniometric and range 
measurement (Fig.1b) and a square band for tactile 
tile (Fig.1c). 

 

 

Figure 1: Measurement type: a) Range, b) Goniometric 
and range, c) Tactile tile. 

3.1.1 Goniometric Measurement 

As said in previous section, the measurement is an 
angle λi or λj, the measurement model is given either 
by equation (7) or by equation (8) and the inclusion 
test is either [f] ([x], [xi])  [λi] or [f] ([x], 
[xj])  [λj] with xi the environment sensor 
coordinates and xj the marker coordinates. 

3.1.2 Range Measurement 

The measurement is a range di(Fig.1a), the 
measurement model is given by g(x) 

   22
jRjR yyxx  and the inclusion test is 

[g] ([x], [xi])   [di]. 

3.1.3 Goniometric and Range Measurements 

The sensor is supposed able to measure both the 
angle λi or λj and the range di(Fig.1b) ,the 

measurement model is given either by (fi(x) or fj(x)) 
and g(x) and the inclusion test is either [f] ([x], [xi]) 
 [λi] or [f] ([x], [xj])  [λj] and [g] ([x], [xi])   [di]. 

3.1.4 Tactile Tile, Door Crossing Detector 
and Complex Shape 

The measurement are the coordinates of the center 
of the tile(Fig.1c), the measurement model is xi = xR, 
yi = yR and the inclusion test is [x]  [xi]. 

The door crossing detector is a variation on the 
tile model. It is considered as a narrow tile in which 
the interval associated to each coordinate [xi] and 
[yi] is different. 

A complex shape can be considered as a set of 
tactile tiles. The measurements are {Cei (xi, yi)} for 
i= 1 to n, the measurement model is for i= 1 to n, 
xi = xR, yi = yR and the inclusion test is for i= 1 to n, 
[x]  [xi]. 

The literature offers other examples of measure 
processing by the set approach for localisation, [18] 
with GPS data or (Moore, 1979) with dead 
reckoning data. We propose both ways to process 
the latter kind of measurement. 

3.1.5 Dead Reckoning 

The first way is the same as in cases presented 
previously. The measurements are xi, yi, I, the 
measurement model is xRn = xRn-1+xn,  
yRn = yRn-1+yn, Rn = Rn-1+nat time n and n-1 and 
the inclusion test is [xn]  [xn-1] + [xn].  

3.2 Measurement Synchronisation 

There is another way of using dead reckoning data. 
When at a given time there are not enough 
measurements for an accurate localisation, it is 
possible to take account xi, yi, I for 
synchronising measurements acquired at different 
times.  

 

Algorithm # 3: Inclusion test ([x], [λi], xi , tiand [dx]). 

1  if ( [f] ([x-dx], xi , ti)  [λi]), [x] is 
feasible ; 

2  else if ([f] ([x-dx], xi , ti))  [λi] = ), [x] 
is 

unfeasible ; 
3          else [x] is ambiguous ; 

4          endif 

5  endif 

 

For example let three goniometric measurements 
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[λn-2], [λn-1], [λn] acquired at time tn-2, tn-1, tn and [dx n-

2], [dx n-1] the robot displacement given by odometry 
between tn-2, tn-1 andtn-1, tn respectively. [x] can be 
computed at time tn taking into account both the 
three measurements[λ]and the two relative robot 
measurements [dx] by applying the following 
inclusion test pour ti = tn-2 or tn-1 (algorithm #3). 

3.3 Processing of Environment Model 
Inaccuracies 

The forward-backward contractor method uses a set 
of variables represented by interval domains with 
constraints such as equations (Jaullin et al., 2001). 
All equations or equation systems are available even 
not invertible ones. Variables may be as well, well-
known input variables as unknown output variables, 
because all variables are processed in the same way. 
The forward-backward contractor is based on 
constraint propagation. This contractor makes it 
possible to contract the domains in order to progress 
towards the solution and calculate the output 
variables (note that input variables may be also 
contracted depending on the measurement tolerance 
of some input variables); this process is driven by 
taking into account any one of the constraints, 
proceeding by intersection of intervals. The aim of 
propagation technique is to contract as much as 
possible the domains of the variables without 
loosing any solution. 

Consider n variables x1,….,xn  linked by m 
constraints C1,…., Cm. For each variable xi, it is 
assumed that a prior feasible domain [xi] = [xi

- , xi
+] 

is known. This domain may be equal to ]-∞,+∞[ if 
no information is available on xi. Interval algebra 
requiring adapted functions, the constraints must be 
decomposed into primitive constraints, increasing 
the number of equations and of variables. Then each 
constraint is calculated according to each variable 
using interval intersection. Necessarily, the interval 
length will decrease. This operation is repeated 
forward and backward until no more significant 
contraction can be performed. It can be noted that 
contraction is a quick method which in some cases 
can slow down or even stop the localisation process 
before obtaining the desired accuracy. Contraction 
has to be completed by the bisection method. 

This method is able to treat a set of 
heterogeneous measurement by introducing each 
measurement equation as a new constraint. We have 
added a forward-backward contractor step to the 
bisection algorithm #2 so as to reduce the solution 
space and so the computing time. 

Moreover the method can reduce the 
environment model inaccuracies. In our case, we 
assume that home sensors or markers have been 
initially approximately located in the home reference 
frame. The interval domain associated to their 
coordinates can be reduced with further 
measurements, either online while detecting outliers, 
or offline during a learning phase. This is obtained 
by the typical process of the forward-backward 
contractor which decreases all interval domains of 
each variable, input variable as well as output 
variable. 

4 SIMULATION RESULTS 

The simulation aims at showing: i) the feasibility 
and the interest of the localization method whatever 
the position of the sensors and the markers, ii) the 
ability to integrate a variable number of 
measurements, iii) the ability to mix heterogeneous 
measurements, iv) the influence of the parameter 
on the computing time of localization. The 
algorithm is implemented on Matlab software. 

4.1 Experimental Protocol 

The robot coordinates are specified in the reference 
frame. The true measures from the sensors are 
computed given the known coordinates of the 
sensors and the markers. Then a specified 
inaccuracy is added to the measurements in the form 
of upper and lower bounds. 

4.2 Robot Localisation using 
Heterogeneous Measurements 

The robot position is represented by two subpavings 
which include the set of the solution boxes, the 
feasible subpaving in red (or dark grey) and the 
ambiguous subpaving in blue/yellow (or light grey).  
It is necessary to consider both subpavings to 
guarantee a set containing all possible robot location 
given the measurements and the noise bounds. 

Figure 2 shows the robot position and orientation 
(xR, yR, θR) using three measurements from the robot 
onboard sensor which detects three markers labelled 
Mi (Fig.1a). The labels are located at the coordinates 
of the markers. Note that in this case the equations 
system allows the computing of the robot 
orientation. 

The simulation parameters are 

   iiiii   ,  with Δλi = π/36, 
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 = 0.02 m. The true robot configuration is 
(4 m; 3 m, π/4). 

 

 

Figure 2: 2-DOF robot localization a) Projection on the x-
y plane, b) projection on the x- plane. 

For readability only feasible subpaving is 
displayed. The results are satisfying in terms of 
localization accuracy.  

 

 

Figure 3: 3-DOF robot localization. Projection in the x-y 
plane: With three available measurements. 

One of the interests of the approach is the ability 
to integrate easily a variable number of 
measurements. For example if a fourth measurement 
is available, it is added to other measurements for 
reducing the localization area (Fig. 4). 

 

Figure 4: 3-DOF robot localization. Projection in the x-y 
plane: With four available measurements. 

The method can without difficulty include both 
goniometric measurements from onboard robot (M) 

and from home sensors (C) as illustrated in Figure 5 
but also heterogeneous measurements (Fig. 6). 

 

 

Figure 5: 3-DOF robot localization. Projection in the x-y 
plane: One of the measurements is acquired by a home 
sensor (C). 

 

Figure 6: 2-DOF robot localization with 6 heterogeneous 
measurements.  

Label C stands for home goniometric 
measurement, M for robot goniometric 
measurement, Di for range measurement, CGR for 
home range and goniometric measurement, MGR for 
robot range and goniometric measurement, Da for 
tile measurement. The true robot configuration is 
(5; 3) m. The labels are located at the coordinates of 
the markers or the sensors. 

4.3 Computing Time of Robot 
Localisation 

In order to verify if the computing time of 
localization is compatible with the real time 
constraint of robotic application we have realized 
two evaluations. The algorithm is implemented on 
Matlab software. 

The first test evaluates the influence of the 
localization accuracy and of the parameter number 
on the computing time (Table 1).The simulation 
parameters are    iiiii   ,  with 
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Δλi = π/144, the robot position accuracy xy varies 
from 0.5 m to 0.001 m, the robot orientation 
accuracy  does not change. The room size is 6x6 
m2.The values of table are the mean time for 100 
different positions of the robot. The robot orientation 
does not change, R = Pi/4. In the first row the 2-dof 
robot localization is computed from the 
measurements provided by three goniometric 
sensors located at (3 ; 0), (0 ; 6), (6 ; 6) m. The 
second row gives the mean time needed for the 3-dof 
robot localisation. In the latter case the experimental 
conditions are the same as for the first row. The only 
difference is that one of the three measurements is 
necessarily acquired from the robot in order to 
calculate the robot orientation. 

Table 1: Computing time of the 2-DOF or the 3-DOF 
robot localization with respect to the localisation accuracy. 

Accuracy (m) 
Computing Time (s) 

(xR, yR) (xR, yR, R) 
0.5 0.01 0.24 
0.1 0.019 0.44 
0.05 0.03 0.22 
0.025 0.05 0.22 
0.015 0.09 1.44 
0.01 0.17 5.29 
0.001 1.24  

 

A 2-dof robot localization can be computed 
below a second up to 0.01 m accuracy. A 3-dof 
robot localization can be computed below a second 
up to 0.1 accuracy. The robot orientation is time 
consuming. 

The second test evaluates the influence of the 
number of measurements on the computing time.  

The global dimensions of the room are 6m x 6m. 
The localization accuracy is = 0.05 m. The robot 
coordinates are X = [3 m, 5 m, 1 rd].The position 
and the precision of the sensors are randomly 
chosen, Δλi  [π/72; π/72] . The computing times, 
mean and standard deviation, are calculated from of 
100 random samplings. As explained before one 
measurement is provided by the robot in order to 
compute its orientation. We progressively increase 
the number of sensors. The added sensors are of the 
same type. The Figure 7 gives a representative 
example when adding goniometric measurements 
acquired by home sensors. Whatever the type of 
sensors added the curve has the same shape. 

The second evaluation shows that the computing 
time depends little on the number of measurements. 
It is not necessary to develop a strategy for selecting 
among available measurements. We can take all.It 
also appears that the standard deviation added to the 

sampling of the curves decreases with the number of 
measurements. This fact shows that the computing 
time is sensor coordinate dependant.  

 

 

Figure 7: Computing time of the 3-DOF robot localization 
with respect to the measurement number. 

5 EXPERIMENTAL RESULTS 

Real experiments have been performed with a 
physical robot in a smart environment composed of 
two. 

Experiments aim at: i) confirming the simulation 
results, ii) showing how outliers could be processed 
and, iii) evaluating the influence of the parameter  
on the computing time. The algorithm is 
implemented on Matlab software. 

5.1 Experimental Protocol 

The global dimensions of the test bed are 9.4m x 
6.4m. The rooms are equipped with presence 
sensors, video cameras fixed on the top of the walls, 
a pan video camera embarked on the robot and 
visual markers. The markers located on the walls are 
detected by the robot video camera. The markers 
located on the robot are detected by the video 
cameras fixed on the walls. The Table 2 gives the 
main characteristics of the test bed sensors. The data 
of table 2 are used by the algorithm for determining 
the inclusion function and the upper and lower 
bounds associated to the measurement. For example 
the measurement of a presence sensor positioned on 
the corner will be  
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(see section 4). It appears that such a presence 
sensor covers all the room. 

Table 2: Characteristics of the test bed sensors. 

Sensors 
Presence 
sensor 

Wall 
camera 

Robot 
camera 

Precision (°) 45 5 5 

Aperture angle (°) 90  55/2  55/2 

Orientation  j (°)  
(see Fig1.b) 

135 225 Θ robot 

Position (xj, yj) (m)  
(see Fig1.b) 

(6.4, 0) (3, 2.20) 
(x robot, y 

robot) 

 
The robot is positioned at a specified coordinates 

(xR, yR, θR). Measurements are collected by a 
gateway which handles the exchanges between the 
localisation computer and the smart environment.  

5.2 Results 

The Figure 8 shows the robot position estimated by 
the method from the measurements provided by two 
wall cameras (C1, C2). The feasible subpaving is in 
red (or dark grey) and the ambiguous subpaving in 
blue/yellow (or light grey).The true robot position is 
(3, 3.2)  0.2 m is depicted by an ellipse.  

A third measurement from the robot video 
camera not only improves the position accuracy but 
also allows the robot orientation, R = 3*pi/2 
(Fig.12). C1 and C2 represent the two wall cameras 
and M3, the marker detected by the robot video 
camera.  

 

 

Figure 8: 3-DOF robot localization (x,y) in meters and θ in 
radians. a) Projection in the x-y plane, b) Projection in the 
y- plane. 

The results of the real experiments are very close 
of those obtained in simulation. Such results are very 
useful in poor environment with little sensors 
because the robot position and orientation are 
modelled as areas. These areas can be more or less 
large but it is sure that the robot is inside. Such 
information is well-suited to topological space 
representation which is more and more used in 

robotics in order to simplify databases and be able to 
treat various qualities of data. It is a promising result 
easy to improve by using a more efficient 
programming language.  

5.3 Position Map 

In order to evaluate a mean computing time for 
various relative positions of the robot with the 
sensors (Cj), three home sensors are placed at the 
vertices of an equilateral triangle. The robot position 
varies from 1 to 6 meters in x and y axis. For each 
robot position the set of solution is computed. The 
robot orientation is not computed.  Real experiments 
being more complex to carry out, we have limited 
the number of robot positions to ten poses. The robot 
poses are equally distributed on the real 
environment. Table 3 gives the mean computing 
time over ten robot poses for three different 
accuracies .  

The experiment parameters are: Δλi = π/72. 

Table 3: Mean computing time in seconds with respect to 
the accuracy for ten robot locations. 

Epsilon/accuracy(m) 0.1 0.05 0.01 

Mean computing time (s) 0,016 0,027 0,089 
Mean measurement 

frequency (Hz) 
61 37 11 

Mean computing time (s) 
given by simulation  

0.019 0.03 0.17 

 

The results are close to the computing times of 
the Table 1 given by simulation. As we said before 
the computing time is relatively stable whatever the 
robot position in the map related to the sensors. It is 
compatible with the real time needs of robotic 
application even with a Matlab code. 

6 CONCLUSIONS 

The robot localization is based on interval analysis 
method applied on data both coming from robot and 
home sensors. The problem of parameter estimation 
is solved by a set inversion applied on error bounded 
data. As the parameter vector dimension is two or 
three, the computing time is compatible with the real 
time constraint of mobile robotics as showed in 
sections 4 and 5. The interest of the solution lies on 
the ability to integrate a large variety of sensors, 
from the roughest to the most complex one.  

The method is able to take into account i) a 
heterogeneous set of measurements, ii) a flexible 
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number of measurements, a statistical knowledge on 
the measurements limited to the tolerance; the sensor 
model only considers that the measurement is 
bounded between the lower and upper limits, iii) the 
ability to include measurements both coming from 
the robot onboard sensors and from the home 
sensors.  

The algorithm is able to provide a result of 
localization as soon as only one measurement is 
available. The results show that the computing time 
depends little on the number of measurements. So it 
is not necessary to develop a strategy for selecting 
among available measurements. We can take all the 
available measurements. 

The coordinates of the environment markers Mj= 
(xj,yj) and the coordinates and orientation of  the 
environment sensors Cj= (xj,yj, θj) are supposed 
known for paper readability. However the method 
we propose can easily take into account inaccuracies 
on the marker and sensor coordinates. We also 
explain how to handle environment model 
inaccuracies. 

Works in progress address the case where the 
assumption of bounded error is not verified. The 
approaches proposed in the literature for processing 
outliers have to be improved in order to solve all the 
cases. 
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