| mplementation of Simplicial Complexes for CPA Functionsin C++11
using the Armadillo Linear AlgebraLibrary

Sigurdur Freyr Hafstein
School of Science and Engineering, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland

Keywords: CPA Function, Lyapunov Function, Piecewise Linear, Nonlinear System, Triangulation, Simplicial Complex,
C++11, Armadillo Linear Algebra Library.

Abstract: Continuous, piecewise affine (CPA) functions can be algorithmically parameterized to deliver Lyapunov func-
tions for compact invariant sets. We discuss flexible structures and algorithms to manipulate CPA functions
for these purposes and discuss their implementation in C++11 using the Armadillo linear algebra library. Es-
pecially, we discuss some of the new language features in C++11 that lead to simpler and more readable
code. The implementation was developed in the freeware Visual Studio Express 2012 for Windows Desktop
(VS2012). Apart from a detailed description and code examples for the construction and manipulation of
the simplicial complex that serves as a basis for CPA functions, this contribution includes some discussion
on practical implementation details when using VS2012, C++11, and the linking to and use of the excellent
Armadillo linear algebra library. Thus, some parts of this paper, especially Section 3, might be useful not only
for those interested in the implementation of the simplicial complex for computing CPA Lyapunov functions,
but also for those generally interested in using the free Armadillo library for computations in VS2012.

1 INTRODUCTION functions are computed by means of convex optimiza-
tion.

Lyapunov functions are a fundamental conceptin the =~ One method that has been studied in some de-
study of dynamical systems. Their central role in tail recently, uses linear programming to parameterize
studies of the stability behavior of dynamical systems CPA Lyapunov functions in compact neighbourhoods
is well known. Their construction is, however, diffi- Of €xponentially stable equilibria. This approach was
cultin the general case, i.e. for nonlinear systems. ~ first followed in (Julian, Guivant, and Desages, 1999)
Several methods to numerically compute Lya- and was enhanced in (Marinosson, 2002a and 2002b)

punov functions for nonlinear systems have been sug-t© COMPpute true Lyapunov functions, rather than ap-
gested. To name a few, in (Johansson and RantzerProximations requiring a posteriori analysis to deter-
1997) a construction method for piecewise quadratic Mine their quality. In (Hafstein, 2004 and 2005) it was
Lyapunov functions for piecewise affine autonomous Proved thatwhen an arbitrary small hypercube around
systems is suggested. In (Eghbal, Pariz, and Karim- the equilibrium is excluded from thg domain of the to
pour, 2012) the computation of piecewise quadratic & computed CPA Lyapunov function, the computa-
Lyapunov functions for planar piecewise affine sys- tion would always succeed. The domain of the com-
tems is formulated as linear matrix inequalities. In Puted CPA Lyapunov function is otherwise only lim-
(Johansen, 2000) linear programming is used to pa- ited to any compact subset of the equilibrium’s region
rameterize Lyapunov functions for autonomous non- Of attraction.

linear systems. In (Rezaiee-Pajand and Moghad- In(Giesl and Hafstein, 2012 and 2013) the neces-
dasie, 2012) a different collocation method using two Sity of excluding an arbitrary small hypercube around
classes of basis functions is suggested. In (Giesl, the equilibrium was removed, at the expense of need-
2007) radial basis functions are used to solve numer-ing a more refined simplicial complex than in pervi-
ically a generalized Zubov equation. In (Peet and ous works. In this paper we will discuss the imple-
Papachristodoulou, 2010) the numerical construction mentation of this novel simplicial complex that pos-
of Lyapunov functions that are presentable as sum of sesses a simplicial fan at the equilibrium.

squares of polynomials is considered. The Lyapunov ~ The termsimplicial fanseems natural, for math-

Freyr Hafstein S..

Implementation of Simplicial Complexes for CPA Functions in C++11 using the Armadillo Linear Algebra Library. 49
DOI: 10.5220/0004423400490057

In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2013),

pages 49-57

ISBN: 978-989-8565-69-3

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

SIMULTECH 2013 - 3rd International Conference on Simulation and Modeling Methodologies, Technologies and

Applications

Figure 1: The simplicial complesr,\?},ﬂ in two dimensions
with K™= (~4,-4)T KP = (4,4 ,N" = (—6,-6)", and
NP =(6,6)T.

ematically it is a straightforward extension of the 3D
graphics primitivetriangular fanto arbitrary dimen-
sions. For graphical examples of the simplicial com-
plexes discussed in this paper see Figure 1 and 2.

In Section 2 we define the simplicial complex
mathematically. In Section 3 we give a short descrip-
tion of how to include Armadillo in a VS2012 project
and discuss the basics of the Armadillo library and
then we define in Section 4 the data-struct@es
zJs, and T_std _NK used to describe the simplicial
complex. In Section 5 we implement the construc-
tion of the complex. We then discuss the efficient im-
plementation of some non-trivial algorithms for the
simplicial complex in Section 6 before making some
conclusions at the end.

N0

X

Y

Figure 2: A schematic picture of the simplicial complex
73 in three dimensions. By adding the origin as a vertex
to all the simplices in the simplicial 2-complex subdivigin
the boundary of the hypercube we get a fan-like simplicial
3-complex (tetrahedra) locally at the origin.

2 SIMPLICIAL COMPLEX ‘Zj\iﬁg

To define the simplicial ompleﬁ,\,sf,‘<j we first give

50

a few definitions. We denote b¥, No, andR the
sets of the integers, the nonnegative integers, and the
real numbers respectively. We write vectors in bold-
face, e.gx € R" andy € Z", and their components
asxi, X2, ..., %Xn andys, Yo, ..., yn. All vectors are as-
sumed to be column vectors. An inequality for vectors
is understood to be component-wise, &.¢.y means
that all the inequalities; < y2,X2 < Y2,...,%y < Yn
are fulfilled.

The convex combinatiorof an (m+ 1)—tuple
(X0,X1,...,Xm) of vectors Xg,X1,...,Xm €
R" is defined by c@g,X1,...,Xm)
{SMoAiXi :0<AN <1 SMoAi=1}. The set of
vectorsxp, X1, ...,Xm € R" is calledaffinely indepen-
dentif T Ai(xi —Xo) = O implies A; = 0 for all
i =1,...,m This definition is independent of the
order of the vectors. Ko, X1, ...,Xm € R" are affinely
independent the set tm,X1,...,Xm) is called an
m-simplex

A triangulation of a set” ¢ R" is the subdivision
of C into n-simplices, such that the intersection of
any two different simplices in the subdivision is ei-
ther empty or &-simplex, 0< k <'n, and then its
vertices are the common vertices of the two different
n-simplices. Such a structure is often referred to as a
simplicial n-complex

For the definition ofZ$¢ we use the se, of all
permutations of the numbers2L.. ., n, the character-
istic functionsy (i) equal to one ifi € 7 and equal
to zero ifi ¢ 7, the null vector0 € R" and the stan-
dard orthonormal basig, ey, ...,e, of R". Further,
we use the function®’ : R" — R", defined for every
Jc{L2...,nybyR’(x) == 31 (- xe.

To construct the triangulatiod$l¢, we first de-
fine the triangulationg;$" and 739 | as intermediate
steps.

1. Foreveryz € Ny, everyJ C {1,2,...,n}, and ev-
eryo € §, define the simplex

. zjo ,zZjo
G0 = co(x§' % x50, ... X&)

1)

where

[
X7 =R’ <Z+ > eo<j>> @
=1
fori=0,1,2,...,n.
2. LetN™ NP € Z", N™ < 0 < NP, and define the
hypercubeN := {x € R" : N < x < NP}. The
simplicial compIex‘T,\,Std is defined by

Tl\?td = {62_70' . 617()’ C N} (3)

. Let KMKP € Z", NM < KM < 0 < KP < NP,
and consider the intersections of thesimplices
Szy0 In 75 and the boundary of the hyper-
cubeK ;= {x e R" : K" < x < KP}. We are

Implementation of Simplicial Complexes for CPA Functions in C++11 using the Armadillo Linear Algebra Library

only interested in those intersections that are
(n—1)-simplices, i.e. cfv1,va,...,vn) with ex-
actly n-vertices. For every such intersection
add the origin as a vertex to it, i.e. consider
co(0,v1,vz,...,Vn). The set of such constructed
n-simplices is denoted,2d . It is a triangulation

of the hypercub&. '

. Finally, we define our main simplicial complex
‘Tﬁf,% by letting it contain all simplicesS;s¢ in
734 that have an empty intersection with the in-
terior K° of K, and all simplices in the simplicial
fan 789 . Itis thus a triangulation ol having a
simplicial fan inK.

We have several remarks on this construction. First,
‘I,\,Sﬁg is indeed a simplicial complex, as can easily be
deducted from the proof of Lemma 3.6 in (Giesl and
Hafstein, 2013). Second, KM= (-1,-1,...,—1)
andKP = (1,1,...,1) the complexe<;3% and Z3$"
are 'identical. Third, when using the compl& ‘,Q

to compute CPA Lyapunov functions one most com-
monly uses a transformatiok : R" — R" to de-
form and scale down the simplices, i.e. every sim-
plex cdvo,Vv1,...,Vn) € ‘T,\?fg is mapped to a sim-
plex cdF(vo),F(v1),...,F(vn)). The transformation

F must be chosen such that the resulting set of sim-

plices is a simplicial complex.

3 VS2012 AND ARMADILLO

Before we come to our implementation of the sim-
plicial complex‘T,jf,Qj we explain how to get a project
using the Armadillo linear algebra library running in
VS2012 on a Windows computer. This is by no means
the only nor the most elegant way, but it is very simple
and it works.

First download and install Visual Studio Ex-
press 2012 for Windows Desktop. Then go to

have to uncomment (remove “//” in front ofjiefine
ARMAJSH.APACKand#define ARMAUSEBLAS in “con-
fig.hpp” in the folder “armadilldbits” if we want to
use the full functionality of Armadillo.

To actually use the functionality from LAPACK
and BLAS we have to link to these libraries dy-
namically. To enable that choose “DEBU&SIMPL
Properties”. In the window that pops up choose
“Configuration PropertiesLinker—Input” and add
“lapack win32_MT.lib;blas win32 MT.lib;” (without
the quotation marks) to “Additional Dependencies”.
Do this both with “Configuration:” on “Release” and
“Debug”.

VS2012 has the unexpected feature (error?)
that it does not search for .dll files in the di-
rectory where the program generated is running,
in our case “c{SIMP\SIMP”. To change this go
to “Configuration Properties Debugging” and add
“PATH=%PATH%;$(ProjectDir)” (without the quota-
tion marks) to “Environment”. As before do this both
with “Configuration:” on “Release” and “Debug”.

Now everything should be ready to use Armadillo.
Right-click on “Source files” in the “Solution Ex-
plorer” and choose “Add New Item”. For simplicity
we use the default, which is a file named “Source.cpp”
in “c:\SIMP\SIMP".

To test if everything is in place we can e.qg. try to
compile and run the following program:

#include “"armadillo”
#include<list>
Il any other headers we might want to include
using namespace arma,
using namespace std;
int main(int argc, char **argv){
mat A=randu<mat>(5,5);
det(A);

For our implementation of the simplicial complex be-
low we need to includést. We also usevector
andalgorithm from the Standard Template Library

http://arma.sourceforge.net and download and extract(STL), but they are already included amadillo.

Armadillo. Start VS2012 and choose “FILENew
Project”. In the window that pops up choose
“Visual C++" and “Console Application” and in
the following check “Empty project”. We assume
for simplicity that the name given to the project
is “SIMP” and that the location is “§". The
folder where our program will be running is then
“c:\SIMP\SIMP”. Where armadillo was extracted, in
the “include” folder, there is a file named “armadillo”
and a folder named “armadillbits”. Copy both to
“c:\SIMP\SIMP”. In the “examples” folder there is a
folder named “libwin32”. Also copy its contents to
“c:\SIMP\SIMP”. Many functions in Armadillo use
the LAPACK and BLAS libraries and therefore we

To compile and run a console application it is ad-
vantageous to choose “DEBU&Start Without De-
bugging” (or press Ctrl+F5), for otherwise the con-
sole closes immediately when the program has fin-
ished running. This procedure above has been tested
to work with Armadillo 3.8.0.

Now a few comments on Armadillo: Very
good documentation on the library is available at
http://arma.sourceforge.netand in (Sanderson, 2010).
The vector and matrix types we will use in this paper
areivec , vec, andmat, which are column vector of
int , column vector oflouble , and matrix ofdouble
respectively. Armadillo starts indexing of vectors and
matrices at zero and not at one, just as in C and C++.

51

SIMULTECH 2013 - 3rd International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

Note that Armadillo does not support implicit or ex- data encapsulation at all. Further, we omit declaring
plicit conversions between vector and matrix types functions const and using const references and un-
only because they might make sense mathematically.signed types, even where it would be more natural and
If e.g.f is a function expecting eec as an argument efficient. We make heavy use of the STL in C++ and
we cannot call it with arivec vii We have to use assume that the dimension, itein R", is already de-
conv_to<vec>::from(vi) to explicitly convertvi to fined by e.gint n=4;
avec. The data structurérid , initialized withivec Nm

The compiler expects the result of a matrix multi- andivec pN contains all the vertices i@ (Nm, Np) :=
plication to be a matrix. If we know that itis a scalar {z€ Z" : Nm < z < Np}. It assigns a unique integer
(1 x 1 matrix) the functioras _scalar can be used, to each of these vertices and can calculate the corre-

e.g.double y=as _scalar(x.t()*x); for a vectorx. sponding vertex from this number and vise versa. Itis
In debug moduss _scalar will report an error if the defined as follows:
argumentis not a & 1 matrix, in release modus it will struct Grid {
simply give incorrect results. Using the<” operator ivec mN, pN;
is a short and readable way to assign values to vec- it Endl;
tors and matricesedr stands for end row). It, how- it V2I(ivec);
ivec 12V(int);

ever, does not work likpush_back in the STL. Thus vector<int> V2l(vector<ivec> v);

x<<1<<2; makesx= (1,2)". But if this is followed bodIPIRGREec V) ’

by x<<3<<4; thenx= (3,4)T andnot x= (1,2,3,4)" Gridivec _mN.ivec _pN);
Lambda functions in C++11, functions that can “Grid() {J; -

be written within other functions and have access 1}

to their data, are a very nice addition to C++, but the numbers assigned to the vectors arg 0. ;N
there are some pitfalls when using Armadillo. Itis \yhereN = EndI —=1. Thus. the constructor c’an be
safer to specify the return value of a lambda function, ~,qeq

fore.g.[](vec v) {retun 1*v; }otherW|s_e returns Grid:Grid(ivec _Nmiivec _Np):Nm(_Nm),Np(_Np){
an object of typeonst eOp<vec,eop_scalar _times>, Endi=1;

but[J(vec v)}->vec {return 1*; } returns avec. for(int i=0;i<n;i++){Endl *= Np(i)-Nm(i)+1;}
Afurther nice addition in C++11 are auto types. Thus, }

if the compiler can determine the type of an entity at
compile time, it will assign that type to the entity if it
is declaredauto.

For vectorsx,y of type vec or ivec compar-
isons likex > y return a vector with 1 in the entities
where the inequality holds true and 0 otherwise. Thus
(1,2,3)T < (2,2,4)7 results in the vectof1,0,1)". If
we want a simple true or false answer to whether the
inequality is true for all components we can e.g. use

A simple method to assign unique numbers to the ver-
tices is to translate them with the vectim and then
enumerate them starting at the origin. The reverse
process is done by using repeated division with re-
minder. The following implementation of the p&f2!
(vertex to index) and2V (index to vertex) should il-
luminate the strategy:

int Grid:V2I(ivec v){

int i, Index, Mul;

min(x-y) > 0 . v = Nm:

With the compiler set to “debug” operations in Ar- for(i=0,Mul=1,Index=0;i<n;i++){
madillo are orders of magnitude slower than with the Index += v(i)*Mul;
compiler set to “release”. Mul *= Np(i)-Nm(i)+1;

return Index;
}
4 THE DATA STRUCTURES
ivec Grid::12V(int Index){
ivec v(n);

We use the data structur€sd, zJs , andT_std _NK for(int i=0i<ni++)

to implement the simplicial comple‘I,\ffg. Grid is V(i) = Index%(Np(i)-Nm(i)+1):
used to enumerate the vectors{me Z" : z € N} Index /= Np(i)-Nm(i)+1;
and other similar gridzJs is a simple container for }

zeN), 7c{1,2,...,n},ando € S, and is used to lo- return v += Nm;

cate the simplexs;y in the data structuré_std _NK

which contains all necessary information on the com- Further, it is advantageous to be able to pass a
plex T,\,SE. For simplicity and to shorten the code we vector of vertices tov2l. This is implemented by
use very short variable names and do not care aboutvector<int> Grid::V2I(vector<ivec> v),

52

Implementation of Simplicial Complexes for CPA Functions in C++11 using the Armadillo Linear Algebra Library

where it can be seen how lambda functions can lead

to efficient and readable code:
vector<int> Grid::V2l(vector<ivec> v){
vector<int> iv;
for_each(v.begin(),v.end(),
[&](ivec &val){iv.push_back(V2l(val));}
).

return iv;

}

The[&] allows the lambda function access to all vari-
ables of the enclosing function by reference, in this

caseiv andthis . Note that the call td/2I(val)
is an abbreviation fothis->V2I(val) and thus the
this pointeris implicitly used. If we want the lambda

function to use copies of the variables by default we

should replac§] by[=] . We could also have listed
their access mode individually Hw&,this] , be-
cause we need to modify in the lambda function
but notthis .

Only one more member function is needed for

Grid, bool InGrid(ivec V), which returndrue if
v € G(Nm,Np) andfalse otherwise. Here the Ar-
madillo-functionsmin -and max, which deliver the

minimum and maximum values of a vector respec-

tively, are useful:

bool Grid::InGrid(ivec Vv){
return min(v-Nm) >= 0 && max(v-Np) <= 0;

We now come to the structueds . Itis a simple con-
tainer, on which we define an ordering relation™
The ordering is used bl std _NKto sort and then find
simplices referred to bg € No, 7 € {1,2,...,n}, and
O € S, quickly. The variablent Pos in zJs is the
positioning used by _std _NK
struct zJs {

int J,Pos;

ivec z,sig;

zJs(ivec _z,int _Jjivec _sig,int _Pos=-1):

z(_2), 3(J), sig(_sig), Pos(_Pos) {};

The sety C {1,2,...,n} is stored as an intege.
The idea is to use the representatiord afs a binary
number to mark which elements §1,2,... n} are

in 4 and which are not. This is best shown by ex-

amples. The number£ (00...0000) is the empty
set, 1= (0...0001); is the set{1}, 2= (0...0010);

is the set{2}, 3= (0...0011); is the set{2,1}, and
e.g. 12=(0...01010; is the set{4,2}. In general,
j € 7 if and only if the j-th bit in the binary rep-
resentation ofl is 1. To check whethej € 7 one

can use bit-shifts and the bitwise and-operation “&”,

ie. (I>>(-1)&1 is one if j € 7 and zero other-
wise. Forint J this works forn < 31, forunsigned
long long J this works forn < 64. Forn > 64 this

strategy has to be refined.

The permutationo € S, is stored as arivec

sigma inits one-line notation, i.e. itis defined through

sigmali]

= o(i). Here the fact that Armadillo starts

indexing of vectors at zero is a little confusing, be-

causesigma is a reordering of the indices.
sigmal[0], sigma[l],

Thus

.., sigma[n-1] is actually a

permutation of the numbersQ...,n— 1 rather than
the numbers P, ..., n. We discuss the interplay be-
tweenJ andsigma in more detail in the next sec-
tion, when we give the implementation ®fzJs _i
that computes the vertice$’® according to the for-
mula (2).

The ordering relation orJs is rather arbitrary,

it should just order objects of typd&s according to
z,J, andsig adequate tothe STL functiossit and
equal_range somehowPos should not be considered
in the ordering. The following definition does the job
just fine:

bool operator<(zJs Ihs,zJs rhs){

}

if(lhs.J != rhs.J) return lhs.J < rhs.J;
int i;

for(i=0;i<n && Ihs.z(i)==rhs.z(i);i++);
if(il=n){returnIhs.z(i)<rhs.z(i);}
for(i=0;i<n && Ihs.sig(i)==rhs.sig(i);i++);
if(i'=n){return Ihs.sig(i)<rhs.sig(i);}
return false; /I they are equal

We come to the main structuffestd _NK that de-

scribes the simplicial complex3'¢. It is defined as
follows: '

struct T_std_NK {

I3

ivec Nm,Np,Km,Kp;

Grid G;

int Nro;

vector<ivec> Ver;

vector<vector<int>> Sim;

vector<zJs> NrInSim;

vector<int> Fan;

int InSimpNr(vec x); // -1 if not found
bool InSimp(vec xint ind);

T_std_NK(ivec Nm,ivec Np,ivec Km,ivec Kp);

Nm= N™ and Np= NP define the hypercubsl and
Km= K™ and Kp= KP define the hypercubk from
Section 2Gis a grid defined bjmandNp and is used

to have a coherent enumeration of all vertices possibly
used byT_std _NK Ver is a vector containing all the
vertices of all the simplices in the complex aNid

is the position of the zero vector/vertex in this vector,

i.e. Ver[Nr0]

is the zero-vectorSim is a vector con-

taining all the simplices of the complex. A simplex is
basically(n+ 1) vertices. Each simplex is stored as a
vector of(n+ 1)-integers, the integers refereing to the
positions of the corresponding vertices/er .

The remaining members are not used for the con-

struction of the simplicial complex. They are, how-

53

SIMULTECH 2013 - 3rd International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

ever, advantageous if one wants to use the simplicial Km(_Km),Kp(_Kp),G(_Nm,_Np) {
complex as a basis to define CPA functions, because // FURTHER INITIALIZATION
given a vectox in the triangulated hyperculdé they int EndSet=1<<n;

enable the fast search of a simpl@wsuch thak € &. |ve|%PZV=zeros_,<|vec>(r2),_pQ1N.(n),
NrinSim contains all simplices of the kirrﬂzja inthe int N:er;rgi?%%igm%()%arzﬁcﬁf)’);
complex sorted according to the orderingzds . Fan PQIN fill(N-1);

contains the rest of the simplices, i.e. the simplices for(int i=0;i<n;i++) IdPerm(i)=i;
in the simplicial fan at the origin. We discuss thisin vector<ivec> sver(n+1);

more detail after the next section, in which we discuss ~ Grid Q1(ZV,pQIN);

the construction of the simplicial compl@xstd _NK Grid Ki(Km+1,Kp-1);

/I ACTUAL CONSTRUCTION OF THE COMPLEX
for(int J=0;J<EndSet;J++){
5 CONSTRUCTION OF T_std_NK for(int zNr=0;zNr<Q1.Endl;zNr++){
z=Q1.12V(zNr);
sigma = IdPerm;

To construct the simplicial compleX_std _NK we auto sh=sigmabegin(),se=sigma.end();

need a function to compute the vertiog&® as in for- dof

mula (2),i = 0,1,...,n, for the simplicesS;y5. As /I CODE BLOCK 1
mentioned in the last section the interplay between ..

J andsigma here play a little confusing role. Be- Jwhile(next_permutation(sb.se))

cause the set is supposed to contain the indices of :

those coordinates of a vector whose coordinates } }

should be multiplied with minus one, and Armadillo

starts indexing of vectors at zero, we should multi- ; TIDY UP

ply the coordinater[j, which corresponds to the /Il CODE BLOCK 2

coordinatevj1 of v, by minus one, if and only if ..

(3>>((7+1)-1))&1, i.e.(3>>))&l, isequaltoone. !}

Further,sigma is actually a permutation of the num- e first concentrate on the initialization, the imple-
bers 01,...,n—1 as discussed above. The formula yentation ofCODE BLOCK &nd CODE BLOCK 1s
(2) forx”°, i =0,1,...,n, can thus be implemented given below. In the initializer list we assign values

as follows: to the pairsNm, NpandKm, Kp. They correspond to
ivec x_zJs_i(ivec z,int Jjivec sigma,int i) the vectordfN™ NP andK™, KP respectively, that de-
ivec x_s_i=zeros<ivec>(n), v(n); fine the hypercubeN andK as in Section 2N\ K°

for(int j=0;j<i;j++){

X_s_i(sigmaQ))=1: is triangulated using the simplic€3,5; andK is tri-

angulated using a simplicial fan. The g@&gNm,Np)

for(int j=0;j<n:j++){ includes all vectorg € Z" that might be vertices in the
V()=((3>>)&1 2 -L:1)*(z()*+x_s_i()); triangulation.EndSet := 2" is chosen such that every
subset/ of {1,2,...,n} has a unique representation as
retun v; anumbed=0,1,...,EndSet — 1 as described above.
} The gridQ1is defined with just enough vectars Nj

We now have everything we need to actually con- to suffice for the construction of af, s relevant for
struct T_std _.NK The code for the construction can Z3'9 cf. (3). The gridki is defined such that the rel-
be partitioned into three parts. In the first part some evant intersections of simplice®,;; C N with the
variables and class members are initialized. This is boundary oK := {x e R" : K™ <x < KP} are char-
done in an initializer list and at the beginning of the acterized by having exactly one vertexdn That we
function. In the second part we actually construct getany relevantintersection by this characterizationis
the simplicial complex. This involves a triple loop, quite clear. The fact that we get every relevant inter-
for we have to iterate over all relevante N, all section no more than once can be deduced by consid-
Jc{1,2,...,n},and allo € S, cf. formulas (1) and ering the intersection of two different such simplices,
(2). In the third part we tidy up, which includes sort- which would clearly not be an allowed intersection of
ing some vectors to make them eligible for binary two different simplices in a simplicial complex.

search, removing duplicates, etc. The body of the im- IdPerm is defined to be the permutation

plementation for the constructor is as follows: [dPerm(i]=i for i =0,1,....n—1. The func-

T _std_NK::T_std_NK(ivec _Nm,ivec _Np, tion next_permutation from the STL considers
ivec _Km,ivec _Kp) : Nm(_Nm), Np(_Np), this to be the first permutation. Successive calls to

54

Implementation of Simplicial Complexes for CPA Functions in C++11 using the Armadillo Linear Algebra Library

next _permutation

permutations.
For the actual construction of the simplicial com-

plex we iterate over alt cQ1C N, all permutations

sigma of the numbers@,...,n—1, and all subset$

of {1,2,...,n}. Thez are represented through their

unigue numbers i1, the permutations are repre-

then iterates through all possible

Then we add it t&sim and record its position iRan.

Now that we have constructed the simplicial com-
plex we tidy up and prepare the simplicial complex
for efficient application. This is implemented as fol-
lows:

/I CODE BLOC 2 - IMPLEMENTATION
Il record all vertices

sented through their one-line form, and the subsetsiist<int> Iv;

through numbers,@,...,2"— 1. The code for the ac-
tual construction is as follows:

/I CODE BLOC 1 - IMPLEMENTATION
for(int i=0;i<=n;i++){
sverfi] = x_zJs_i(z,d,sigma,i);

}
int NrinN=0,NrInKi=0;
for_each(sver.begin(),sver.end(),
[&] (vec &v) {
if(G.InGrid(v)) NrinN++;
if(Ki.InGrid(v)){
pivec=&v; NrinKi++;

}
' }
if(NHIAN == L)
if(Nrinki == O){

Sim.push_back(G.V2I(sver));

int SLE=Sim.end()-Sim.begin()-1;

NrInSim.push_back(zJs(z,J,sigma,SLE));
} else if(NrInKi 14

*pivec=sver[0];

sver[0]=2V;

Sim.push_back(G.V2I(sver));

int SLE=Sim.end()-Sim.begin()-1;

Fan.push_back(SLE);

}
}

First we construct the simplex Gz =
co(x5'%,x57°,... X&) by writing its vertices to
sver, i.e. sverf] =x”° for i = 0,1,2...,n.

Then we count how many of the vertices are in

N and K°. Note thatx”® € N if and only if
G.InGrid(sver[i]) == true and x7’° € K° if
and only if KiInGrid(sver[i]) == true. If

xizﬂ’ € K° we tactically store a pointer to its corre-

spondingsverli]. Then we verify if&,46 € 'INSId,
i.e. if 6z56 C N, which holds true if and ony if
NrinN == n+l. Now there are two relevant cases.

Oneisif novertexisirkK®, i.e. NrinKi Then
the simplex is added as is &m, however, using the
unigue numbers given to its vertices By We then
record its position ifNrinSim to give fast access to
it later through the data structuréds . If exactly one

vertex, saysverfl = x7°, is in K°, i.e. NrinKi

== 1, then we modify this simplex and add it to
the simplicial fan. We first copgver[0] = x§’° to

sverf and then the zero vectatV to sver[0]

for_each(Sim.begin(),Sim.end(),
[&](vector<int> &v){
for_each(v.begin(),v.end(),
[&](int iv){
Iv.push_back(iv);
}
)
}
);

Iv.sort();
Iv.unique();
vector<int> vID(lv.size());
vID.assign(lv.begin(),Iv.end());
NrO=equal_range(vID.begin(),vID.end(),
G.V2I(zV)).first - vID.begin();
Il let the simplices in "Sim" refer, to the
Il vertices by ‘their positions in vID rather
Il than their ID-number from "Grid G"
for_each(Sim.begin(),Sim.end(),
[&](vector<int> &V){
for_each(v.begin(),v.end(),
[&](int &iv){
iv=equal_range(vID.begin(),vID.end(),
iv).first - vID.begin();
}
);
}
);

Il record the vertices in "Ver" in the same
Il order as in viD
for_each(vID.begin(),vID.end(),
[&](int vID){
Ver.push_back(G.12V(vID));
}
Il sort "NrInSim" and "Fan" for hinary search

sort(NrinSim.begin(),NrInSim.end());
sort(Fan.begin(),Fan.end());

To record all the vertices in the complex we first add
all vertex ID-numbers of all simplices to the list,
sort it and usenique to remove duplicates. Then we
copy the contents df to the vectowID to be able

to apply efficient binary search, i.e. the STL function
equal _range. Further, we record the positioMr0 of
the zero vertex inID.

Then we go through all vertices of all the sim-
plices and replace the ID-number of every vertex by
its position invID . Then we actually construct the ver-
tices asvec and write them irVer in the same order
as invID . Thus Ver[Sim[K][i]] is thei-th vertex
of the k-th simplex inSim. Finally, we sortNrinSim

55

SIMULTECH 2013 - 3rd International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

andFan, again to be able to efficiently apply the STL v[i]=conv_to<vec>:from(t);
functionequal _range. Thus givenz,J, andsigma }
for a simplexS, 5, we can efficiently locate it iSim mat X(n,n);

for(int i=1;i<=n;i++){

and given the position of a simplex 8m we can effi- X.col(-1)=v{i-v{0]:

ciently check whether it is in the simplicial fan, i.e. in
Fan, or not. We take advantage of the former prop- vec L=solve(X,x-v[0]);

erty in the functiorint InSimplexNr(vec X), dis- return min(L) >= 0 && sum(L) <= 1;

cussed in the next section. The second property is not}

important for the applications described in this paper, The code is self explaining. The connection to CPA

butis useful for other applications. functionsf : N — R, defined by giving its value&(v)
at every vertexw of every simplex ofT,\itQ is as fol-

lows: If x = 3 s Aivi € co(Vo,V1,V2,...,Vn), then

6 ALGORITHMSFOR T_std NK . .
f(x) = f(_;?\ivi) = _;}\if(Vi)a (6)

If the data structuré&_std _NKis to be useful for serv-
ing as a basis for CPA functions, we have to be able to
efficiently solve the following problem: For an arbi-
traryx € N find a simplex& € ‘r@tg such thatk € &.

In this section we implement this efficiently given that
the simplicial fan contains a small fraction of the total
number of simplices in the complex. If this is not the
case a different strategy should be used, e.g. storing
an appropriateJs for simplices in the simplicial fan
and projectx € K to the boundary oK and search
for this appropriateJs. For demonstrating our ideas
the following is, however, more informative, because
itincludes ideas necessary to solve this problem when
734 has been deformed as explained in Section 2.

as can be easily verified. Because=1— 31\
the solutiorL thus gives us a formula for the function
value.

Going through all simplice$ € T,\ff,f(‘ to check
whether a giverx € & is not very efficient and ik €
N\ K° we can do much better. In this case we know
thatx € &5 for somez e Njj, 7 {1,2,...,n}, and
0 € S, and if we calculate, 7, ando directly from
x we can find the simplexs;;s using binary search
in the vectoMrIinSim. To computez and j we first
construct a vectoy = (y1,Y2,...,yn)" and an inte-
gerJ. We do this by going through the entitigsof
. . x. If x; > 0 we sety; = x and thei-th bit of the bi-

Given a §|mplex6_ = C0(Vo,V1,V2,...,Vn) and a nary representation af equal to zero. I < 0 we
vectorx € R, x € & if and only if x can be written ety —x and thei-th bit in the binary representa-
as a convex combination of the vertices of the Sim- i, of 3 equal to one. After this procedure the inte-
plex. This means that there are nonnegative numbersgerJ characterizes the sétas discussed in Section 4
Ao,A1;---,An, Such that andz = (z,2,...,2,)" can be computed kg = |y; |

n n (largest integexK y;) fori = 1,2,...,n. Now clearly
X= _Z))‘iviv Where_%)\i =1 (4) y € Gy, i.€.Y € Gz9+5 With 7* = 0 the empty set,
= = and it is easily verified that

which in turn is equivalent to 0/

X —Vo= ii)\i(\/i — Vo), wherei)\i <1. (5) W=y-z= i;)‘i J;%(J’) = izl <JZI)\J> €(iy- (7)

We construct the matri by writing the vectors Because all thaj are nonnegative we have the rela-

Vi1 — Vo,V2 — Vg,...,Vh — Vg in its columns conse- tion

guently. Because the vertices of a simplex are affinely 12> Wg(1) > Wg(2) > - > Wg(n) >0 (8)

independent, the equation— vo = XL always has)

a solutionL = (A1,A2,...,An)T. If the solution ful- ~ forw = (Wi, W,wq)T. Thus, if we sort the en-

fills \j > 0 foralli=1,2,...,nandy! ;A < 1, then tities o_fwlln Qecreasmg order and record the corre-

X € &, otherwisex ¢ &. Thus we can implement spon.dlng |nd|ce§ we havg computedThe fun_ct|on

bool T _std _NK:InSimp(vec x,int ind), which sort _index(w,1) in Arma_lqnlo does ex_actly this (the

returngrue if vec x is in the simplesSim[ind] and ~ Optional argumert specifies descending sort).

false otherwise, as follows: In the implementation of int

bool T_std_NK:InSimp(vec x,int ind){ T‘Std_‘NKE:InS.Imer(VeC .X)’ that. .retums t_he
vector<vec> v(n+1); position in Sim of a simplex containingrec x if
for(int i=0;i<=n;i++){ possible and-1 otherwise, we first check ik is

ivec t=Ver[Sim[ind][i]; in the domain of the simplicial complex. Then we

56

Implementation of Simplicial Complexes for CPA Functions in C++11 using the Armadillo Linear Algebra Library

check ifx is (only) in the domain of the simplicial discussed some of the advantages of doing so in the
fan. If it is we go through all simplices in the fan to paper. Thus, the paper might be of interest to sci-
find a simplex containing. If x is in the domain of entists and engineers interested in modern numerical
the simplicial complex, but not in the fan, we use the programming in C++11 under Windows, even if they
efficient strategy of computing a simplex containing are not necessarily interested in our particular prob-
it as described above. The code has, obviously, tolem of implementing simplicial complexes for CPA
be adapted to the fact that Armadillo indexes vectors functions.
from zero. The implementation is as follows:
int T_std_NK::InSimpNr(vec x){

if(I(min(Np-x)>0 && min(x-Nm)>0)){ REFERENCES

return -1;

.} . . Eghbal, N., Pariz, N., and Karimpour, A. (2012). Discon-

|f(m|n(_Kp-?<)>Q & ”.“”‘X'.Km>>°){ ? tinuous piecewise quadratichyapunév fun)ctions for

for(int i=0;i<Fan.size();i++){ planar piecewise affine systends Math. Anal. Appl.

if(InSimp(x,Fan(i)}{ 399, pp. 586-593.
return Fan(i] Giesl, P. (2007)Construction of Global Lyapunov Func-
tions Using Radial Basis Functionkecture Notes in
) } Mathematics, 1904, Springer.
Giesl, P. and Hafstein, S. (2012). Existence of piecewise li
_// WE CAN COMPUTE THE POSITION OF THE SIMPLEX ear Lyapunov functigns ir? arbitary dimegsiorm's-
o — T crete Contin. Dyn. Syst32, pp. 3539-3565.
;\é(i(cimz (P:)Os:gm/i +s)|{g—5|gma Giesl, P. and Hafstein, S. (2013). Revised CPA method to
v compute Lyapunov functions for nonlinear systems.

if(x(1)<OX

N (i) (submitted)
3((0':')(1(2’4, Hafstein, S. (2004). A constructive converse Lyapunov the-
} - ' orem on exponential stabilitiscrete Contin. Dyn.
N . . Syst, 10, pp. 657-678.
} 2()j=static_cast<int>(x(})); Hafstein, S. (2005). A constructive converse Lyapunov

theorem on asymptotic stability for nonlinear au-
tonomous ordinary differential equatiori3ynamical
Systems20, pp. 281-299

sig=conv_to<ivec>::from(sort_index(x-z,1));
return equal_range(NrinSim.begin(),
NrinSim.end(),zJs(z,J,sig))-first->Pos;

} Johansen, T. (2000). Computation of Lyapunov Functions
for Smooth Nonlinear Systems using Convex Opti-

We have a few comments on this implementation. The mization. Automatica 36, pp. 1617-1626.

command |= 1<<i; sets thei+ 1)-th bit of the bi- Johansson, M. and Rantzer, A. (1997). On the computa-

nary representation dfequal to 1. Because the enti- tion of piecewise quadratic Lyapunov functions. In:

ties ofx are all nonnegative when we want to compute z;%cggﬂ't?gls of the 36th IEEE Conference on Decision

their floor, we can s_lmply CaSt fromouble to int . Julian, P., Guivant, J., and Desages, A. (1999). A

The Armadillo functionsort _index returns a vector parametrization of piecewise linear Lyapunov func-

of unsigned integers that describes the sorted order tion via linear programmingnt. Journal of Contro)

of the given vector’s elements. The optional second 72, pp. 702-715.

parameter can be set to 1 to ket _index use de- Marinosson,. S. (2Q02a). Lyapunov functipn qonstruction

scending sort, otherwise it uses the default, which is for ordinary differential equations with linear pro-

gramming.Dynamical System47, pp. 137-150.
Marinosson, S. (2002bgtability analysis of nonlinear sys-
tems with linear programming: A Lyapunov functions
based approachPh.D. Thesis: Gerhard-Mercator-
7 SUMMARY University, Duisburg, Germany.
Peet, M. and Papachristodoulou, A. (2010). A converse
sum-of-squares Lyapunov result: An existence proof

ascending sort.

We described the implementation of a simplicial com- based on the Picard iteration. 149th IEEE Confer-
plex with a simplicial fan at the origin. Such com- ence on Decision and Contigbp. 5949-5954.

plexes allow for the parameterizations of continuous, Rezaiee-Pajand, M. and Moghaddasie, B. (2012). Estimat-
piecewise affine (CPA) functions, with an arbitrary ing the Region of Attraction via collocation for au-
rich structure at a singularity. Such CPA functions tzonpopmggg ”Z%T“ear systenttruct. Eng. Mech.41-

have been shown to be Irreplac.eable in the CC)mpl'lta_Sanderson, C. (2010armadillo: An Open Source C++
tion of true CPA Lyapunov functions for general non- Linear Algebra Library for Fast Prototyping and
I!near Systems.. We used Cf+11 and th? Armadillo Computationally Intensive Experiment3echnical
linear algebra library for the implementation and we Report, NICTA.

57

