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Abstract: We present new results in stochastic multi-objective optimization applied to focused ultrasonic therapy 
planning.  This type of non-invasive therapy uses focused ultrasound for the destruction of tumor cells and 
magnetic resonance tomography for identification of tumor volume and healthy organs. During the therapy 
planning the treatment parameters, such as frequency and intensity of ultrasound, are adjusted to achieve 
maximal tumor destruction and minimal influence to the healthy organs. For this purpose multi-objective 
optimization is used. RBF metamodeling is employed for continuous representation of discretely sampled 
results of numerical simulation and for evaluation of inherent uncertainties. We apply two algorithms for 
multi-objective optimization capable of non-convex Pareto front detection in the considered problem. Cross-
validation procedure and sensitivity analysis are used for estimation of uncertainties. A realistic application 
case demonstrates the efficiency of the approach. 

1 INTRODUCTION 

Due to the non-invasive nature of the focused 
ultrasonic therapy its control is often limited to 
imaging methods, e.g. MRT. Numerical simulation 
becomes an important step for the therapy planning. 
Efficient methods for the focused ultrasonic 
simulation have been presented in paper (Georgii et 
al., 2011). It uses a combination of Rayleigh-
Sommerfeld integral for near field and angular 
spectrum method for far field computations, which 
allows determining the pressure field in 
heterogeneous tissue. The bioheat transfer equation 
is used to determine the temperature increase in 
therapy region. Thermal dose is defined according to 
CEM model or Arrhenius model (Nandlall et al., 
2009); (Pearce, 2009) as a functional of temperature-
time dependence in every spatial point in therapy 
region. The simulation is considerably accelerated 
by GPU based parallelization. 

The purpose of therapy planning is a 
maximization of thermal dose inside the target zone 
(TDin) and minimization of thermal dose outside 
(TDout). As usual in multi-objective optimization 
(Ehrgott AND Gandibleux, 2002), the optimum is 
not an isolated point but a hypersurface (Pareto 
front) composed of points satisfying a tradeoff 
property, i.e. none of the criteria can be improved 

without simultaneous degradation of at least one 
other criterion. Thus, for a two-objective problem, 
the Pareto front is a curve on the plot (TDin, TDout) 
bounding the region of possible solutions, see Fig.2. 
Efficient methods have been developed for 
determining the Pareto front.  

The simplest way is to convert multi-objective 
optimization to single objective one, by linearly 
combining all objectives into a single target function 
t(x)= ∑ wi fi(x) with user-defined constant weights 
wi. Maximization of the target function gives one 
point on Pareto front, while varying the weights 
allows to cover the whole Pareto front. In this way 
only convex Pareto fronts can be detected, because 
non-convex Pareto fronts produce not maxima but 
saddle points of the target function. There are 
methods applicable also for non-convex Pareto 
fronts.  

Non-dominated set algorithm (NDSA) finds a 
discrete analogue of Pareto front in a finite set of 
points. For two points f and g in optimization criteria 
space the first one is said to be dominated by the 
second one if fi ≤ gi holds for all i=1..Ncrit. A point f 
belongs to non-dominated set if there does not exist 
another point g dominating f. (Kung et al., 1975) 
implements a fast recursive procedure to find all 
non-dominated points in a given finite set. 
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Figure 1: MRT slices are used as a basis for volumetric material model. 

 

Figure 2: Robust multi-objective optimization using 
metamodeling of simulation results. Red points denote 
simulation results, the continuous green region indicates a 
metamodel of simulation results, the blue curve the Pareto 
front, the black point with error bars an optimal 
representative with confidence limits. 

A continuous method is LP-based local 
improvement algorithm (LIA). It produces a 
trajectory towards the Pareto front starting from an 
initial design. Each step solves a linear program 
(Hornung et al., 2010) 

   maximize ;  
   where (fi ,x) ≥  ≥ 0 and - ≤ xj

  ≤  

w.r.t. the threshold  and the step x, for the given 
gradients of objectives fi  and the size of trust 
region [-,]. Here i=1..Ncrit, j=1..Npar. The 

approach ensures that all criteria have an 
improvement at least , maximally possible within 
the given trust region. The algorithm terminates at 
Pareto front, where no further improvements are 
possible. 

In the case when only a restricted number of 
simulations is available metamodeling of simulation 
results becomes useful. The objectives are 
interpolated continuously in between simulation 
results, and optimization algorithms are applied to 
interpolated functions. In particular, RBF 
metamodeling (Buhmann, 2003) has the advantage 
of generic non-degeneracy in arbitrary dimensions 
and the availability of a tolerance predictor. The 
interpolated function f(x) is represented as a linear 
combination of special functions () depending only 
on the distance to the sample points xk: 
 

f(x) = ∑ k=1..Nexp ck (|x-xk|) (1)
 

The coefficients ck can be found from known 
function values in sample points f(xk) by solving a 
moderately sized linear system with a matrix kn 

=(|xk-xn|).  
In practical problems, different sources of 
uncertainty should be considered. Uncertainties of 
metamodeling are related with the quality of 
sampling in parameter space. These uncertainties are 
reduced with the increasing density of sampling, i.e. 
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when more simulations are included into analysis. 
This type of uncertainty can be estimated by a cross-
validation procedure, measuring a sensitivity of the 
function value to the removal of sample points. With 
the usage of Sherman-Morrison-Woodbury formula 
it can be found analytically (Nikitin et al, 2012): 
 

k = f(xk) - f(xk)|xk removed = ck /(-1)kk (2)
 

Another type of uncertainties comes from physical 
model. In addition to optimization parameters x, the 
objectives also depend on a number of model 
parameters p, such as physical properties of 
biomaterials. These parameters are measured 
imprecisely. The corresponding variation of results 
can be estimated by means of the first order 
reliability method FORM (Clees et al., 2012): 
 

(f) = (∑ j=1..Npar (f/pj (pj))2)1/2 (3)
 

where non-correlated variations of parameters pj are 
assumed, and () denotes standard deviation. 
Finally, these two sources of scatter can be 
combined into a single measure: 
 

err = (2+2)1/2
 . (4)

 

In further sections we apply the above described 
methodology for the multi-objective optimization 
and stochastic analysis of focused ultrasonic therapy 
simulation. 

2 MODELING 

A generic workflow for modeling of the focused 
ultrasonic therapy has been described in our paper 
(Borsotto et al., 2012). Numerical simulation uses 
FUSimlib software (http://www.simfus.de ) on 512 x 
512 x 256 voxel grid. Ultrasound has been focused 
in the center of the target zone for the neutral breath 
state. The computational model includes angular 
spectrum method with heterogeneous tissue and 
reflections. CEM model is used for determination of 
thermal dose. The result after 10 seconds of 
exposure time has a form of spatial distributions of 
pressure amplitude, temperature and thermal dose. 
Fig.3 shows a typical result for thermal dose on slice 
97/256 near the focal point.  

The registration of tissue deformation on the 
basis of MRT images is used for proper 
characterization of the breathing process. It has been 
shown in (Borsotto et al., 2012) that the breathing 
process is one of the major sources of uncertainties 
in focused ultrasonic therapy simulation. For 
characterizing the breathing process two image 

sequences have been processed, each containing 104 
z-slices with 320 x 320 xy-resolution. One sequence 
corresponds to the breath-in state, another one to the 
neutral breath state. Point-to-point correspondence 
between images has been determined using a block-
matching method. Fig.1 shows the resulting field of 
motion vectors for slice 51/104 of the neutral breath 
sequence. 
 

 

Figure 3: Typical simulation result, thermal dose (range: 
0eq.min/blue to 0.6eq.min/red). The target zone in the 
neutral breath state is marked by the white circle. 

 

Figure 4: Spatial material distribution: gel (black), liver 
(green), other soft tissue (red), cartilage (blue), bones 
(yellow). White color marks the target zone.  

Segmentation procedure defines spatial distribution 
of biomechanical characteristics on the voxelized 
model. 5 types of materials are introduced shown 
with different colors on Fig.4, for the slice 21/104. A 
target zone has been modeled as a ball of 1cm 
diameter located on the upper part of the liver. Its 
motion according to breathing process is evaluated 
on the basis of the motion vector field found in the 
registration procedure and controlled by a single 
parameter (t=0…1) for the transition from neutral to 
breath-in state. A finer 512 x 512 x 256 voxel grid 
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has been used for simulation, where the distribution 
of material has been subsampled into, using proper 
positioning transformations. 

3 OPTIMIZATION 

Optimization is performed with respect to the 
following parameters. 

Table 1: Optimization parameters and their variations. 

frequency 0.25…0.75 MHz 

initial particle speed 0.23...0.282 m/s 

The frequency of transducer is an important 
parameter controlling focused ultrasonic therapy 
simulation. The other one, initial particle speed, is 
proportional to an acoustic intensity emitted by the 
transducer (Georgii et al., 2011). As optimization 
objectives the thermal dose inside and outside the 
target zone have been defined as sums of the thermal 
dose over corresponding voxels, ∑TDin / ∑TDout.  
The variation range of optimization parameters was 
regularly sampled with 25 simulations, from which 
19 fall in the region of interest, shown on Fig.5. RBF 
metamodel constructed on simulation results shows 
Pareto front of non-convex type, for which NDSA 
and LIA Pareto front detectors have been applied. 

 

Figure 5: Results of multi-objective optimization. Red 
points denote simulation results, the green points indicate 
a metamodel of simulation results, the blue points indicate 
the Pareto front detected by NDSA, the magenta points 
show trajectories of interior points towards Pareto front 
found with LIA. Black crosses show the tolerances of the 
metamodel found with cross-validation procedure. 

For convenience of the therapy planning it is 
advisable to use a special tool for design parameter 
optimization, DesParO (Clees et al., 2012), see 
Fig.6. It allows to change interactively optimization 
parameters and to see immediately the variation of 
optimization criteria. Constraints can be set e.g. 
maximizing one objective and minimizing the other, 
in this way the Pareto front can be explored. 
Graphical representation of interdependencies 
between parameters and criteria allows to find most 
influencing parameters and most sensitive criteria. 
Also, the uncertainties of metamodeling found with 
cross-validation procedure are shown (the red bars 
under criteria sliders). 

Further we focus on uncertainties coming from 
physical model.  
 

 
 

 
 

 

Figure 6: Optimization problem in DesParO Metamodel 
Explorer. On the top: sliders of parameters, in the center: 
sliders of criteria, on the bottom: a pattern of 
interdependencies between parameters and criteria. 

4 SENSITIVITY ANALYSIS 

In our previous paper (Borsotto et al, 2012) the 
sensitivity of the result to variation of 29 parameters 
has been evaluated, including 5 biomechanical 
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characteristics for 5 materials each, 3 blood 
characteristics and 1 breathing parameter. It has 
been shown that the parameters most influencing the 
result are the absorption coefficients for gel, soft 
tissue and liver as well as the breathing parameter. 

For improving accuracy of the physical model a 
precise measurement of absorption coefficients as 
well as synchronization of transducer focal point 
with breathing process has been proposed. 

 

Here we present a new estimation of sensitivity, 
based on improved measurements of critical 
parameters given in (Peters, 2007). 

 

For estimation of sensitivity, the parameters have 
been varied in ± interval according to Table 2 
below, then a central difference scheme has been 
used to estimate entries of the Jacobian matrix: 
 

Jij =  criti / parj (5)
 

The sensitivity matrix is defined as 
 

Sij = Jij j (6)
 

and presented in Table 3. Then total r.m.s. of two 
criteria is evaluated: 
 

(criti) = (∑ j=1..Npar Sij
2)1/2 (7)

 

and presented in Table 4 together with the mean 
values of the criteria.  
 

Comparing with the previous result, we see 
significant improvement of precision, especially if 
breathing influence is compensated. These 
uncertainties should be taken into account during the 
therapy planning. 

Table 2: Standard deviations of absorption coefficient (in 
1/m), from (Peters, 2007). 

gel 0.001   
liver 1.2 
soft tissue 0.7 

Table 3: Sensitivity matrix for objectives ∑TDin / ∑TDout 
(in eq.min). 

 gel soft 
tissue 

liver 

absorption -0.2 
/ -0.3 

-183.6 / 
277.3 

709 / 
378.5 

 

breath -505.2 / 546.6 

 

 

Table 4: Standard deviations and mean values for ∑TDin / 
∑TDout (in eq.min). 

 ∑TDin ∑TDout 
r.m.s. 
total 

889.5 720.4 

r.m.s. 
breath 

compens. 
732.1 469.2 

mean 2273.7 3743.8 

5 CONCLUSIONS 

A generic approach for focused ultrasonic therapy 
planning on the basis of numerical simulation has 
been presented including multi-objective 
optimization and stochastic analysis. Its application 
to a realistic test case has been demonstrated. RBF 
metamodeling of simulation results has been 
performed for continuous representation of two 
optimization objectives. Non-convex Pareto front of 
the objectives has been determined by means of non-
dominated set and local improvement algorithms. 
Uncertainties of metamodeling have been estimated 
by means of cross-validation procedure. These 
uncertainties can be reduced with the increasing 
density of sampling, i.e. including more simulations 
into analysis. Uncertainties of physical model have 
been estimated by means of sensitivity analysis. 
Improved accuracy of the physical model and 
compensation of the influence of the breathing 
process provide better precision of the result.  
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