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Abstract: An important task in underwater autonomous vehicle swarm management is the knowledge of the graph 
topology, to be obtained with the minimum possible communication exchanges and amid heavy 
interferences and background noises.  Despite the importance of the task, this problem is still partially 
unsolved.  Recently,  the Fast Fourier Transform and the addition of white noise to consensus signals have 
been proposed independently to determine respectively the laplacian spectrum and the adjacency matrix of 
the graph of interacting agents from consensus time series, but both methodologies suffer technical 
difficulties.  In this paper, we combine them in order to simplify calculations,  save energy and avoid 
topological reconstruction errors using only the largest eigenvalue of the spectrum and instead of white 
noise, a high frequency, low amplitude  noise. Numerical simulations of several swarms  (random, small-
world, pipeline, grid) show an exact reconstruction of the configuration topologies. 

1 INTRODUCTION 

Monitoring the marine environment is acquiring 
more and more importance because of scientific and 
economic reasons. Just to name some of them, we 
could indicate the search for natural resources, 
fishery, sea pollution mapping, maintenance 
activities.  

In this paper we describe a methodology able to 
reconstruct exactly the graph from time series (the 
network inverse problem), using recently developed 
signal analysis and algebraic graph theory 
techniques.  

Although our methodology depends on a semi-
centralized data elaboration, there are particular 
situations when the noises, disturbances and 
interferences reach very high levels that may require 
such approach, as the last resort.  

2 PROBLEM DESCRIPTION 

Autonomous underwater vehicle systems (AUV) 
have moved from the prototype stage to scientific, 
and commercial uses (Nawaz et al., 2009). 

An AUV must be considered (Dell’Erba, 2012) 

as a real cost alternative to other available 
technologies, such as manned submersibles, 
remotely operated vehicles and towed instruments 
led by ships. However, many problems are still to be 
solved to make AUV competitive especially for the 
issues relevant to power availability, information 
processing, navigation, and control. Communication 
channels are a major concern, as the acoustic 
underwater transmission is very slow and bandwidth 
limited, but, in the future, optical, high power 
transmission devices will be available for a number 
of different approaches integrating the acoustical 
data channel. 

Nevertheless, a swarm could be advantageous 
compared to a single vessel, if high  communication 
rate were available to reduce the dead reckoning 
errors. It can collect together all the data of all the 
vessels to minimize the errors in estimating position.   
Therefore, in some cases, a centralized formation 
analysis may be helpful, although economic costs 
rise (Pompili and Melodia, 2005). For example when 
the swarm size is large, since multi-hop paths are 
needed to reach every node causing delays in several 
ways.  

This means that information about the 
configuration cannot be transmitted inside the 
swarm in the form of  simple link look-up table 
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because large delays are prone to cause instability.     
To be more precise, consider a large swarm and a 
consensus control protocol (see Paragraph 3).       
According to (Olfati-Saber and Murray, 2004) the 
stability of a fixed configuration is guaranteed iff: 

τ ≤  π / 2λmax 

where τ is the uniform delay experienced by the 
consensus distributed computations. Similar 
constraints may be set for non uniform switching 
topologies.  

The delay τ depends on a number of factors: 
CPU power, data transmission bandwidth, MAC 
protocols, the number of AUV N, the inter-symbol 
interference and finally the time necessary to acquire 
the largest eigenvalue of the Laplacian, Tλ .  

If we calculate λmax  by means of a look-up table 
simply verifying the existence of an 
acoustical/optical link between two AUV and 
passing the information to other nodes, it is to be 
expected a relatively large amount of time Tλ . Then 
we have: 

τ =  Tλ  + τ1 +  τ2 + ...  τn   ≤   π / 2λmax 

Now, for a large swarm over a wide area it turns out 
that: 

τ ≈  Tλ    ≤   π / 2λmax 

therefore Tλ  is a sort of time-horizon beyond which 
the swarm configuration looses stability, i.e. the 
consensus solutions diverge.  

Another situation that prevents from using multi-
hop paths is the marine background noise (Traverso 
et al., 2012) together to the inter-symbol interference 
(ISI) (Dousse et al., 2005).  

ISI is a signal in which one symbol interferes 
with subsequent symbols. The phenomenon is 
enhanced by multiple reflections of the signal and as 
has an effect similar to a non-gaussian noise.  

The problem is produced by a number of 
emitting nodes (AUV) towards the receiver and by 
the background noise. Dousse has demonstrated that 
above a critical value of ISI the network of reliably 
communicating nodes splits into small isolated 
components, and as a consequence, the connectivity 
is lost (Dousse et al., 2005).  

This result is true in general and even more so in 
the marine environment. Difficulties are exacerbate 
if a CDMA (Code Division Multiple Access), the 
transmission of multiple digital signals 
simultaneously over the same carrier frequency, is to 
be used (Appala Raju et al., 2012). As a 
consequence, data packets arrive deteriorated to the 
receiver node. 

Nevertheless, there are many reasons to know the 
swarm topology. To name only two of them: the 
second largest laplacian eigenvalue (the Fiedler or 
algebraic eigenvalue) is relevant to the swarm 
connectivity and the maximum eigenvalue is 
relevant to the tolerable delay. Moreover, according 
to (Camperi et al., 2012); (Ballerini et al., 2008) in 
biological swarms maintaining a certain topology is 
preferred to maintain a metric graph, i.e. metric 
distances. It seems that topological interactions are 
more robust to predatory attacks, facilitating the 
group cohesion.     

Then a solution may be to implement a semi-
centralized scheme, taking advantage of the noise 
resilient procedure of (Ren et al., 2010) and of the 
spectrum distributed computation (Franceschelli et 
al., 2012), (Yang et al., 2008).  

3.1 The proposed Scheme 

We come to envision a large AUV swarm 
monitoring a very wide area. A Gausssian noise 
codifies the information about the topology and is 
transmitted on the consensus channel. Thus, 
provided the power of the added noise is large 
enough, the transmission inside the swarm is robust.  
The centralized data collection/elaboration task is 
carried out by one or more ships.  A  ship covers a 
part of the monitored area as shown in the pictorial 
representation of Figure 1. The radius r of the 
circumference covered by the ship depends on the 
inter vehicle distance, the number of AUV (Chiesa 
and Taraglio, 2012), the topology, and the maximum 
allowable delay. Ships exchange data each other by 
means of RF devices and with the swarm by optical 
transmitters. When the maximum extension D of the 
area is D >> r, it would be unfeasible to implement a 
multi-hop inter-swarm data transmission to control 
the configuration because delays would prevent any 
synchronization. 

Clearly, this scheme is based on a centralized 
approach; instead the consensus control of 
position/velocity is completely distributed (Olfati-
Saber and Murray, 2004). An appropriate position 
prediction algorithm may also alleviate consensus 
errors due to delays (Joordens and Ponds, 2010).   

It should be noted that the consensus protocol is 
necessary to the swarm stabilization, thus no 
calculation encumbrance is the required to the 
system at least with respect to control tasks. 

Another distributed procedure we use in this 
work is the determination of the laplacian spectrum 
of the swarm network. Since also the spectrum is 
determinate locally, we have two distributed 
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calculations and a centralized one, i.e. a semi-
centralized scheme. If the swarm configuration is 
fixed obviously the spectrum is known in advance. 

Moreover, instead of a ship, the central 
elaborations could take place in one or more AUV, 
properly equipped and able to broadcast relevant 
data to the whole swarm by a gossip protocol.   

 

Figure 1: Ships receive information from the AUV inside 
the dotted circles of radius r and from the other ships. The 
small red circle is the transmission range of an AUV 
towards the closest neighbours. The same functions of 
ships could be fulfilled by one or more AUV properly 
equipped. 

3 METHODS 

Recently, a method to recover the Laplacian matrix 
of the a network of dynamical coupled systems has 
been given (Ren 2010). Starting from the general 
form of the i-th differential system: 

xi’ = Fi( xi ) 

i = 1, ... N, and adding couplings and noise we have: 

xi’ = Fi (xi) – c Σj Lij H(xj) + ηi (1)

i, j = 1, ... N , where c is the coupling coefficient 
(here c = 1), H the coupling functions, x the state 
variables, η the white gaussian noise with strength 
σ2, Lij are the entries of the Laplacian matrix derived 
from the undirected graph of the systems. Vectors 
and matrices are in bold. The Laplacian matrix is: 

L = D – A 

where D is a diagonal matrix formed by the node 
degrees and A is the adjacency matrix (1 if a link i-j 
exists, 0 otherwise) of the graph.  

The very interesting point here is that the noise 
added enables the solution of the inverse problem: 
given the time series, reconstruct the graph.  
Because of the particular problem of the swarm 
control, in our paper we focus on the standard 
consensus form of (1): 

xi’ = Σj aij(xj -xi) + ξi    ,     j = 1, ... N (2)

where aij are the entries of the adjacency matrix A, 
but here we consider a high frequency (HF) noise ξ 
instead of the white noise η, as it will be explained 
later.  

It is known that for a connected network, the 
equilibrium point for (2) is globally exponentially 
stable. Moreover, the consensus value is equal to the 
average of the initial values; for small swarms the 
average is easy to calculate. In compact form (2) is 
written: 

x’ = - Lx + η 

Expression (2) and similar are utilized in the swarm 
control to coordinate the states of the robots on a 
common position/velocity agreement resilient to 
disturbs (Tanner et al., 2003); (Bullo et al., 2009); 
(Xi et al., 2012); (Olfati_Saber, 2007); (Cucker and 
Smale, 2007). 

 

Figure 2: Scheme of data elaboration in an AUV. 

After long enough time-series have been collected, it 
is demonstrated (Ren, 2010) that: 

L =  C+ (σ2/2) (3)

where C is the correlation matrix among the time 
series between node i and node j, C+  is the Moore-
Penrose pseudoinverse. Note that (2) requires the 
knowledge of all time series to calculate the 
pseudoinverse, hence the reconstruction is 
centralized. Authors of (Ren, 2010)  find a one-to-
one correspondence between the correlation matrix 
of time series from nodes and the Laplacian matrix;  
albeit no physical explanation of the phenomenon is 
clearly claimed, an analytical proof is sketched. 

This remarkable, counterintuitive finding 
actually allows to set a threshold for the entries of 
C+ : below it the entries are considered -1, above 0, 
thus the Laplacian and consequently the adjacency 
matrix, is reconstructed. The threshold procedure is 
not immediate to implement, anyway in (Ren, 2010) 
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it is claimed a very good success rate. Nevertheless, 
some errors are reported to remain. Since the AUV 
has a non negligible economic value, any effort for 
eliminating the residual error is reasonable.     

Moreover, considering the energy saving 
requirement of the signal transmission apparatus of 
the AUV, the average degree (i.e. the number of  
underwater communication links) should be kept as 
low as possible.  At the same time, the consensus 
signals are needed also to control the swarm and in 
this respect, noise is a disturb to keep as small as 
possible. Therefore, bearing in mind these 
considerations, we suggest a node to transmit 
consensus signals added with HF noise and to low 
pass the noisy signals received, as in Figure 2. 

3.1 The Spectral Estimation 

To reduce or eliminate the residual error in the graph 
reconstruction we need extra information.  

A relevant help could be the knowledge at least 
of some eigenvalues of the laplacian spectrum.  

In some cases the graph is fixed and there is no 
need of topological variations, thus the desired 
spectrum is known and only a periodic verification 
is required, but usually the graph changes frequently 
and demands an on-line check. 

The spectral reconstruction has been studied in 
(Franceschelli et al., 2012); (Yang et al., 2008). 

Franceschelli calculates a distributed Fast 
Fourier Transform (FFT) of signals derived from a 
proper distributed protocol and received at a node i:  

xi’ =    zi  + ∑j ( zi - zj ) 

zi’ =  - xi  - ∑j ( xi - xj ) 

with j ∈ Ni  (nodes at one hop of distance from node 

i). Thus, the state trajectory is a linear combination 
of sinusoids oscillating only at frequencies function 
of the eigenvalues of the Laplacian matrix λj, and the 
amplitude of the peaks in the spectrogram are related 
to the eigenvalues: 

|F (xi(t))| = 1/2∑j aij δ (f ± (1+ λj) / 2π ) 

|F (zi(t))| = 1/2∑j bij δ (f ± (1+ λj) / 2π ) 

This method has some drawbacks (Kibangou and 
Commault, 2012): the multiplicities of the 
eigenvalues cannot be calculated and the FFT suffers 
from the presence of noise. Remember that 
independently from the Ren’s procedure, underwater 
communications are polluted by several sources of 
noise. 

On the other hand (Yang et al., 2008) provides 
an estimation of the laplacian spectrum based on 

matrix power iteration, but this way only an 
approximate solution can be obtained.  

Finally, it is worth noting that even if an exact 
spectrum reconstruction was available, today is not 
clear if, at least theoretically, is possible to 
reconstruct univocally its adjacency matrix (Van 
Dam and Haemers, 2003). Alternative combinatorial 
optimization techniques such as the tabu search, 
simulated annealing or graph theory methods are not 
exact and some of them would anyway require a 
long computation time.  

In spite of these limitations, having available the 
estimation of just a single eigenvalue, we show how 
to eliminate completely or at least reduce the 
estimation error in the graph reconstruction. 

3.2 Error Reduction  

Let us consider that only the largest lapalacian 
eigenvalue λN has been calculated by means of one 
of the previously described methods. It is intuitive to 
use it as a simple cost function, instead of the 
threshold procedure, to determine the non null 
entries of the adjacency matrix recovered by (3).  

Therefore in our methodology the pseudoinverse 
C+ is calculated from noisy consensus time-series 
and normalized. Then, starting from a convenient 
value, an initial adjacency matrix A is produced, its 
largest laplacian eigenvalue λ*

N calculated and 
subtracted to the actual eigenvalue λN  : 

min g(λ) = | λN  -  λ
*
N | 

and when: 

g(λN) = 0 (4)

the actual matrix A is reconstructed (best results 
have been obtained with the largest eigenvalue, 
although other eigenvalus may be used). In Figure 3 
it is shown how the zero estimation error of the 
eigenvalue is reached jointly with the complete 
reconstruction of the adjacency matrix. 

If errors in the exact estimation of the maximum 
laplacian eigenvalue were present, the exact 
reconstruction as in Figure 2 is still possible for low 
– moderate amounts of the error. Moreover, 
accepting just a few errors in the link reconstruction, 
the acceptable error in the eigenvalue estimation 
increases quickly (see Table 2). 
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Figure 3a: Small World graph, 100 nodes (abscissa: time 
steps, ordinate: errors). Black dotted curve: actual error 
percentage of the adjacency matrix entries (not including 
diagonal and symmetric elements), continuous blue curve: 
the  eigenvalue absolute error | λN  -  λ

*
N |.  Vertical red and 

green (green line is not visible because is coincident with 
the red one) lines: exact reconstruction according to the 
(4). The minimum value of the continuous blue curve 
indicates the correct topology reconstruction, i.e. zero 
errors. 

 
Figure 3b: Enlargement of the minimum area. 

 
Figure 3c: In this case two entries are wrong and the 
minimum indicated by the largest eigenvalue (green dotted 
line), is no more coincident with the actual zero 
reconstruction error (dotted red line), see Table 2 also. 

3.3 Noise Addition  

For the methodology to work it is necessary the 
addition of noise to the consensus protocol. As 
pointed out in Paragraph 2, in a real environment it 
is already present a background of natural or 
artificial noise, then the previous noise level is 
increased. This does not undermine the 
methodology, provided the strength of the added  
Gaussian noise is large enough. 

In order to save energy and allow the consensus 
signals to produce a proper control action on the 
AUV swarm, we add a high frequency (HF), low 
amplitude, zero mean, unitary variance Gaussian 
noise to (1).  

Noise strength in simulations is σ2 = 0.01, one 
order magnitude smaller with respect to (Ren, 2010).   
In Figure 4 is shown the HF noise and the signal 
power spectral density (psd) spectrum (frequencies 
are normalized). 

In Figure 4 is shown a consensus signal, as it 
appears after the low-pass filtering, once the signal 
has been received in a node.  

Aside the delay due to the low-pass filter, the 
original signal is recovered. Anyway, even without 
the low-pass filtering, the consensus solutions 
converge all (Figure 5), but the Erdos-Renyi random 
configuration that is not connected. 

 

 

Figure 4: Top, psd of HF noise, middle, psd of the 
consensus signal with  HF noise. Last image: HF noise in 
the time domain. 
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4 NUMERICAL SIMULATIONS 

Numerical simulations have been conducted to 
validate the methodology, results are shown in Table 
1. The task is to recovery exactly all of the 
significant ( N2 – N ) / 2 entries  of the adjacency 
matrix A of the swarm graph. 

Four types of topologies have been considered, 
as relevant to underwater robot swarms: Erdos-
Renyi (random, p = 0.01), small-world (average 
degree: 4,  p = 0.1), pipeline (average degree: 4), 
grid (average degree: 4), N = 24, see Figure 6.  

 

 

 

Figure 5: Top, the noisy time series. Middle: consensus 
time series after the low-pass filtering. The red dotted 
curve is the original consensus. Bottom: noisy consensus 
solutions for a SW (N = 24, average degree 4) before the 
low-pass filtering. 

Table: 1 Simulation results. 

Graph 
topology 

Error Nodes Links 
Integrati
on steps 

Erdos-Renyi 0 48 16 ~150 

Small-World 0 24 48 ~150 

Small-World 0 100 200 ~370 

Pipeline 0 24 43 ~150 

Grid 0 24 38 ~150 

Grid 0 100 180 ~370 

The average degree 4 has been chosen because 
biologically inspired investigations (Camperi et al., 
2012) indicates in the range 5-10 the optimal 
number of neighbours in order to maintain the group 
cohesion while saving an evenly space distribution. 

In the simulations the centralized elaborations 
are represented by the computation of the correlation 
matrix C among all the time-series received from the 
N nodes and by its pseudo inverse C+. 

For each configuration a complete reconstruction 
(zero errors)  has been achieved, see Table 1. 

In particular, SW networks are very interesting 
for AUV configuration, as pointed out by 
(Olfati_Saber, 2005), because of the high consensus 
speed and connectedness properties. 

The small-world consensus scheme seems to be 
the fastest also for low number of nodes. In fact, it is 
known (Olfati_Saber, 2005) that when a SW has a 
number of nodes N > 100 the convergence is very 
fast, but for N = 24, as in our case, there is no 
guarantee. 

 

  

Figure 6: Left to right graph topologies:  regular grid, 
pipe-line, small-world,  random. Each node is an AUV, 
links are inter-swarm acoustical or optical communication 
channels. The grid topology is the most regular, the SW is 
half-way between regularity and randomness. Note the 
disconnected nodes of the ER topology. 

All time series have a length of 150 simulation time-
steps (1500 samples) for N = 24; the first 30 samples 
have been discarded because the transitory impair 
the calculations. As the size (in nodes) increases, 
longer time series are needed. As an example, when 
the node size of a SW graph is 100, about 370 time-
steps are needed to recover the graph. 

Note that an higher noise level reduces the time-
step length, bur increases the energy dissipation. The 
trade-off should be analyzed on an ad hoc basis. 

In Table 2 are shown the results for a large and a 
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small SW graph in presence of errors on the 
estimation of the maximum laplacian eigenvalue, 
obtained by the methods of (Yang et al., 2008) or 
(Franceschelli et al., 2012).  

The acceptable error on the maximum eigenvalue 
estimation (meaning that the number of mistaken 
entries of A is still zero) increases as N increases. 
For example for N = 100, the 3.22% estimation error 
means that the real value  λN = 4.0375 is altered as 
much as: λN  ± 0.13, but the reconstruction of the 
matrix A remains exact.  

Table 2: Stability of solutions. 

Graph 
Topo-
logy 

Mista-
ken 

entries 
 

Nodes 
Overall 
Entries 

Acceptable 
error in the  

λN  

estimation 

SW 0 100 4950 3.22%   

SW 2 100 4950 7% 

SW 0 24 276 0.22% 

SW 2 24 276 15.2% 

4 CONCLUSIONS 

The control of an underwater robot swarm is a 
complex task because of the particular environment, 
especially when are present high levels of noises and 
interferences. To this end, new biologically inspired 
methodologies are currently under development. 

One of the most important and unsolved control 
problems in this field is the reconstruction of the 
swarm topology. In fact, position sensors are often 
inaccurate or unable to work properly.  At the cost of 
a semi- centralized elaboration of the consensus time 
series, we have shown how it is possible to achieve a 
complete topology reconstruction within the 
technological framework suited to the marine 
environment.  

The methodology envisages the reconstruction of 
the graph of the swarm using the noisy signals of the 
consensus protocol. When received, signals are 
correlated and the resulting correlation matrix is 
elaborated according to a simple relation to obtain 
the Laplacian matrix.  Since the largest eigenvalue 
of the Laplacian matrix can be estimated 
independently, although not exactly, it is possible to 
calculate the difference with the eigenvalue from the 
reconstructed one at every step of the algorithm. 
This information allows to decide the correct 

adjacency matrix with zero or minimum 
reconstruction error.  

The original consensus signals necessary to 
control the AUV are recovered by low-pass filtering, 
as noise is allocated in the relatively high frequency 
band. 
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