
SourceMiner 
A Multi-perspective Software Visualization Environment 

Glauco de F. Carneiro1 and Manoel Gomes de Mendonça2 
1Computer Science Department, Salvador University (UNIFACS), Bahia, Salvador, Brazil 

2Computer Science Department, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil 

Keywords: Software Visualization, Software Comprehension, Multiple View Environments. 

Abstract: In spite of the available resources provided by modern IDEs, program understanding remains as a very 
difficult and important task in software engineering. This paper presents a software visualization 
environment named SourceMiner. Implemented as an Eclipse plug-in to enhance software comprehension 
activities, SourceMiner is an extensible, interactive and coordinated multi-perspective environment. It is 
multi-perspective because it provides sets of views that allow programmers to look at the software from 
different points of view. It is coordinated because views are linked to each other, and consistently respond to 
the actions executed by the programmers on the environment. It is interactive in the sense that programmers 
can dynamically configure visual scenarios to better support the building of mental models. It is extensible 
because its architecture was designed to facilitate the inclusion of new views to the environment. This paper 
describes the principles behind the design of SourceMiner, and discusses how it has been used to support 
software comprehension activities such as the identification of code smells and the characterization of 
object-oriented software systems. 

1 INTRODUCTION 

Many researchers have pointed out the important 
role that visualization plays in interactive data 
analysis and information exploration (Baldonado et 
al., 2000); (Becks and Seeling, 2004). Humans have 
the natural ability to track and detect visual patterns 
and this ability can be exploited to improve software 
comprehension. Software visualization (also known 
as SoftVis) is a means to provide perceivable cues to 
several aspects of software systems in order to 
reveal patterns and behaviours that would otherwise 
remain hidden to the programmer (Storey, 2006). 

The design and use of software visualization 
environments should take into account three 
important issues. The first is that software is 
eminently complex, hindering many of the software 
comprehension activities. The second, described by 
Lehman´s second law (Lehman and Belady, 1985), 
is that software evolves as it is subject to 
modifications over time. It is difficult to follow 
those changes and more resources are needed to 
understand them. The third is that software is 
intangible, having no physical shape (Ball and Eick, 
1996). Considering that humans acquire more 

information through vision than through all the other 
senses combined (Ware, 04), the comprehension is 
affected by the lack of visual presence that 
characterizes software as an entity. This difficulty is 
increased by the complexity and constant evolution 
of software systems. 

Common software engineering tasks, such as the 
identification of code smells, usually require 
analyzing the software from multiple perspectives 
(Carneiro et al., 2010). Moreover, to be effective, 
software visualization environments must provide 
complementary perspectives which together can 
support diverse software engineering tasks. Each 
perspective should present the software from a 
certain point of view that focuses on the 
comprehension of specific software properties. If 
these properties are complex, the perspective itself 
may require multiple views. A single visual 
metaphor may not be sufficient to portray the 
relevant peculiarities of such properties. 

Multiple coordinated views can facilitate 
comparison (Heer and Shneiderman, 2012). The 
usage of multiple views is very difficult if the views 
are not coordinated among themselves and with the 
environment in which they operate. It is confusing, 
for example, if two views have different meanings 

25de F. Carneiro G. and Gomes de Mendonça M..
SourceMiner - A Multi-perspective Software Visualization Environment.
DOI: 10.5220/0004420400250036
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 25-36
ISBN: 978-989-8565-60-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



for the same visual attribute (e.g., node color). Also, 
visual elements from different views should be 
linked to each other when they represent the same 
software entity. The selection or change in one such 
element of a view must be reflected in the others. 
One should also be able to easily navigate between 
visual elements from different views. And actions in 
these visual elements should have consistent 
response over all the views. Although, view 
coordination is a requirement for the use of multiple 
views in information visualization (Baldonado et al., 
2000); (Heer and Shneiderman, 2012), and well used 
in modern IDEs, it is still a concept that needs to be 
better explored in software visualization 
environments (Storey, 2006). 

Views are based on visual metaphors that must 
match the data and task at hand. Graphs, for 
example, are very useful to visualize relational data, 
but do not scale well if the number of entities and 
relations grows. Information visualization and 
software visualization researchers have proposed 
many metaphors to visually present data. 
Unfortunately, it is not yet clear what sets of visual 
metaphors are best suited for most software 
engineering tasks. For this reason, a software 
visualization environment should facilitate the 
inclusion of new visual metaphors to its workbench. 
The purpose of this extensibility should be more 
than simply facilitating the growth of the number of 
views in an environment. It should aid 
experimentation and support the identification of 
which sets of views can be effectively combined for 
common software engineering tasks. 

Software visualization environments must also 
be highly interactive. Good visualization needs to 
exploit the visual and cognitive systems of human 
beings. Programmers need to interact with the 
environment in order to configure the visual scenario 
to best fit their needs. They need widgets to filter, 
zoom, navigate and browse through visual 
metaphors. These mechanisms should support users 
in adjusting visual scenarios in aspects such as 
information content, visual mapping, and view 
configuration. 

The use of multiple views in SourceMiner better 
handles the diversity of attributes, user profiles, and 
levels of abstraction needed in software 
visualization. It enables users to configure and 
effectively combine views to bring out correlations 
and or disparities that might otherwise remain 
hidden in the code. The use of multiple views splits 
complex data into more manageable chunks of 
information, and this information can be further 
filtered and explored through interaction with the 

different visual scenarios. 
This paper presents SourceMiner, a software 

visualization environment that provides a set of easy 
to comprehend, complementary, coordinated and 
highly interactive views. It uses code as its main 
data source and was implemented as an Eclipse 
plug-in to interactively visualize Java projects, 
complementing the native views and resources 
provided by the Eclipse IDE. It provides 
programmers with several ways to interact with the 
views: filters to visually present information that 
match filtering criteria, semantic and geometric 
zooming to better adjust the views to the canvas, 
arranging them in accordance with the preference of 
the programmer, and transparent navigation from the 
visual representation to the source code. 

The rest of this paper is organized as follows. 
Section 2 motivates the work with a scenario of use 
of an IDE with and without SourceMiner. Section 3 
introduces information visualization concepts that 
are relevant to the design of multiple view 
environments. Section 4 presents a conceptual model 
for multiple view environments. Section 5 presents 
SourceMiner architecture and design. Section 6 
describes SourceMiner perspectives and their 
respective views. Section 7 presents examples of use 
of SourceMiner. And, Section 8 has the final 
remarks of the paper. 

2 CURRENT VERSUS PROPOSED 
SCENARIO 

This section motivates the integration of extensible 
software visualization environments into modern 
IDEs. It first describes an example of the use of the 
Eclipse IDE. In the sequence, it illustrates how a 
software visualization environment can improve this 
use. 

Modern IDEs are very sophisticated, but in spite 
of the resources they provide, program 
understanding remains a very difficult task, 
especially on large and complex software systems. 
Typically, different types of information are required 
for executing software engineering tasks, such as 
fixing errors, changing or adding new features, or 
improving the code and design. 

Consider the information about the code 
structure presented by the Eclipse´s package 
explorer (package-file-class-methods and attributes 
hierarchy) as an example. This information is useful 
but limited. The package explorer alone is 
insufficient to support most development or 
maintenance tasks. One has to combine it with other 

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

26



views. Moreover, the package explorer itself could 
be augmented with more information. It does not 
present data related to software metrics, such as code 
size or complexity for example. In fact, most of the 
modern IDEs do not yet have specific views to show 
this type of property. This is very useful information 
and it is desirable to expand the IDEs with them. 
The question is how to do that. There are many 
forms in which an IDE can be visually enriched. 
Eclipse itself provides a comprehensive 
infrastructure to develop such features. A possible 
approach is to extend this infrastructure further to 
support common information visualization 
functionalities (Baldonado et al., 2000); (Card et al., 
1999), on top of that enrich the IDE with diverse but 
integrated software visualization resources, and 
finally evaluate them in different software 
engineering tasks. 

In order to discuss some of the limitation of 
modern IDEs, Figure 1 shows a snapshot example of 
the Eclipse IDE on a typical software engineering 
task. This snapshot was taken from a real world case 
study on the detection of bad smells. During the 
execution of this task, the Package Explorer view 
(Part A) may include hundreds of nodes just after a 
few navigational clicks through project files and 
classes. Hierarchical relationships, in this case, are 
no longer visible without manually scrolling through 
the tree. In part thanks to how easy Eclipse makes 
navigating over structural relations, the number of 
open files in the editor (Part B) can also increase 
quickly, making the instances of the editor a poor 
representation of the files currently relevant to the 
task. The search in Eclipse for references to a class 
within the project (Part D) can return hundreds of 
items and there is no convenient way to search only 
for those elements related to the task at hand. 
Instead, the search results (145 in our example) 
require manual inspection, if someone wants to find 
the elements of interest. Even the Outline view (Part 
E), that shows only the structure of the current file, 
can be overloaded with dozens of elements that 
might not be relevant to the task. 

Modern IDEs also need to better explore 
interaction resources as mentioned earlier in this 
paper. The work presented here addresses these 
issues from a software visualization perspective. It 
enhances the IDE with an extensible software 
visualization environment. Its views are integrated 
among themselves and with the IDE.  

In order to illustrate the solution, Figure 2 shows 
a screenshot of SourceMiner. The arrows indicate 
how a specific class of a Java software system called 
HealthWatcher (Greenwood et al., 2007) is 

portrayed in multiple views. The editor (in Part B) 
shows part of the source code of the class and the 
Package Explorer (Part A) shows the structure 
comprised of packages, classes, methods and 
attributes using a traditional structural view. These 
are native views of the Eclipse IDE. The Parts D, E 
and F show three different views of SourceMiner. 
Like the Package Explorer, the view in Part D 
represents the package-class-method perspective of 
the system. However, it does so using treemaps 
(Shneirderman, 1992), a hierarchical visualization 
metaphor that represents all packages, classes and 
methods of a project as nested rectangles. 
Programmers do not need to scroll to see any 
element of the structure because they are all there. 
The view in Part E represents an inheritance 
hierarchy perspective of the project using a 
polymetric view (Lanza and Marinescu, 2006). 
Eclipse does not have a native view to portray the 
inheritance hierarchy of the software system. The 
view in Part F represents a coupling perspective of 
the system using a grid (chessboard like) view to 
indicate the most coupled modules of the software 
project. 

Views D, E and F are directly affected by the 
view in Part C.  This filtering view enables users to 
apply filtering criteria to views D-F simultaneously. 
In the example, a user typed the string 
HealthWatcherFacade as a class name filtering 
option to highlight occurrences that match the typed 
string in all views. This is an example of the data 
transformation interaction level discussed earlier, a 
filtering resource that is not natively available in 
modern IDEs. 

The goal here was to highlight that the proposed 
approach portrays the software from several 
perspectives, enhancing IDE native views and 
resources. And, that it does so with a fully integrated 
set of views that support several levels of 
interactions, as it will be discussed next. 
 

 

Figure 1: Eclipse IDE on a Typical Task. 

SourceMiner�-�A�Multi-perspective�Software�Visualization�Environment

27



 

Figure 2: An Example of Use of SourceMiner. 

3 INFOVIZ CONCEPTS 

Software visualization is a specialization of 
information visualization. For this reason, a 
reference model for a Multi-Perspective 
Environment (MVE) must use concepts drawn from 
the InfoVis field. Information visualization 
researchers identified three main levels of 
interactions in multi-perspective environments (Card 
et al., 1999). The first, and most common, is 
interface interaction for view configuration. It is 
related to how the visual elements are configured 
and arranged in the visual scenario.  

The second level of interaction deals with the 
dynamic mapping between the real attributes (of the 
software, in our case) and the visual attributes that 
are used to represent them on the canvas. Users 
should be able to configure the way software 
properties such as size or complexity will be 
represented on the views. The third level consists in 
dynamically filtering and selecting the data to be 
represented on the canvas. Selective data 
visualization is very useful to locate relevant 
information, to restrict visualization to interesting 
portions of the data and to control the level of detail 
at which the information is presented. Too much 
data may hinder visual scene interpretation, and too 
little neglects potentially important information. 

As mentioned before, information visualization 
systems usually require this process to be highly 
interactive. In it, the user should be able to change 
the selected data to be presented on the canvas, 
modify the mapping between real and visual 
attributes, and alter the way views are rendered on 
the canvas (zooming or panning over it). To be 
effective, the response time between these 
interactions and reassembling the views should be as 
short as possible. 

Multiple Perspectives and Multiple Views. A 
view is a particular visual representation of a data 

set. Complex data sets typically require multiple 
views, each revealing a different aspect of the data. 
Multiple view systems have been proposed to 
support the investigation of a wide range of 
information visualization topics. The reference 
model proposed by Card and colleagues is adapted 
in this paper to explicitly emphasize the use of 
multiple views on software visualization. 

Distinct views should be used if they reveal 
dissimilar aspects of the conceptual entity presented. 
In complex domains, such as software engineering, 
no single all-inclusive view is likely to lead to 
insight. In this context, multiple view systems 
portray complementary information that supports 
complementary cognitive processes. One view can 
be used to constrain possible (mis)interpretations in 
the use of another. In fact, multiple views encourage 
users to construct a deeper understanding of the 
analyzed data. 

Multiple views must be consistently designed to 
provide integration and coordination among 
themselves. Users should be able to select a subset 
of views in a coordinated fashion to perform a task 
(Baldonado et al., 2000). The visualization 
environment should support the interactive 
exploration of views to uncover facts or 
relationships that otherwise would remain hidden 
(Baldonado et al., 2000). Each single view should 
have affordances (e.g. selection capabilities or 
navigation functionalities such as panning and 
zooming). These affordances should be tied together 
so that actions in one view have an effect in another 
view (Baldonado et al., 2000). These observations 
are expressed as three important concepts proposed 
by information visualization researchers and adopted 
in our work: a) navigational slaving – multiple 
views systems should enable that actions in one 
view are automatically propagated to the others 
(Shneiderman and Plaisant, 2009); b) linking – 
multiple views systems should connect data in one 
view with data in the other views (Shneiderman and 
Plaisant, 2009); c) brushing – multiple views 
systems should enable that corresponding data items 
in different views are highlighted simultaneously 
(Shneiderman and Plaisant, 2009). 

4 A CONCEPTUAL MODEL 
FOR MULTIPLE VIEW 
SOFTWARE VISUALIZATION 

Many software visualization projects have been 
conceived as standalone systems, but we consider 
IDEs as the ideal substrata on which a Multiple 

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

28



View Environment (MVE) should reside. Integrating 
software visualization environments into IDEs is a 
natural way to support software comprehension 
activities. In fact, current IDEs already offer several 
resources to support software comprehension. Most 
of them offer at least a syntax directed editor that 
uses pretty printing and colour textual representation 
of the code, as well as some sort of hierarchical 
representation of the project structure. Usually, 
several other views present valuable information to 
programmers, representing the software from many 
different perspectives (e.g., the package explorer of 
Eclipse and outliner). They also provide different 
ways of searching, navigating and browsing 
software entities. A natural consequence of using an 
IDE as an MVE substratum is that programmers will 
be able to interchangeably and concurrently access 
source code, the views originally provided by the 
IDE and the views from the MVE (Lintern et al., 
2003). 
 

 

Figure 3: A Reference Model for SoftViz. 

Figure 3 illustrates how we adapted the Card et al. 
reference model to the software engineering domain. 
The goal here is to provide a set of coordinated and 
cross-referenced views integrated to a modern IDE. 
Similarly to the original, the adapted model also has 
three main interaction levels: data transformations, 
visual mapping and view transformation 
interactions.  

The multiple views are used to represent 
different properties of the software. For example, 
one can build a visualization of module inheritance 
and another of module coupling. Different 
representations can also be employed to portray the 
same property in various ways. For example, module 
coupling can be represented by interactive graphs or 
relationship matrices. In this case, each 
representation should emphasize a different aspect 
of the property under analysis or should have 
complementary affordances to facilitate the visual 
interpretation of the portrayed information. In order 
to be precise, we use the expression multiform 

visualization when referring to different views 
(forms) being used to describe the same software 
property. Also, as discussed previously in this paper, 
multiple views should be coordinated so an action 
taken in one view should be reflected on all the other 
views of the environment. In this scenario, we use 
the expression multiple coordinated views as 
opposed to simply multiple views 

Figure 2 emphasizes view coordination in the 
model. The feedback arrows around the views 
indicate this fact. The use of multiple coordinated 
views and multiform representations are suitable to 
support programmers in exploring over complex 
information spaces (Wu and Storey, 2000); (Graham 
and Kennedy, 2008). The idea of having multiple 
coordinated views strives for visually combining 
different aspects of data in different displays (Becks 
and Seeling, 2004). In software engineering, 
multiple views are intended to help raising the level 
of abstraction and reduce the amount of information 
required to perform recurrent software engineering 
tasks, especially when they are coordinated and 
cross referenced (Storey, 2006).  

The model also emphasizes that the IDE is the 
main data source of a software system. The data 
available at the IDE is accessed, transformed, 
mapped to visual structures and rendered as views. 
Current IDEs allow for easy extraction of source 
code information from native resources such as the 
software system Abstract Syntax Tree (AST). 
Additional information – such as concern maps, 
churning information and defect data – can be 
captured from external data sources and used to 
enrich the views (Carneiro and Mendonça, 2013), as 
shown on the top-left box of Figure 3. 

5 A MULTIPLE VISUALIZATION 
ENVIRONMENT 
FOR THE ECLIPSE IDE 

The challenge of building and coordinating multiple 
views and multiform systems far exceeds the 
challenge of building a single view system. Figure 4 
presents the layers and the modules of SourceMiner. 
This high level architecture is divided into a two 
layers. The Rendering and Visualization (RV) Layer 
is responsible for rendering the views provided by 
SourceMiner. The Core Visualization Environment 
(CVE) is responsible to capturing information from 
the IDE and structuring it for the RV Layer. It also 
coordinates all views among themselves and the 
IDE. The following subsections describe the 
functionalities provided by each of these layers. 

SourceMiner�-�A�Multi-perspective�Software�Visualization�Environment

29



The Core Visualization Environment (CVE) is 
the kernel of SourceMiner. It is responsible for 
extracting data from a project source code using the 
resources provided by the Eclipse Java Development 
Tool (JDT) to this end. JDT provides fundamental 
information on software entities avoiding the 
creation of such functionality from scratch. This 
made it possible to focus most of our efforts on how 
to extend the environment with views, coordination 
and interaction resources, and it is a clear advantage 
of using an open IDE as a substratum for a MVE. 
Besides extracting and structuring data about the 
software system under analysis, the CVE provides 
services of coordination among views, filters the 
data to be presented in the views and logs the 
primitive operations performed by the users while 
they use the environment. The CVE uses IDE 
resources to coordinate the environment with the 
IDE itself. The next subsections present the modules 
that comprise the CVE layer. 

The Rendering and Visualization (RV) layer is 
responsible for rendering the views in SourceMiner. 
To accomplish this task, this layer relies on the 
services provided by the Core Visualization 
Environment (CVE). The modules that comprise the 
RV layer are the Views, the Filtering Views and the 
Decorator modules. The following subsections 
describe these modules. 

6 PERSPECTIVES AND VIEWS 
IN SOURCEMINER 

Currently SourceMiner has three classes of views or 
perspectives: the package class method, 
inheritance hierarchy and coupling views. As 
described earlier, a perspective is a set of views that 
represent the same type of software properties. The 
combined use of these perspectives provides a broad 
range of information to programmers when 
executing software engineering tasks. 

We considered several metaphors from the 
InfoVis and we ended-up adopting the following 
ones: (i) treemaps (Shneirderman, 1992) for the 
package-class-method perspective; (ii) polymetric 
views (Lanza and Marinescu, 2006) for the 
inheritance hierarchy perspective; and (iii) several 
views for the coupling perspective, namely, class 
and package node-link-based dependency graphs, 
grids and spiral egocentric graphs, and methods, 
classes and package relationship matrices.  

All SourceMiner views were implemented from 
scratch. Two of them, the grid and spiral egocentric 
graph, are novel contributions. The others were not 

proposed by the authors, but completely re-
implemented by us according to our software 
visualization needs. 

The Package Class Method View. Structural 
information like the package-class-method structure 
plays an important role in software comprehension 
activities (Storey, 2006). Most of the IDEs provide 
at least one view that portrays the PCM structure. 
One such example is the Package Explorer in the 
Eclipse IDE. This traditional view does not scale 
well and usually present only the structure per se. 
There is room for enriching such views with other 
visual clues such as colors, position and the size of 
figure elements. These cues can be used to represent 
important software properties such as size, version, 
churning, and element type. We selected Treemaps 
as an alternative visual metaphor to create a PCM 
view in SourceMiner. Treemaps are 2D 
visualizations that map a tree structure using 
recursively nested rectangles (Shneirderman, 1992).  

 

Figure 4: SourceMiner Layers. 

 

Figure 5: Treemaps in SourceMiner. 

They are a very effective way of representing 
large hierarchies. And, besides the hierarchy itself, 
they can show other data attributes using the 
rectangle size (area) and color. Each rectangle of the 
treemap portrays a node of the represented the PCM 
hierarchy. The structure is scalable and facilitates 
the discovery of patterns and outliers. It makes it 
easy to spot outliers in terms of module size and 
number of sub‐modules, for example. An example of 

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

30



 

Figure 6: Polymetric in SourceMiner. 

treemap in SourceMiner is portrayed in Figure 5. 
As with any SourceMiner view, users can apply 

filtering criteria to eliminate elements from the 
treemap PCM view. The views provide direct access 
to their corresponding source code. For that, the user 
has just to control-click on a graphical element. The 
RV layer will then request that the Integration and 
Coordination Module on the CVE Layer activates 
the Eclipse Editor for the corresponding source code 
element (method, class or interface). 

The Inheritance Hierarchy View. The 
polymetric view (Lanza and Ducasse, 2003) was 
selected to portray the inheritance hierarchy of a 
software system. It portrays inheritance relationships 
between the software entities (class/interface) as a 
forest of round rectangles. Originally proposed for 
this very purpose, polymetric views help to 
understand the structure and detect problems of a 
software system in the initial phases of a reverse 
engineering process (Lanza and Ducasse, 2003). As 
can be seen in Figure 6, the view is a two-
dimensional display that uses rectangles to represent 
software entities, such as classes and interfaces, and 
edges to represent inheritance relationships between 
them. The dimensions of the rectangles are used to 
represent properties of the entities. In SourceMiner, 
the width corresponds to the number of methods 
while the height to the number of lines of code of a 
class or interface. The color is used for decoration 
just like discussed before. A geometric zoom is 
available to better display the polymetric view in 
accordance with the number of elements on the 
canvas. A semantic zoom can also be used to 
navigate over specific sub-trees of a portrayed 
hierarchy. 

The Coupling Views. Portraying coupling 
relationships is significantly more complex than the 
two previous perspectives. There are many types of 
coupling relationships: classes extend classes, call 
methods, use fields, implement interfaces, just to 
name a few. One may also be interested in other 
types of information, such as coupling direction or 

strength. Also, some views are good to portrait 
detailed information, but for this very reason they do 
not scale well. As a result, one single view cannot 
efficiently support all coupling visualization goals. 
SourceMiner provides three sets of coupling views: 
graph-based coupling views, matrix-based coupling 
views and grid/egocentric-based coupling views. All 
these views are represented in Figures 3-9 in 
(Carneiro and Mendonça, 2013). They illustrate the 
use of the multiform visualization concept, i.e., 
many views are used to represent the same type of 
property. 
 

 

Figure 7: Package Dependency in SourceMiner. 

 

Figure 8: Class Dependency in SourceMiner. 

Figure 7 conveys a package graph coupling view. It 
uses square nodes to highlight this fact. As seen in 
the figure, any of the peripheral package nodes can 
be selected to have its composing classes revealed as 
round nodes. In this case, SourceMiner only shows 
the classes that justify the coupling relations with the 
central node. 

The node-link-based graph in Figure 8 clearly 
exhibits a high amount of visual clutter as a result of 
edge congestion. We decided to implement matrix 
views as an option to the graph views. They have a 
cleaner and more uncluttered layout. In 
SourceMiner, a matrix of rows and columns are 
configured to show different levels of coupling 

SourceMiner�-�A�Multi-perspective�Software�Visualization�Environment

31



relationships between software elements (package, 
classes and methods). Figure 9 portrays an example 
of a package dependency matrix and Figure 10 
shows an example for classes. 

 

Figure 9: Package Dependency Matrix in SourceMiner. 

 

Figure 10: Class Dependency Matrix in SourceMiner. 

SourceMiner also allows for semantic zooming over 
the matrices. This is achieved by double clicking on 
a gray cell. This action brings out a new coupling 
matrix that semantically details the selected 
dependency. For example, by clicking on a package 
dependency cell of Figure 9, the user will obtain a 
class dependency matrix involving all classes that 
originated the selected dependency as portrayed in 
Figure 10. This type of action also works from class 
to method dependency matrices. The transition is 
bidirectional, meaning that the user can backtrack to 
the original matrix by simply right clicking on the 
view canvas. 

The grid view conveyed in Figure 6 in (Carneiro 
and Mendonça, 2013) was especially conceived and 
implemented for SourceMiner. The goal of this view 
is to specifically focus on the strength of 
dependency between modules of a software system, 
i.e. the number of syntactic references from a 
module to another. This is quite different from the 
previous two views which focused on the degree of 
dependencies. The grid is a chessboard-like view 
that plots all classes of the system as rectangles 
arranged in decreasing order of dependency strength 
value (DSV). The rectangle representing the class 
with the highest DSV is placed on the top left corner 
of the grid. The DSV of a class is the sum of the 

values of the dependencies between this class and all 
the others. Colors are used for decoration of grids in 
the same way as discussed earlier for the other 
views. 

7 SOURCEMINER IN PRACTICE 

This section illustrates the use of SourceMiner in a 
typical software comprehension activity: the 
identification of code smells. It was conducted as an 
observational study in which SourceMiner was used 
to identify code smells in an in-vitro setting. We also 
briefly describe two ongoing works using 
SourceMiner in industrial settings. The first is a case 
study in which professional programmers used 
SourceMiner to characterize a heavily used web 
development framework. The second is a case study 
in which SourceMiner was used to analyze how a set 
of similar java-web applications are being developed 
in a public administration organization. The three 
situations reveal initial evidences that the execution 
of the described activities would be harder or even 
impossible to do through the use of a single view. 

The first study illustrates how SourceMiner aids 
the identification of code smells. It consisted of an 
observational study (Carneiro et al., 2010), where 
developers identified a set of well-known code 
smells on an open source system called Mobile 
Media. Participants were asked to identify the 
following code smells using SourceMiner: God 
Class (GC) (Lanza and Marinescu, 2006), Divergent 
Change (DC) (Fowler, 1999) and Feature Envy (FE) 
(Lanza and Marinescu, 2006). 

The following descriptions of the code smells 
summarize the ones presented to the study 
participants. Feature Envy (FE) occurs when a piece 
of code seems more interested in a class other than 
the one it actually is in (Fowler, 1999). This code 
smell can be seen as a misplaced piece of concern 
code, i.e., code which does not implement the main 
concern of its class. Hence, the concern realized by 
this misplaced code is probably located mainly in a 
different class. God Class (GC) is characterized by 
non-cohesiveness of behavior and the tendency of a 
class to attract more and more features (Riel, 1996). 
In a different perspective, we can look at GC as 
classes that implement too many concerns and, so, 
have too many responsibilities. It violates the idea 
that a class should capture only one key abstraction, 
and breaks the principle of separation of concerns. 
Divergent Change (DC) occurs when one class 
commonly changes in different ways for different 
reasons (Fowler, 1999). Depending on the number of 

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

32



responsibilities of a given class, it can suffer 
unrelated changes. The fact that a class suffers many 
kinds of changes can be associated with a symptom 
of concern tangling. In other words, a class that 
presents mixed concerns is likely to be changed for 
different reasons. 

In the context of the study, programmers were 
asked to detect these code smells using SourceMiner 
over the five versions of Mobile Media. They were 
not allowed to access the source code neither 
perform any search directly on it.  

Two important results came out of it. First, 
SourceMiner provided useful support to identify the 
code smells. Second, based on the programmers 
observed actions, we uncovered strategies for smell 
detection supported by the use of SourceMiner. 

Participants that identified God Class made 
synergistic use of the treemap and polymetric views 
with concern decoration. Based on the log files, we 
uncovered that participants first configured the 
views to visually represent all concerns. They latter 
used the package-class-method structure to spot the 
classes and interfaces that were candidate outliers in 
terms of size and the realization of many concerns. 
Additionally, the polymetric view was also used to 
identify outliers. An interesting result was that all 
participants successfully identified BaseController 
as a God Class of Mobile Media (MM) using this 
strategy. 

Figure 11 portrays a scenario of MM version 3 
where BaseController and ImageAccessor clearly 
stand out as God Class candidates. In Figure 4, 
BaseController is the largest rectangle as indicated 
by the arrows in Treemap and Polymetric View. 
Moreover, it contains methods with different 
concerns (colors). The same is true for the class 
ImageAccessor, also indicated by arrows in the 
figure.  

In the case of the Feature Envy, the grid and the 
spiral views were used to spot the code smell. 
Considering that these views present classes and 
interfaces in decreasing dependency order, the grid 
view was used to first present classes with higher 
dependency weight. In this view, the user selected 
the BaseController class (Figure 11) and then double 
clicked on it so that the spiral view could display its 
dependency relationships. Using these two sets of 
views, it is possible to easily spot BaseController as 
Feature Envy candidate as presented in Figure 15 in 
(Carneiro and Mendonça, 2013). This class stands 
out due to its interest in other classes.  

An uncovered strategy to identify Divergent 
Change candidates was the combined use of the 
Treemap and Polymetric views to spot classes that 

may have been frequently changed for different 
reasons. 

A concern is tangled when it is mixed with other 
concerns within a module which can easily be 
observed in the treemaps. Moreover, if the 
ascendants of a given class realize different 
concerns, this class is change prone, a characteristic 
that can be observed in the polymetric view. This is 
again the case of the BaseController class in MM 
version 3 as illustrated in Figure 15 in (Carneiro and 
Mendonça , 2013). 

The results that came out from this study present 
initial evidences that SourceMiner can play an 
important role in software characterization and, in 
this particular case, helped to detect God Class, 
Divergent Class and Feature Envy code smells. 

The second study describes how SourceMiner 
helped programmers to characterize the 
Demoiselle framework (Demoiselle, 2013).  
 

 

Figure 11: Identifying Outlier Classes. 

This study was run with two members of the 
Demoiselle core team at SERPRO. Initially, the 
members of the Demoiselle core team, aided by a 
SourceMiner expert, identified and mapped to the 
source code a set of 13 concerns they considered 
most relevant to the framework comprehension. 
These concerns were mapped to the source code 
using the ConcernMapper plug-in (Robillard and 
Murphy, 2007). Afterwards, this information was 
imported into SourceMiner. Part A of Figure 12 
shows the concerns mapped during the study. 

The second part of the second study consisted in 
characterizing some concerns in terms of 
modularity, including their level of scattering and 
tangling. The Demoiselle core team had the goal to 
change the dependency injection implementation of 
the framework from AspectJ to the Java 
Specification Recommendation JSR 299. The 
concerns of interest for this activity were injection, 
JDBC, JPA, Hibernate and Persistence Controller. 

SourceMiner�-�A�Multi-perspective�Software�Visualization�Environment

33



The following important results that came out of this 
study: (i) the specialists could visually realize the 
way concerns were related among themselves. As an 
example, part B of Figure 12 shows classes that are 
affected by the concern dependency injection using 
the class dependency graph. Based on this view, the 
specialists were able to identify classes that have any 
relationship with the dependency injection concern 
and which other concerns affected these same 
classes; (ii) considering the results presented before, 
the specialists were then able to plan and execute the 
change of the dependency injection technology 
without any major incident. 
 

 

Figure 12: Identifying Outlier Classes. 

The third study describes the use of SourceMiner to 
support the characterization of Java web-based 
systems developed in an organization. The 
organization where the case study took place is a 
Brazilian public company which has its own 
development sites settled in different cities. The sites 
develop software systems to their internal clients. 
The central office provides a core Java web-based 
system upon which all sites develops web 
applications.  

SourceMiner was used to analyze to which 
extent the applications followed the original 
structure of the core java web-based system and in 
which cases it did modify or did not follow it. The 
idea was to use SourceMiner to detect such 
occurrences and to support the decision to develop 
applications in the company using a framework such 
as the one mentioned before.  

Two versions of the core Java web-based system 
and three applications developed using them were 
analyzed. The applications 1 and 2 were developed 
using the first version of the core java web-based 
system, while application 3 used the second version. 
We compared the applications using the three 
perspectives from SourceMiner: package class 
method, inheritance and coupling.  

The analysis indicated that the approach adopted 
in the organization is not suitable for code reuse and 
contributes to degenerate the original architecture of 

the core Java basic project. Figures 17 and 18 in 
(Carneiro and Mendonça, 2013) show an example of 
a utility class that increased from 701 lines of code 
and 47 methods in the first version core system to 
2089 lines of code and 160 methods in the derived 
application. This increase is due to new utility 
functionalities that were added by the application 
development team. These utility functionalities 
should have been requested from the core system 
development team, or at the very least fed back to 
them, by the application development team, in order 
to make them available to other applications. In 
interviews, we found that as the software systems 
developed in different sites evolve, they tend to 
include functionalities that originally were to be 
provided by the basic project. That revealed a clear 
flaw of this approach of application derivation. 

8 RELATED WORKS 

Software visualization has been extensively studied 
as a means to support software engineers to build 
mental models of software systems (Diehl, 2007); 
(Storey et al., 1999); (Koschke, 2003). Software has 
been visualized at various levels of detail, from the 
module granularity seen in Rigi (Müller and 
Klashinsky, 2008) to the individual lines of code 
depicted in SeeSoft (Eick et al., 1992). 

Many interesting and novel metaphors have been 
proposed, but much debate and study are still needed 
to validate them. Consider software visualization 
techniques that use 3D representations as an 
example. These techniques attempt to make more 
efficient use of the available screen space and apply 
intuitive metaphors to represent data (Teyseyre and 
Campo, 2009). In spite of their positive points, they 
also have negative points such as user adaptation 
and cognition overload. The interaction with 3D 
presentations and possibly the use of special devices 
demand considerable adaptation efforts to these 
technologies (Teyseyre and Campo, 2009). These 
trade-off scenarios are common for any family of 
visualization metaphors. For this reason, it is useful 
that software visualization infrastructures provide 
means of extensibility and resources to empirically 
evaluate its use and effectiveness in software 
engineering tasks, as we have implemented in 
SourceMiner. 

While there are many works on the use of novel 
metaphors, there is not that many on the 
combination of metaphors in multiple views 
environments. Rigi was one of the pioneers in this 
aspect (Müller and Klashinsky, 2008). It uses 

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

34



multiple views in a reverse engineering 
environment. It is extensible in the sense that new 
visualization techniques can be included in the 
environment through the use of Rigi Command 
Language (RCL), which is based on the Tcl/Tk 
scripting language. Several tools were implemented 
on top of it, where SHriMP is probably the most 
known (Storey and Müller, 1995). They all employ 
multiform visualization using module relationships 
as their main software analysis perspective. 

Mature open standard IDEs, such as Eclipse, are 
nowadays the substratum of many software 
engineering tool implementations. However, the 
number of software visualization tools that explore it 
is still relatively small (Malnati, 2012); (Callendar, 
2012). Among the main initiatives to move software 
visualization closer to practitioners, by integrating 
them in popular IDEs, one can mention Creole 
(Callendar, 2012), an Eclipse plugin by Lintern et al. 
and X-Ray (Malnati, 2012). Most of those were 
developed as Eclipse’s plug-ins. Unfortunately they 
cannot be classified as interactive and coordinated 
multiple view environments, as they do not 
completely explore environment integration, having 
limited roundtrip, multiple view coordination and 
interactive dynamic filtering resources. 

As a concluding remark, it is important to 
observe that the use of multiple, interactive, and 
coordinated visualization resources are by no means 
a novel idea in the information visualization field 
(Baldonado et al., 2000); (Becks and Seeling, 2004); 
(Roberts, 2000); (Roberts, 2007); (Pattison and 
Phillips, 2001); (Ainsworth, 1999). They just have 
not fully reached the software visualization field yet. 

9 CONCLUSIONS 

Most software visualization published work focuses 
on introducing new metaphors to represent software 
data, behaviour and evolution. This work highlights 
that the study and implementation of extensible, 
interactive, and coordinated multi-perspective 
software visualization environments is an important 
part of the software visualization research. Software 
is very complex and multi-faceted. The literature has 
already shown that no single view is able to depict 
all software properties of a software system (Storey, 
2006). One needs several views. Moreover, it is not 
clear what the best metaphors are for presenting 
many of these properties. One needs to test many 
view combinations and those views need integration 
and coordination.  

We believe that only part of software  
   

visualization promising benefits are being observed 
in practice by the software development industry, 
because we have not yet seen a tight integration of 
software visualization tools with current popular 
software development environments. This paper 
described SourceMiner as an extensible multiple 
view environment to enhance software 
comprehension activities. In its development, we 
considered guidelines proposed and already used in 
the information visualization domain to bring forth 
relevant information from the software source code 
and associated information. 

The model envisioned for SourceMiner is based 
on the reference model by (Card et al., 1999) and 
allows for consistent coordination among the views. 
SourceMiner and the model upon which it was built 
have the following characteristics: (i) views that 
represent a specific software property are grouped in 
perspectives to portray information of relevant 
software properties such as coupling, inheritance and 
the package-class-method structure; (ii) through the 
use of multiple view and interaction mechanisms, 
users to configure visual scenarios suitable to the 
task at hand; (iii) the model was conceived 
considering the IDE as its substratum; (iv) the 
source code is the main data source for the 
visualization environment; (v) other data sources are 
used to enrich the views with information such as 
concerns, and bug track information. We foresee the 
use of several other types of data in SourceMiner as 
way to broaden the range of software comprehension 
activities supported by the multiple view interactive 
environment; (vi) the environment is extensible, in 
the sense that it is designed to support the inclusion 
of new views. During its development, new views 
were included following this principle. 

The use of multiple views in SourceMiner better 
handles the diversity of attributes, user profiles, and 
levels of abstraction needed in software 
visualization. It enables users to configure and 
effectively combine views to bring out correlations 
and or disparities that might otherwise remain 
hidden in the code. The use of multiple views splits 
complex data into more manageable chunks of 
information, and this information can be further 
filtered and explored through interaction with the 
different visual scenarios. 

Despite its focus on static software visualization, 
we believe that the lessons learned in the design of 
SourceMiner can be applied to other types of 
software visualization, such as those that represent 
dynamic software behavior or evolution (Diehl, 
2007). 

The environment was built for experimentation 

SourceMiner�-�A�Multi-perspective�Software�Visualization�Environment

35



and we plan to continue to empirically studying it to 
determine whether or not it actually decreases 
cognitive load and increases performance on 
specified software engineering tasks. 

SourceMiner is being expanded to convey 
software evolution attributes, churning and bug 
analysis information. In addition, we are adapting it 
to support collaborative software comprehension 
activities in a distributed environment. 

This paper described SourceMiner that is 
available at www.sourceminer.org. 

REFERENCES 

Baldonado, M., Woodruff, A. Kuchinsky, A., 2000. 
Guidelines for Using Multiple Views in Information 
Visualization, In ACM AVI 2000, Italy, pp. 110-119. 

Ball, T and Eick, S., 1996. Software visualization in the 
large. Computer, 29(4):33–43, 1996. 

Becks, A., Seeling, C., 2004 SWAPit: A Multiple Views 
Paradigm for Exploring Associations of Texts and 
Structured Data. In AVI'2004, Italy. 

Callendar, C., 2012. Creole: Integrating Shrimp to the 
Eclipse IDE. Available at http://www. 
thechiselgroup.org/creole. Accessed in May. 

Card, S. K., Mackinlay, J. and Shneiderman, B., 1999. 
Readings in Information Visualization Using Vision to 
Think. San Francisco, CA, Morgan Kaufmann. 

Carneiro, G., Silva, M., Mara, L., Figueiredo, E., 
Sant'Anna, C., Garcia, A., and Mendonca, M., 2010. 
Identifying Code Smells with Multiple Concern 
Views. In proceedings of the 24th Brazilian 
Symposium on Software Engineering (SBES). 

Carneiro, G., Mendonça, M., 2013. SourceMiner. 
Technical Report. Available at http://www. 
sourceminer.org/screenshots.html. 

Demoiselle, F., 2013. Demoiselle Framework. Available 
at http: //demoiselle.sourceforge.net/. 

Diehl, S., 2007. Software Visualization: Visualizing the 
Structure, Behaviour, and Evolution of Software, 1st 
Edition. Springer. 

Eick, S.; Steffen, J.; Eric S., 1992. SeeSoft—a tool for 
visualizing line oriented software statistics. IEEE 
Transactions on Software Engineering, 18(11):957– 
968, November. 

Fowler, M., 1999. Refactoring: Improving the Design of 
Existing Code. Addison Wesley. 

Graham, M. And Kennedy, J., 2008. Multiform Views of 
Multiple Trees. In CMV2008. London, UK. 

Greenwood, P., Bartolomei, T., Figueiredo, E., Dosea, M., 
Garcia, A., Cacho, N., Sant’Anna, C., Soares, S., 
Borba, P., Kulesza, U., Rashid, A.., 2007. On the 
Impact of Aspectual Decompositions on Design 
Stability: An Empirical Study. ECOOP, Germany. 

Heer, J., Shneiderman, B., 2012. Interactive Dynamics for 
Visual Analysis. Communications of the ACM, 55(4), 
pp. 45-54, April. 

Koschke, R., 2003. Software Visualization in Software 
maintenance, Reverse Engineering, and Re-
engineering: A research Survey. Journal of Software 
Maintenance and Evolution: Research and Practice. 

Lanza, M., Ducasse, S., 2003. Polymetric Views-A 
Lightweight Visual Approach to Reverse Engineering, 
IEEE Trans. Softw. Eng. 29, 9 (Sep.), 782-795. 

Lanza, M.; Marinescu, R., 2006. Object-Oriented Metrics 
in Practice - Using Software Metrics to Characterize, 
Evaluate, and Improve the Design of Object-Oriented 
Systems. Springer-Verlag. 

Lehman, M and Belady, L., 1985. Program Evolution: 
Processes of Software Change. London Academic 
Press, 1985. 

Lintern, R., Michaud, J., Storey, M-A and Wu, X., 2003. 
Plugging-in Visualization: Experiences Integrating a 
Visualization Tool with Eclipse. In Proceedings of 
SoftVis ’03, pages 47– 56. ACM Press. 

Malnati, J., 2012. X-Ray Open Source Software 
Visualization. Available at http://xray.inf.usi.ch/ 
xray.php. Accessed in May. 

Müller, H. A. and Klashinsky K., 2008. Rigi: A system for 
programming-in-the-large. In Proceedings of the 10th 
International Conference on Software Engineering, 
pp. 80–86. Singapore. 

Riel, A., 1996. Object-Oriented Design Heuristics. 
Addison-Wesley Professional, 1996. 

Robillard, M. and Murphy, G., 2007. Representing 
Concerns in Source Code. ACM Transactions on 
Software Engineering and Methodology, 16(1):1-38, 
February. 

Shneirderman, B., 1992. Tree Visualization with Tree-
Maps: A 2-D Space-Filling Approach. ACM 
Transactions on Graphics (ToG) 11, 1, 92–99. 

Shneiderman, B. and Plaisant, C., 2009. Designing the 
User Interface: Strategies for Effective Human-
Computer Interaction, 5th ed. Addison Wesley, March. 

Storey, M.; Fracchia, F.and Muller, H., 1999. Cognitive 
design elements to support the construction of a 
mental model during software exploration. Journal of 
Systems and Software, vol. 44, no. 3, pp. 171-185, 
January. 

Storey, M. D., Müller, H. A., 1995. Manipulating and 
documenting software structures using SHriMP views, 
in: 11th IEEE International Conference on Software 
Maintenance, ICSM'95, pp. 275-284. 

Storey, M., 2006. Theories, tools and research methods in 
program comprehension: past, present and future. 
Software Quality Journal, 14(3):187–208. 

Teyseyre, A. R., and Campo, M. R., 2009. An Overview 
of 3D Software Visualization. IEEE Transactions on 
Visualization and Computer Graphics (TVCG) 15, 1, 
87–105. 

Ware, C., 2004. Information visualization: perception for 
design. Morgan Kaufmann Publishers Inc., 2 edition, 
2004. 

Wu, J., and M.-A. Storey., 2000. A Multi-perspective 
Software Visualization Environment. In Proceedings 
of CASCON'2000, November, pp. 41-50. 

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

36


