
Modeling Aspects in Requirements using SysML Extensions

Kênia Santos de Oliveira and Michel S. Soares
Faculty of Computing, Federal University of Uberlândia, Uberlândia, Brazil

Keywords: Aspects, Requirements Engineering, SysML.

Abstract: Aspects in software have been proposed and widely studied for the implementation phase of software develop-
ment to solve modularization issues. Software requirements may also contain scattered and tangled concerns
which needs special treatment. The separation of crosscutting concerns at the level of requirements contributes
to improve the process of software development, to detect initial conflicts of interest and to improve the mod-
ularity of requirements. The purpose of this article is to use SysML to model aspects at the requirements
level. This choice was made based on SysML’s specific diagram for requirements modeling. Extensions to the
metamodel of the SysML Requirements diagram were proposed in order to include aspects during activities
of requirements modeling. As a result, for the implementation phase of software development, aspects would
have already been identified and modeled during the requirements phase.

1 INTRODUCTION

The activities of identifying and locating interests in
well-separated modules is known as separation of
concerns (Dijkstra, 1997). In order to obtain mod-
ularized software specifications and with the cor-
rect partitioning of their concerns, a new paradigm
emerged for software development named Aspect
Oriented Software Development (AOSD) (Filman
et al., 2004), originated from Aspect Oriented Pro-
gramming (Kiczales et al., 1997). Similar to what was
evidenced by the community of Aspect Oriented Pro-
gramming, requirements may include scattering and
entanglement concerns which needs special treatment
(Sampaio and Rashid, 2008).

According to (Brito, 2008), with the purpose of
conducting an aspect oriented framework in the con-
text of requirements engineering, a number of issues
has to be considered. This includes, for instance, sup-
port to separation of all interests, including crosscut-
ting concerns, the definition of mechanisms to spec-
ify concerns composition and handling conflict situa-
tions, and the support to mechanisms to ensure trace-
ability between stages of the development process.
An aspect requirement is an interest of the stake-
holder that interferes in other requirements or artifacts
(Rashid et al., 2006). Provided that aspects at the re-
quirements level have been identified, it is important
to represent them, as well as specify their impact and
influence on other requirements of the system (Rashid
et al., 2006).

In the early stages of software development, it is
useful to define some kind of mapping between aspect
oriented requirements models and aspect oriented ar-
chitecture models (Sánchez et al., 2010). However,
in many studies this is not considered because aspects
are taken into consideration only during implementa-
tion. There is still lack of techniques and tools to deal
with this issue, especially in establishing a relation-
ship of Requirements Engineering with Software Ar-
chitecture, which can interfere in the representation of
the initial aspects and consequently the identification
of aspects in other phases of software development.

Models for representing aspects at early stages of
software development have been proposed in the lit-
erature (Brito, 2008) (Sánchez et al., 2010) in differ-
ent domains using UML Use Cases and their scenar-
ios. The main issue with these approaches is that Use
Cases are specific to model scenarios of requirements,
not individual requirements. The SysML modeling
language (OMG, 2012) extends UML with new dia-
grams, including one specific to model requirements.
SysML does not have extensions for modeling as-
pects, but these can be created as SysML is an ex-
tensible modeling language. Thus, the purpose of this
study is to use SysML to model aspects at the require-
ments level. The main reason for choosing SysML is
because the language has a specific diagram for mod-
eling individual requirements as well as their relation-
ships.

126 Santos de Oliveira K. and S. Soares M..
Modeling Aspects in Requirements using SysML Extensions.
DOI: 10.5220/0004419601260133
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 126-133
ISBN: 978-989-8565-60-0
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



2 REQUIREMENTS MODEL
WITH SYSML TO REPRESENT
ASPECTS

An interesting characteristic of the SysML Require-
ments diagram is the possibility of modeling other
types of requirements beyond the functional ones
(Soares et al., 2011). SysML is an interesting choice
as modeling language for requirements as it has a spe-
cific diagram to represent requirements. The SysML
Requirements diagram can appear in other models in
order to represent traces between requirements and
the software design. This approach facilitates to rep-
resent the aspects relation at the level of requirements
with aspects at the level of architecture. This relation-
ship is not well-presented in most studies published in
the area of early aspects (Sampaio and Rashid, 2008),
(Sánchez et al., 2010).

The original SysML requirements model is ex-
tended with new attributes, which considers an
extended requirement (represented by the stereo-
type<<ExtRequirement>>) with six additional at-
tributes, as depicted in Figure 1 (Soares et al., 2011).

Figure 1: Extended requirement model.

The defined attributes are:RequirementType, in-
dicating whether the requirement is functional or non-
functional, Risk, describing an event or uncertain
condition,Source, describing where the derived re-
quirement is originated,Priority, indicating the order
that the requirements should be addressed,Respon-
sible, referring to the stakeholder directly responsible
for the requirement,Version/Date, indicating the re-
quirements version, which is useful to keep track of
multiple versions of the requirement, andRelation-
ship, which purpose is to improve the activity of trac-
ing requirements to the design models.

The extended model to represent aspects at
the level of requirements is presented in Figure
2. The activity of modeling aspects at the level
of requirements is based on the created stereotype
<<AspectRequirement>> that inherits all the at-
tributes of<<ExtRequirement>>.

Beyond the attributes it is also necessary to de-
fine new relationships to represent the composition of
aspects. The composition means how an aspect re-
quirement influences or constrains the behavior of a

Figure 2: Extended metamodel.

requirement. In order to define these relationships,
previously published works (Brito, 2008), (Sánchez
et al., 2010) were analyzed. The relationships de-
fined in these studies are equivalent to the relation-
shipsbefore, afterandarounddescribed in aspect ori-
ented programming. At the architectural level, as well
as at the implementation level, the relationshipsbe-
fore, after andaroundare often used to represent the
composition of an aspect with other element (Pinto
et al., 2011). Because of this characteristic, and to
maintain traceability of aspects at the level of require-
ments to aspects at the architectural level, the rela-
tionships<<before>>,<<after>>,<<around>>

and<<conflict>> are proposed in this article to be
applied at the requirements level.

Figure 3 depicts the extended SysML requirement
relationship model to represent the aspect require-
ment relationships. The dashed rectangles are the new
relationships.

Figure 3: Extended relationships model.

The typebeforemeans that the aspect requirement
is inserted before the requirement. The typeafter
means that the aspect requirement is inserted after
the requirement. The typearound can override the
behavior of the requirement or part of the aspect re-
quirement can be inserted before and part after the re-

Modeling�Aspects�in�Requirements�using�SysML�Extensions

127



quirement. The relationship<<conflict>> indicates
whether there is a trade-off between aspects.

Aspects can be represented within a package.
Thus, in order to present the relationship between an
aspect package and an extended requirement the re-
lationship<<crosscut>> is used. For this, the de-
pendency model was extended as shown in Figure 4.
This relationship makes it clear which aspects cross-
cuts other requirements elements.

Figure 4: Extended dependency model.

Figure 5 depicts the representation of the relation-
ship<<crosscut>>.

Figure 5: Representation of the crosscut relationship.

3 PROCESS TO REPRESENT
ASPECTS AT THE LEVEL OF
REQUIREMENTS

The proposed process to represent aspects at the re-
quirements level is described in the Activity diagram
depicted in Figure 6. A list of requirements in natural
language is the entry artefact in this process.

In stage 1, requirements are separated in accor-
dance with the viewpoints. In SysML, Viewpoints
are stereotypes of UML classes. Viewpoints gener-
ally represent stakeholders or other systems which
have a specific interest in the current system (Sampaio
et al., 2007). Initially, only functional requirements
are defined. Viewpoints are represented using the
viewpoints and view of SysML and also the extended
model to requirements (<<ExtRequirement>>).

In stage 2, non-functional requirements are repre-
sented separately. The reason is because, according
to (Sampaio et al., 2007), usually non-functional re-
quirements are natural candidates to be defined as as-
pects at the level of requirements engineering, since
they are broadly scoped properties which tend to re-
strict other requirements. The SysML Requirements
diagrams with extensions (<<ExtRequirement>>)
are used to design these requirements.

In stage 3, non-functional requirements are re-
lated with the viewpoints. This is a way to identify
which non-functional requirements affect the func-
tional ones, and thus allow to check which are can-

didates for aspects. This relationship is realized
through an extension to the SysML Table. The tab-
ular format facilitates the tracing of requirements dur-
ing the life cycle. Traceability helps in identifying
the source, destination and connections between as-
pects and requirements. The extended table to re-
late non-functional requirements with viewpoints is
depicted in Table 1, which is composed by the re-
quirement identification (id), the non-functional re-
quirement name, the functional requirement name,
and the viewpoint name that the functional require-
ment pertains. The column relation, which is op-
tional, indicates that there is a relation between the
non-functional requirement and the viewpoint.

Table 1: SysML table extended to relate non-functional re-
quirements with viewpoints.

id1 non-

functional

requirement

relation id2 functional

requirement

viewpoint

In stage 4, the functional requirements that are
repeated in the different viewpoints are identified.
These are registered in an extended SysML table as
shown in Table 2. This is important to identify the
functional requirements which may be candidates for
aspects. The column repeat, which is optional, indi-
cates the repetition of functional requirements.

Table 2: SysML table extended to relate functional require-
ments with functional requirements.

id1 functional

requir.1

viewpoint1 repeat id2 functional

requir.2

viewpoint2

-

In stage 5, candidate aspects are identified. For
non-functional candidates, the identification is done
by checking which non-functional requirements are
included in more than one viewpoint (the verification
is performed by observing table 1). For functional
candidates, the identification is realized by checking
which functional requirements are repeated in more
than one viewpoint (the verification is performed by
observing Table 2). Candidate aspects are registered
in Table 3. In this table, the relationship column is
filled with the types of relationships, which can be
before, after or around.

Table 3: SysML table extended to represent the relationship
of functional candidates aspects.

id1 aspect relationship id2 functional

requirement

viewpoint

In stage 6, the conflicts of interest between as-
pects are identified. The composition of the interest

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

128



Figure 6: Process for aspect requirements modeling.

may raise conflict situations that need to be identified
and resolved. For instance, security and response time
may both crosscuts the same requirement of a view-
point and may contribute negatively to each other. In
order to maintain traceability of conflicts, they may
also be represented in an extended SysML table as
shown in Table 4. The column conflict, which is op-
tional, indicates the conflict between aspects.

Table 4: SysML table extended to represent conflicts be-
tween aspect requirements.

id1 aspect1 conflict id2 aspect2 viewpoint

In stage 7, candidate aspects are composed with
the viewpoints. The tables defined previously al-
ready indicate the composition of aspects with re-
quirements. However, at this stage, aspects are com-
posed in the graphical model for representing require-
ments and for this the extensions for aspects of the
SysML Requirements diagram are applied. Finally,
in stage 8 the requirements model with aspects is ob-
tained.

4 TOOL SUPPORT

The ArgoUML (0.35.1) (Ramirez et al., 2011) soft-
ware tool was extended with the metamodel proposed
in this article in order to support the modeling of
requirements and aspect requirements. In order to
perform the modifications in the source code of Ar-
goUML, the technique of Code Clone (Baker, 1995)
was applied. The comprehension of the source code
started with the debug process in the software devel-
opment tool Eclipse (version Juno). From the debug
process, it was possible to locate some classes that
implement the class element of ArgoUML. Thus, all
the code that builds the class element was cloned and
modified for the construction of the new elements.

A visualization of the ArgoUML tool with
the proposed extensions is depicted in Figure
7. The arrows drawn in the figure indicate

the buttons of new elements inserted in the
tool. In the modeling environment an example
of each element is represented. The illustrated
elements are<<Block>>, <<Aspect Block>>,
<<Requirement>>and<<Aspect Requirement>>.
The element<<Block>> has compartments defined
by SysML (constraints, parts, references, values,
propertiesandoperations). The element<<Aspect
Block>> has, beyond the compartments defined by
SysML, also compartments defined in this work
(point andadvice).

5 CASE STUDY

The Health Watcher (HW) system was used as a case
study. HW has been used as a reference for the de-
velopment of aspect oriented software because of the
heterogeneity of crosscutting concerns encountered in
its implementation (Chavez et al., 2009).

HW is an information system based on Web plat-
form developed to improve the quality of services of-
fered by the Department of Health of a city hall (Mas-
soni et al., 2006). The full document of the original
description of requirements can be obtained in (Mas-
soni et al., 2006). Figure 8 depicts the viewpoint Em-
ployee. This viewpoint is one among all viewpoints
obtained in the case study. In the second step, the non-
functional requirements are modeled. As an example,
Figure 9 shows the non-functional requirementUs-
ability.

In the third step, the non-functional requirements
are related to each viewpoint using the SysML ex-
tended table. For instance, in Table 5, the relation-
ship of the non-functional requirementUsabilitywith
viewpointsis described.

In the fourth step, the functional requirements that
appears in multiple viewpoints, i.e., are repeated, are
identified. In this case study, only the login require-
ment is repeated in different viewpoints, as shown in
Table 6.

In the fifth step, candidate aspects are identified,

Modeling�Aspects�in�Requirements�using�SysML�Extensions

129



Figure 7: Visualization of ArgoUML tool with extensions.

Figure 8: Viewpoint employee.

Figure 9: Non-functional requirement usability.

as shown in Table 7. In case the requirement partic-
ipates in more than one viewpoint, then one of the
identifiers (id) is chosen.

Table 5: Relationship table of the non-functional require-
ments with viewpoints.

id1 non-functional

requirement

relation id2 functional

requirement

viewpoint

7 Easy to use - 2 System Op-

eration

Employee

7 Easy to use - 4 Interact

with the

system

Citizen

7 Easy to use - 5 Search Citizen

7 Easy to use - 6 Register a

complaint

Citizen

8 Help - 2 System Op-

eration

Employee

8 Help - 4 Interact

with the

system

Citizen

8 Help - 5 Search Citizen

8 Help - 6 Register a

complaint

Citizen

Table 6: Table to relate functional requirements with func-
tional requirements.

id1 functional

requir.1

viewpointt1 repeat id2 functional

requir.2

viewpoint2

2.1 Login Employee - 6.1 Login Citizen

In the sixth step, conflicts of interest between as-
pects are identified. In this case study, there is a pos-
sibility of conflict between “Security Protocol” and
“Response Time” because the security implementa-
tion may compromise the response time. The solu-
tion to identified conflicts such as this one can be fur-
ther negotiation with the stakeholders. In the seventh
step, candidate aspects are composed with viewpoints
in the graphical model as shown in Figure 10.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

130



Figure 10: Composition of aspects and requirement in the viewpoint employee.

Table 7: Table to represent the relationship of candidate as-
pects with viewpoints.

id1 aspect relationship id2 functional

requirement

viewpoint

7 Easy to

use

before 2 System Opera-

tion

Employee

7 Easy to

use

before 4 Interact with

the system

Citizen

7 Easy to

use

before 5 Search Citizen

7 Easy to

use

before 6 Register a

complaint

Citizen

8 Help around 2 System Opera-

tion

Employee

8 Help around 4 Interact with

the system

Citizen

8 Help around 5 Search Citizen

8 Help around 6 Register a

complaint

Citizen

2.1 Login before 2 System Opera-

tions

Employee

2.1 Login before 6 Register a

Complaint

Citizen

6 COMPARISON WITH OTHER
MODELS

In order to evaluate the proposed model in this work, a
comparison with other five studies is proposed in this

Table 8: Conflicts between aspect requirements.

id1 aspect1 conflict id2 aspect2 viewpoint

16 Security

Protocol

- 15 Response

Time

Employee

section. These studies were chosen because they are
among the most cited works in this field. The chosen
works are:

A Modularization and Composition of Aspectual Re-
quirements (Rashid et al., 2003).

B Theme: An Approach for Aspect-Oriented Analy-
sis and Design (Baniassad and Clarke, 2004).

C Scenario Modelling with Aspects (Whittle and
Araujo, 2004).

D Semantics-based Composition for Aspect-
Oriented Requirements Engineering (Chitchyan
et al., 2007).

E Mining Aspects in Requirements (Sampaio et al.,
2005).

F Modeling Aspects at the Requirements Level with
SysML (this article)

Table 9 summarizes the comparison. The symbols
(and their semantics) used for evaluation are as fol-
lows:

� Evaluated criteria is fully satisfied.

Modeling�Aspects�in�Requirements�using�SysML�Extensions

131



Table 9: Comparison between models.

Criteria A B C D E F
Process to identify crosscutting require-
ments

� � � � � �

Identification of functional and non-
functional crosscutting requirements

⊡ � ⊡ � � �

Composition of aspects and requirements � � � � � �

Identification of Conflicts � � � � � ⊡

Resolution of Conflicts � � � � � �

Graphical modeling � � � � � �

Specific diagram for requirements � � � � � �

Relationship between requirements � � � � � �

Relationship with UML � � � � � �

Extensibility of the Model � � � � � �

Relationship with Architecture � � � � � �

Traceability with design � � � � � �

Tools support � ⊡ ⊡ ⊡ ⊡ ⊡

⊡ Evaluated criteria is partially satisfied.

� Evaluated criteria is not satisfied.

The model proposed in (Rashid et al., 2003)
presents a set of composition rules that defines the
relationship between requirements and aspectual re-
quirements. However, the model does not propose to
represent the relationship between functional require-
ments. A process to identify and solve conflicts is pro-
posed by using a table which describes how a require-
ment affects another one. In order to solve conflicts,
weights from 0 (less important) to 10 (most impor-
tant) to conflicting aspect requirements are proposed.
The model is based on XML and is purely textual.

The model presented in (Baniassad and Clarke,
2004) is based on natural language. A semi-automatic
computer tool is used to identify crosscutting require-
ments in specifications. The identification process
is based on a lexical analysis in requirements doc-
uments, using specific keywords provided by stake-
holders. One result provided by the tool is a graphic
view of the aspects. The proposed model does not
provide means to solve conflicts.

The main idea behind the model proposed by
(Whittle and Araujo, 2004) is to compose require-
ments and scenarios. Aspects are modeled using a
language based on UML, and scenarios are modeled
using UML Sequence diagrams and Use Cases. The
identification of aspects is based on verifying which
Use Cases are influenced by non-functional require-
ments. The identification of conflicts is performed,
but it is not described in the paper. The final model
does not relates to software design or architecture.

A requirements description language is described
in (Chitchyan et al., 2007) with the purpose of im-
proving the requirements specification written in nat-
ural language with additional semantic details. A pro-
cess to identify aspects is not described.

The main purpose of the approach presented in
(Sampaio et al., 2005) is to identify candidate aspects
in unstructured requirements documents. An auto-
matic tool helps the developer to mine and to model
crosscutting concerns. The tool is customized, with
the possibility of identifying crosscutting concerns in
different ways. The tool makes searches in the spec-
ification and produces a model that represents the re-
lationship between requirements. However, the work
does not propose a model to compose or identify con-
flicts.

The model proposed in this work makes use of
a defined process to identify functional and non-
functional aspects. The new proposed relationships
allows the composition of requirements with aspec-
tual requirements. An approach to solve conflicts
is also proposed with priority levels. The graphi-
cal modeling is described using an extension of the
SysML Requirements diagram.

7 CONCLUSIONS

This article proposes an approach to identify and to
handle crosscutting concerns at the requirements level
using the SysML modeling language. The process
consists of seven steps using the resources of the
SysML modeling language with proposed extensions
to its metamodel. The SysML viewpoints are used
in stage 1 and the requirements are modeled using
the SysML Requirements diagram in stage 2. By
the end of stages 3, 4, 5 and 6, information of re-
quirements and aspects modeled are stored into an
extended SysML Table. Finally, in stage 7, con-
flicts such as relationships between requirements are
solved. The proposed model supports the separation
of all crosscutting concerns and mechanisms to spec-

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

132



ify the composition of concerns and handling con-
flict situations. With the proposed model, for the im-
plementation phase of software development, aspects
have already been identified and modeled during the
requirements phase. The proposed model supports
traceability of aspects at the architectural level with
the SysML proposed relationships. The tables used
in the process to represent aspects requirements facil-
itates the tracing of requirements during the life cycle
of the system. A tool support is provided with the
proposed model implemented in an extension of the
ArgoUML tool.

ACKNOWLEDGEMENTS

The authors would like to thank CNPq (www.cnpq.br)
for the financial support.

REFERENCES

Baker, B. S. (1995). On Finding Duplication and Near-
Duplication in Large Software Systems. InProceed-
ings of the Second Working Conference on Reverse
Engineering, WCRE ’95, pages 86–95.

Baniassad, E. and Clarke, S. (2004). Theme: An Approach
for Aspect-Oriented Analysis and Design. InProceed-
ings on the 26th International Conference on Software
Engineering, pages 158–167.

Brito, I. S. S. (2008).Aspect-Oriented Requirements Anal-
ysis. PhD thesis, Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa.

Chavez, C., Garcia, A., Batista, T., Oliveira, M., Sant’Anna,
C., and Rashid, A. (2009). Composing Architec-
tural Aspects Based on Style Semantics. InProc.
of the 8th ACM International Conference on Aspect-
Oriented Software Development, pages 111–122.

Chitchyan, R., Rashid, A., Rayson, P., and Waters, R.
(2007). Semantics-Based Composition for Aspect-
Oriented Requirements Rngineering. InProceed-
ings of the 6th International Conference on Aspect-
Oriented Software Development, pages 36–48.

Dijkstra, E. W. (1997).A Discipline of Programming. Pren-
tice Hall, Upper Saddle River, NJ, USA, 1st edition.

Filman, R. E., Elrad, T., Clarke, S., and Aksit, M. (2004).
Aspect-Oriented Software Development. Addison
Wesley Professional.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C. V., Loingtier, J., and Irwin, J. (1997).
Aspect-Oriented Programming. InProc. of the 11th
European Conference on Object-Oriented Program-
ming, pages 220–242.

Massoni, T., Soares, S., and Borba, P. (2006). Requirements
Document Health-Watcher. Technical report. version
2.0.

OMG (2012).Systems Modeling Language (SysML) Speci-
fication - version 1.3.

Pinto, M., Fuentes, L., and Troya, J. M. (2011). Specifying
Aspect-Oriented Architectures in AO-ADL.Informa-
tion and Software Technology, 53:1165–1182.

Ramirez, A., Vanpeperstraete, P., Rueckert, A., Odutola, K.,
Bennett, J., Tolke, L., and van der Wulp, M. (2011).
ArgoUML User Manual - A tutorial and reference de-
scription.

Rashid, A., Garcia, A., and Moreira, A. (2006). Aspect-
oriented Software Development Beyond Program-
ming. In Proc. of the 28th International Conference
on Software Engineering, pages 1061–1062.

Rashid, A., Moreira, A., and Araújo, J. (2003). Modulari-
sation and Composition of Aspectual Requirements.
In Proceedings of the 2nd international conference
on Aspect-oriented software development, AOSD ’03,
pages 11–20.

Sampaio, A., Loughran, N., Rashid, A., and Rayson, P.
(2005). Mining Aspects in Requirements. InEarly As-
pects 2005: Aspect-Oriented Requirements Engineer-
ing and Architecture Design Workshop.

Sampaio, A. and Rashid, A. (2008). Mining Early Aspects
from Requirements with Ea-Miner. InCompanion of
the 30th International Conference on Software engi-
neering, pages 911–912.

Sampaio, A., Rashid, A., Chitchyan, R., and Rayson, P.
(2007). EA-Miner: Towards Automation in Aspect
Oriented Requirements Engineering. InTransactions
on aspect-oriented software development III, pages 4–
39. Springer-Verlag, Berlin, Heidelberg.

Sánchez, P., Moreira, A., Fuentes, L., Araújo, J. a., and
Magno, J. (2010). Model-driven Development for
Early Aspects.Information and Software Technology,
52(3):249–273.

Soares, M. S., Vrancken, J., and Verbraeck, A. (2011). User
Requirements Modeling and Analysis of Software-
Intensive Systems.Journal of Systems and Software,
84(2):328–339.

Whittle, J. and Araujo, J. (2004). Scenario Modelling with
Aspects.IEE Proceedings Software, 151(4):157–171.

Modeling�Aspects�in�Requirements�using�SysML�Extensions

133


