
Projects Characteristics Determining Suitability of Software
Development Process

Michel S. Soares1 and Joseph Barjis2

1Faculty of Computing, Federal University of Uberlândia, Uberlândia, Brazil
2Section Systems Engineering, Delft University of Technology, Delft, The Netherlands

Keywords: Software Development, Characteristics of Software Projects, Software Quality, Project Management.

Abstract: Software development is a complex engineering activity that faces many challenges. In the last three decades,
software projects frequently ran over time, cost over budget, and delivered less functionalities than promised.
These challenges are dominantly caused by technical and management failures. One critical challenge is that
project characteristics, such as the technical and management environment, are not well-known in advance.
The preposition of this paper is that knowing the characteristics of a software project will have a positive
effect on three indicators that are most important for stakeholders: costs, duration, and functionalities. This
preposition is discussed and validated in relation to three sources: review of the literature, analysis of lessons-
learned documents of completed software projects in industry, and interviews with practitioners. This research
resulted in a list of characteristics (non-exhaustive) that should be taken into account during the initial phases
of a software project development, which should increase likelihood of success.

1 INTRODUCTION

The rate of failures in software projects is currently
very high, as reported in many publications (Pich
et al., 2002) (Lee and Xia, 2005) (Cicmil and Hodg-
son, 2006) (Lewis, 2010) (Clarke and OConnor,
2012). Both researchers and practitioners have at-
tempted to identify not only the causes of project fail-
ure but also the factors that lead to success. As a
result, standards have been developed and dissemi-
nated in order to report what has been observed (PMI,
2004) (Cicmil and Hodgson, 2006). Currently there
is still only limited research evidence that links ad-
herence to these project standards to have improved
project performance (Thomas and Mullaly, 2007).
Even delivered software projects normally face future
issues such as difficulty of management and evolu-
tion (Boehm and Beck, 2010). Disappointments with
the return of investment by stakeholders are common.
Software is viewed by many chief executives as one
of the major problem areas faced by large corpora-
tions (Glass, 1998) (Yourdon, 1999) (Ewusi-Mensah,
2003) (Ward, 2012).

The success of a software project depends not only
on technical soundness, but also on the perception of
every involved stakeholder. Often, this perception is
based on three indicators: cost, time, and function-

alities (requirements) (Lewis, 2010). In the litera-
ture, the influence of these three characteristics on the
success of software projects is well-known. Accord-
ing to (Reifer, 2001) and (Dybå and Dingsøyr, 2008),
the size of a project, considering budget and dura-
tion, is imperative for software development success.
Furthermore, activities related to requirements, such
as eliciting and managing requirements, are consid-
ered key success factors by many authors (Hofmann
and Lehner, 2001) (Komi-Sirviö and Tihinen, 2003)
(Damian et al., 2004) (Minor and Armarego, 2005)
(Soares et al., 2011).

Basing the discussion primarily on these three
core characteristics, this article explores additional
characteristics that may influence the suitability of a
software project. The research question is stated as
follows: What characteristics of software projects in-
fluence the suitability of software development? The
research methods we used in this paper are literature
review, followed by studying lessons learned docu-
ments from completed software projects in industry,
and interviews with practitioners. Therefore, addi-
tional characteristics are derived from the three initial
ones. These characteristics are independent of indus-
try domain and software development methodology.
The research described in this article was performed
at a large financial organization that not only develops

118 S. Soares M. and Barjis J..
Projects Characteristics Determining Suitability of Software Development Process.
DOI: 10.5220/0004419501180125
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 118-125
ISBN: 978-989-8565-60-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



software internally, but also hire a number of vendors
and consulting companies to develop their software
projects.

The remainder of this paper is structured as fol-
lows. In Section 2, we discuss software development
challenges from both technical and managerial an-
gles. In Section 3, we discuss the main characteristics
of software projects found respectively after perform-
ing an extensive literature review, searching lessons
learned documents, and interviewing with practition-
ers. The main lessons learned are discussed in Section
4. Finally, we conclude the paper and present propos-
als for future work in Section 5.

2 SOFTWARE DEVELOPMENT
CHALLENGES

The study of the complexity of software development
is taken into account through two perspectives in this
section: the technical and the managerial. It is not
our intention to exhaust all technical and managerial
challenges, but to point out the most common ones
based on literature review.

2.1 The Technical Challenge

The development of software has always been chal-
lenging (Wirth, 2008). Currently, a great objec-
tive in modern society is to develop successful soft-
ware respecting constraints such as costs and dead-
lines, and being able to maintain and evolve these
systems. Among the technical challenges involved
to achieve this objective, we can mention the Soft-
ware Engineering sub-activities’ of Requirements En-
gineering, Software Architecture, and Software Pro-
cess Improvement (Nuseibeh and Easterbrook, 2000)
(Hofmann and Lehner, 2001) (Komi-Sirviö and Tihi-
nen, 2003) (Kruchten et al., 2006) (Brown and Mc-
Dermid, 2007).

It is common-knowledge in Software Engineer-
ing that correctly performing activities of the Re-
quirements Engineering discipline (elicitation, docu-
mentation, analysis, management, and so on) is cru-
cial for software development (Berry, 2004). When
any of these activities are poorly performed, the
software project is at risk of failure (Abran et al.,
2004). According to a number of practitioners and
researchers, Requirements Engineering is the most
problematic phase of the development of a software
system (Damian et al., 2004) (Minor and Armarego,
2005). Dealing with ever-changing requirements is
considered the real problem of Software Engineering
(Berry, 2004).

Requirements are often misunderstood, misinter-
preted, and poorly documented (Berry, 2004) (Minor
and Armarego, 2005) (Walia and Carver, 2009). A
major issue is that requirements are often written at
only one level of abstraction, or requirements at dif-
ferent levels of abstraction are mixed, which brings
even more confusion to stakeholders (Soares and Cio-
quetta, 2012). Requirements specifications for large
systems should be specified at a number of levels of
abstraction (Berander and Svahnberg, 2009), as for
instance, user requirements and systems requirements
(Sommerville, 2010). Another issue is that the major-
ity of modeling languages are tailored to document
requirements at only one level of abstraction. For in-
stance, high level user requirements are often mod-
eled using UML Use Cases. However, Use Cases
are unsuitable to model more specific system level re-
quirements (Lilly, 1999). The same holds for struc-
tured natural language (Cooper and Ito, 2002), which
is used for algorithm specification and implementa-
tion phases, but is considered difficult to understand
by most stakeholders.

An additional important success factor within re-
quirements is related to non-functional requirements.
These requirements are normally associated with re-
strictions and quality properties, and can be so impor-
tant to software that they may determine its success.
For example, a financial system that is perceived as
sufficiently fast most of the time and has a nice inter-
face is condemned to fail if stakeholders and clients
have doubts about its security.

The importance of software architecture in the
software life-cycle is widely recognized in theory and
practice by many authors. A proven concept to build
software and to avoid problems and failure causes,
such as poor communication among stakeholders and
sloppy and immature development practices, is to
have a well-defined software architecture (Bass et al.,
2003) (Kruchten et al., 2006). According to (Booch,
2007), having an architecture allows the development
of systems that are better and more resilient to change
when compared to systems developed without a clear
architectural definition. Software architecture is also
considered one of the most significant technical fac-
tors in ensuring project success (Brown and McDer-
mid, 2007). The software architecture affects the per-
formance, robustness, and maintainability of a soft-
ware system (Bosch, 2000).

Another common problem in software devel-
opment is the poor relationship between the re-
quirements engineering and the software architecture
teams (Hall et al., 2002) (Medvidovic et al., 2003).
It is of utmost importance that both groups work to-
gether (de Boer and van Vliet, 2009). The main rea-

Projects�Characteristics�Determining�Suitability�of�Software�Development�Process

119



son is that the software architecture must be consid-
ered when engineering new requirements to be im-
plemented in a software product (Miller et al., 2010).
The requirements document will have a great influ-
ence on the architectural style to be chosen and the
decisions that tailor the software architecture. On
the other hand, each architectural style is more or
less capable of addressing a different number of non-
functional requirements. Therefore, requirements en-
gineering activities must be closely related to the de-
sign of the software architecture.

The themesoftware process improvement and ca-
pability determinationis controversial. It can be con-
sidered to have a positive factor for software produc-
tivity and quality (Pino et al., 2008). However, it is
also considered too expensive to implement, and only
useful depending on human and sociological factors
(Baddoo and Hall, 2002). The evaluation of the soft-
ware development process is often given by levels of
maturity such as the ones of CMMI (Chrissis et al.,
2003),

2.2 The Project Management Challenge

There is a debate by researchers and practitioners
about what is considered to be failure or success of
a software project (Thomas and Fernandez, 2008).
Some authors have considered the cancelation of a
project even before its start (Emam and Koru, 2008),
safety problems of the delivered software (Leveson,
2004) (Dulac and Leveson, 2009), or insufficient busi-
ness and goals results (Sauser et al., 2009) to be symp-
toms of failure.

However, there is more or less consensus (Lin-
berg, 1999) (Zhang et al., 2003) (Lewis, 2010) that
a software project is considered failed when at least
one of the following factors are present:

1. The project cost is higher than the planned budget.

2. The project duration is greater than planned.

3. Not all required functionalities are delivered.

Our consideration of software project failures dur-
ing the research took into account these three factors
only.

The total cost and duration of a software project
are inherently dependent on the project size. The dif-
ficulty here is to measure software. A number of tech-
niques were proposed in past years, with varying de-
grees of complexity. Among the most well-known
techniques, we can mention LOC (Lines of Code),
Function Point Analysis, estimation based on Use
Cases, and the COCOMO model (Pressman, 2010).
However, the estimation of the size of a software
project still suffers from high inaccuracy (Molkken

and Jrgensen, 2003) (Jorgensen and Shepperd, 2007)
(Magazinius et al., 2012).

3 PROJECT CHARACTERISTICS

The characteristics presented in this section were
found respectively after performing an extensive lit-
erature review, searching lessons learned documents
of completed software projects in industry, and inter-
viewing with practitioners.

3.1 Literature Review

From the literature review, the following characteris-
tics were found.

3.1.1 Risk Clearness

Managing risks in software projects has long been
recognized as crucial (Brooks, 1987) (Boehm and
Ross, 1989) (Han and Huang, 2007) (Bannerman,
2008). The degree of risks differs significantly ac-
cording to previous knowledge of the domain. There-
fore, for projects based on previous executed projects,
risks are notably reduced. However, for projects that
largely differ from previous ones, risks have a signifi-
cant impact.

3.1.2 Requirements Maturity

Uncertainties and lack of maturity in requirements
documents have been recognized as major issues in
software development (Jiang et al., 2002) (Hickey and
Davis, 2004). The characteristic “requirements matu-
rity” takes into account how stable requirements are
after have been elicited and documented, and the de-
gree of changes expected.

The more mature the project is for each stake-
holder, the more stable the requirements are. Stake-
holders usually have an idea of what he or she wants,
although no clear requirements are stated. This
may create high levels of uncertainty for the entire
project. Furthermore, when requirements are not ma-
ture, changes can easily occur while developing the
actual software, resulting in over budgeted and over
time projects.

3.1.3 Client’s Commitment

This characteristic takes into account how involved
the client wants to be with the project and its progress.
The degree can vary from simply stating requirements

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

120



to actually be involved in all phases of project devel-
opment. This commitment is part of agile method-
ologies (Eckstein and Baumeister, 2004) such as XP
(Beck and Andres, 2004). The importance of high in-
volvement of clients is to avoid surprises in the end.
The client continuously evaluate the progress of the
project by means of prototypes and associated docu-
ments on a daily basis. On the other hand, this ap-
proach is more likely to increase the level of changes
during project development.

3.1.4 Team Formation

Software projects can differ greatly with the amount
of people working on the project. This does include
developers, managers, clients, and personnel from the
vendors.

Choosing the correct team size and scheduling
each person to tasks and activities of a project are
problematic concerns for project managers (Brooks,
1995). Not to mention knowing in detail the abilities
of each team member, and where each one can make
the personal best contribution to the project. There-
fore, choosing the team and assignning responsibili-
ties are important characteristics of a software project
which influences the suitability of a software project.

3.2 Lessons Learned Documents

Some departments within the company where this re-
search was performed evaluate finished projects. This
activity is well-known as post-mortem (Birk et al.,
2002), and is part of some software development
methodologies, as for instance, the Personal Software
Process methodology (Humphrey, 1996).

The purpose os these documents at the company
are to state what went right, what went average, and
what went wrong and should be improved. These doc-
uments were used to help finding the characteristics of
projects described as follows.

3.2.1 Scope Clearness

In case the scope is not clear, team members can
get lost in the project, and time and budget overruns
are imminent. In many lessons learned documents,
the clearness of scope was mentioned as an issue to
be improved. Almost always unclear scope leads to
frequent changes in requirements, which reflects on
higher costs and longer project duration.

3.2.2 Department Influence

Within large organizations such as the one where this
research was performed, multiple departments might

play a role in large projects. Departments frequently
offer services to each other. One issue here is that
some departments may have stronger political posi-
tion in the company than others. It is imperative to
know how each department influences the project, and
the role of each department in relation to the others.

3.3 Interviews with Practitioners

The interviews were performed with personnel
throughout the organization. The target were
managers and senior software designers involved
with making important decisions about the software
project. In addition, personnel from the vendor side
were interviewed in order to get information from a
different viewpoint. The general purpose of all inter-
views was to get in-depth information. By discussing
tacit knowledge, opinions and practice related issues
are uncovered. The two initial questions, which de-
rived further discussion, were: “What characteristics
are the most important ones for project success?”, and
“How the characteristic affects a software project?”.
The issues presented here are hardly described else-
where. In total, 14 employees were interviewed, in-
cluding software architects and managers.

3.3.1 Environmental Stability

This item relates to the environment to develop soft-
ware, including facilities such as software tools, de-
velopment infrastructure, methods, techniques and
suppliers. If the environment to develop software is
not stable, then frequent changes and additional risks
can be expected.

3.3.2 Applications’s Familiarity

Projects developed at the refereed organization can
differ in difficulty and complexity. One major fac-
tor for this is whether the application requested is al-
ready familiar to the development team. If the appli-
cation is completely new, then additional efforts are
expected from developers in order to understand the
domain and the application. In case of introducing a
new software platform or tool, the difficulty is also
increased.

3.3.3 Stakeholders Relationship

This characteristic becomes more important with the
size of the team and the project. The relationship be-
tween team members and other involved stakehold-
ers, such as vendors and members from other depart-
ments, is of fundamental importance. It is not unusual
in a large company that departments provide services

Projects�Characteristics�Determining�Suitability�of�Software�Development�Process

121



to other departments and groups. Therefore, cooper-
ation is performed not only internally between team
members, but also between teams and other groups
of the organization. As a matter of fact, not only the
relationship between team members should be con-
sidered, but also between groups and departments.

4 DISCUSSION

In this section, we try to relate back to our initial
discussion. In particular, we draw our discussion on
technical and managerial perspectives of software de-
velopment challenges and reason in line with the core
software development challenges as well (cost, du-
ration, functionality) as the additional characteristics
we have identified. For each one of the three factors
we classify the list of characteristics found as follows.

4.1 Project Budget

Characteristics that are connected to the factor Project
Budget are risk clearness, scope clearness, require-
ments maturity, client’s commitment, environmental
stability, department influence and team formation.
If risks and scope are not clear, the project budget
will rather represent unrealistic estimates. A signif-
icant number of over budget and over time projects
are caused by uncertain boundaries. The stability of
the development environment is of high importance
for the project budget. If the infrastructure and tech-
niques used are unreliable, then the budget becomes
unreliable as well. In addition, with high level of
client’s commitment, it is more likely to increase the
level of changes during project development, and bud-
get can be overrun. Furthermore, when requirements
are not mature, changes can easily occur while devel-
oping the actual software, resulting in over budgeted
and over time projects. As some departments may
have different political position in the company, the
budget of a project and its priority will depend on how
strong the department is inside the organization. Fi-
nally, choosing the correct team size and scheduling
each person to tasks and activities of a project accord-
ing to individual abilities will influence the final costs
of the project.

4.2 Project Duration

The characteristics that influence the factor Project
Budget are often related to the factor Project Dura-
tion. In addition, another characteristic was found that
only influences Project Duration. This is the famil-
iarity the project group has with the application to be

developed. Certain projects are adaptations of already
existing software. However, some projects concern
entirely new innovative software applications. If this
is the case, additional time is needed for the project
group to get familiar with the domain.

4.3 Functionalities

The final factor mentioned is related to Require-
ments/Functionalities. Three characteristics were
found that have influence on or are influenced by this
factor. The first characteristic is requirements matu-
rity. For many software projects, the stability of re-
quirements is of the utmost importance. Changes at
the end or during the project could cause enormous
problems. The second characteristic is clients’ com-
mitment. For elicitation and collection of explicit and
unambiguous requirements, clients need to be com-
mitted to the project. The final characteristic is the
stakeholders relationship since requirements manage-
ment is dependent on their wishes.

5 CONCLUSIONS

The research that led to this paper was performed at a
large financial institution that develops software inter-
nally and also hire consulting companies and vendors
to develop software. As the rate of failures in soft-
ware projects is currently very high, in this paper we
wanted to search for characteristics of a project that
would have a positive influence on software devel-
opment. The successful completion of a project de-
pends both on technical factors, such as well-defined
and well-described requirements, and on managerial
factors, such as feasible estimations. We focused this
research mainly on the project management point of
view. The non-exhaustive list of characteristics de-
scribed in this paper should be considered as success
factors for software development projects.

Two main lessons were found in this research.
The first one is that investigating projects after their
completion is very useful. The two main characteris-
tics found after performing this activity, Scope Clear-
ness and Department Influence, are hardly described
elsewhere. In addition, knowing what went wrong
will help managers in making future decisions. The
second one is that the point of view of practitioners
should be taken into account, as they do not nec-
essarily have the same opinions as the researchers.
Performing interviews with developers and managers
that face real problems everyday is useful to under-
stand less conventional success factors that are often

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

122



neglected in mainstream theoretical frameworks and
discussions.

Future work will focus on improving the validity
of the proposed concept by following the same ap-
proach in another application domain. Particularly,
we are interested in evaluating software projects ap-
plied to critical infrastructure systems, such as elec-
tricity, water and road traffic networks.

ACKNOWLEDGEMENTS

The authors would like to thank CNPq (www.cnpq.br)
for the financial support.

REFERENCES

(2004).A Guide to the Project Management Body of Knowl-
edge (PMBOK Guides). Project Management Insti-
tute.

Abran, A., Bourque, P., Dupuis, R., Moore, J. W., and Tripp,
L. L., editors (2004).Guide to the Software Engineer-
ing Body of Knowledge - SWEBOK. IEEE Press, Pis-
cataway, NJ, USA, 2004 version edition.

Baddoo, N. and Hall, T. (2002). Motivators of software pro-
cess improvement: an analysis of practitioners’ views.
Journal of Systems and Software, 62(2):85–96.

Bannerman, P. L. (2008). Risk and risk management in soft-
ware projects: A reassessment.Journal of Systems
and Software, 81(12):2118 – 2133.

Bass, L., Clements, P., and Kazman, R. (2003).Soft-
ware Architecture in Practice. Addison-Wesley Pro-
fessional, Reading, MA, USA.

Beck, K. and Andres, C. (2004).Extreme Programming
Explained: Embrace Change (2nd Edition). Addison-
Wesley Professional.

Berander, P. and Svahnberg, M. (2009). Evaluating Two
Ways of Calculating Priorities in Requirements Hier-
archies - An Experiment on Hierarchical Cumulative
Voting. Journal of Systems and Software, 82(5):836 –
850.

Berry, D. M. (2004). The Inevitable Pain of Software Devel-
opment: Why There Is No Silver Bullet. InRadical
Innovations of Software and Systems Engineering in
the Future, Lecture Notes in Computer Science, pages
50–74.

Birk, A., Dingsoyr, T., and Stalhane, T. (2002). Post-
mortem: never leave a project without it.Software,
IEEE, 19(3):43–45.

Boehm, B. and Beck, K. (2010). Perspectives.IEEE Soft-
ware, 27:26–29.

Boehm, B. W. and Ross, R. (1989). Theory-w software
project management principles and examples.IEEE
Trans. Softw. Eng., 15:902–916.

Booch, G. (2007). The Economics of Architecture-First.
IEEE Software,, 24(5):18–20.

Bosch, J. (2000).Design and Use of Software Architec-
tures: Adopting and Evolving a Product-Line Ap-
proach. ACM Press/Addison-Wesley Professional,
New York, NY, USA.

Brooks, F. P. (1987). No Silver Bullet: Essence and Acci-
dents of Software Engineering.Computer,, 20(4):10–
19.

Brooks, F. P. (1995).The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley Professional,
Boston, USA.

Brown, A. W. and McDermid, J. A. (2007). The Art
and Science of Software Architecture. Interna-
tional Journal of Cooperative Information Systems,,
16(3/4):439–466.

Chrissis, M. B., Konrad, M., and Shrum, S. (2003).CMMI
Guidlines for Process Integration and Product Im-
provement. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Cicmil, S. and Hodgson, D. (2006). New Possibilities for
Project Management Theory: a Critical Engagement.
Project Management Journal, 37(3):111–122.

Clarke, P. and OConnor, R. V. (2012). The Situational Fac-
tors that Affect the Software Development Process:
Towards a Comprehensive Reference Framework.In-
formation and Software Technology, 54(5):433–447.

Cooper, K. and Ito, M. (2002). Formalizing a Structured
Natural Language Requirements Specification Nota-
tion. In Proceedings of the International Council
on Systems Engineering Symposium, volume CDROM
index 1.6.2, pages 1–8, Las Vegas, Nevada, USA.

Damian, D., Zowghi, D., Vaidyanathasamy, L., and Pal, Y.
(2004). An Industrial Case Study of Immediate Ben-
efits of Requirements Engineering Process Improve-
ment at the Australian Center for Unisys Software.
Empirical Software Engineering,, 9(1-2):45–75.

de Boer, R. C. and van Vliet, H. (2009). Controversy
Corner: On the Similarity Between Requirements
and Architecture.Journal of Systems and Software,
82(3):544–550.

Dulac, N. and Leveson, N. (2009). Incorporating safety risk
in early system architecture trade studies.AIAA Jour-
nal of Spacecraft and Rockets, 46(2):430–437.

Dybå, T. and Dingsøyr, T. (2008). Empirical Studies of
Agile Software Development: A Systematic Review.
Inf. Softw. Technol., 50:833–859.

Eckstein, J. and Baumeister, H., editors (2004).Extreme
Programming and Agile Processes in Software Engi-
neering, volume 3092 ofLecture Notes in Computer
Science.

Emam, K. E. and Koru, A. G. (2008). A replicated survey of
it software project failures.IEEE Software, 25:84–90.

Ewusi-Mensah, K. (2003).Software Development Failures.
MIT Press, Cambridge, MA, USA.

Glass, R. L. (1998).Software Runaways: Lessons Learned
from Massive Software Project Failures. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition.

Hall, J. G., Jackson, M., Laney, R. C., Nuseibeh, B., and
Rapanotti, L. (2002). Relating Software Requirements
and Architectures using Problem Frames. InProceed-
ings of IEEE International Requirements Engineering

Projects�Characteristics�Determining�Suitability�of�Software�Development�Process

123



Conference, pages 137–144. IEEE Computer Society
Press.

Han, W.-M. and Huang, S.-J. (2007). An empirical analy-
sis of risk components and performance on software
projects.Journal of Systems and Software, 80(1):42 –
50.

Hickey, A. M. and Davis, A. M. (2004). A unified model of
requirements elicitation.J. Manage. Inf. Syst., 20:65–
84.

Hofmann, H. F. and Lehner, F. (2001). Requirements engi-
neering as a success factor in software projects.IEEE
Software, 18:58–66.

Humphrey, W. S. (1996). Using a defined and measured
personal software process.IEEE Software, 13(3):77–
88.

Jiang, J. J., Klein, G., and Discenza, R. (2002). Percep-
tion differences of software success: provider and user
views of system metrics.Journal of Systems and Soft-
ware, 63:17–27.

Jorgensen, M. and Shepperd, M. (2007). A Systematic Re-
view of Software Development Cost Estimation Stud-
ies. IEEE Trans. Softw. Eng., 33(1):33–53.

Komi-Sirviö, S. and Tihinen, M. (2003). Great Challenges
and Opportunities of Distributed Software Develop-
ment - An Industrial Survey. InProceedings of the
Fifteenth International Conference on Software En-
gineering and Knowledge Engineering (SEKE’2003),
pages 489–496.

Kruchten, P., Obbink, H., and Stafford, J. (2006). The Past,
Present, and Future for Software Architecture.IEEE
Software, 23(2):22–30.

Lee, G. and Xia, W. (2005). The Ability of Information Sys-
tems Development Project Teams to Respond to Busi-
ness and Technology Changes: A Study of Flexibility
Measures.European Journal of Information Systems,
14:75–92.

Leveson, N. G. (2004). A systems-theoretic approach to
safety in software-intensive systems.IEEE Trans. De-
pendable Secur. Comput., 1:66–86.

Lewis, J. (2010).Project Planning, Scheduling, and Con-
trol: The Ultimate Hands-On Guide to Bringing
Projects in On Time and On Budget.Mc-Graw-Hill,
New York, NY, USA, 5 edition.

Lilly, S. (1999). Use Case Pitfalls: Top 10 Problems from
Real Projects Using Use Cases. InTOOLS ’99: Pro-
ceedings of the Technology of Object-Oriented Lan-
guages and Systems, pages 174–184, Washington,
DC, USA. IEEE Computer Society.

Linberg, K. R. (1999). Software developer perceptions
about software project failure: a case study.Journal
of Systems and Software, 49(2-3):177 – 192.

Magazinius, A., Brjesson, S., and Feldt, R. (2012). Inves-
tigating Intentional Distortions in Software Cost Es-
timation An Exploratory Study.Journal of Systems
and Software, 85(8):1770 – 1781.

Medvidovic, N., Grünbacher, P., Egyed, A., and Boehm,
B. W. (2003). Bridging Models Across the Software
Lifecycle. Journal of Systems and Software, 68:199–
215.

Miller, J. A., Ferrari, R., and Madhavji, N. H. (2010).
An Exploratory Study of Architectural Effects on Re-

quirements Decisions.Journal of Systems and Soft-
ware, 83(12):2441 – 2455. TAIC PART 2009 - Test-
ing: Academic and Industrial Conference - Practice
And Research Techniques.

Minor, O. and Armarego, J. (2005). Requirements Engi-
neering: a Close Look at Industry Needs and Model
Curricula. Australian Journal of Information Sys-
tems,, 13(1):192–208.

Molkken, K. and Jrgensen, M. (2003). A review of surveys
on software effort estimation. InProceedings of the
2003 International Symposium on Empirical Software
Engineering, ISESE ’03, pages 223–231, Washington,
DC, USA. IEEE Computer Society.

Nuseibeh, B. and Easterbrook, S. (2000). Requirements En-
gineering: a Roadmap. InICSE ’00: Proceedings of
the Conference on The Future of Software Engineer-
ing, pages 35–46, New York, NY, USA. ACM.

Pich, M. T., Loch, C. H., and Meyer, A. D. (2002). On Un-
certainty, Ambiguity, and Complexity in Project Man-
agement.Management Science, 48:1008–1023.

Pino, F. J., Garcı́a, F., and Piattini, M. (2008). Software pro-
cess improvement in small and medium software en-
terprises: a systematic review.Software Quality Con-
trol, 16:237–261.

Pressman, R. S. (2010).Software Engineering: A Prac-
titioner’s Approach. McGraw-Hill, Inc., New York,
NY, USA.

Reifer, D. J. (2001). Manager - Software Management’s
Seven Deadly Sins.IEEE Software, 18(2).

Sauser, B. J., Reilly, R. R., and Shenhar, A. J. (2009). Why
projects fail? how contingency theory can provide
new insights - a comparative analysis of nasa’s mars
climate orbiter loss.International Journal of Project
Management, 27(7):665 – 679.

Soares, M. S. and Cioquetta, D. S. (2012). Analysis of Tech-
niques for Documenting User Requirements. In12th
International Conference on Computational Science
and Its Applications - ICCSA, volume 4, pages 16–28.

Soares, M. S., Vrancken, J. L. M., and Verbraeck, A.
(2011). User requirements modeling and analysis of
software-intensive systems.Journal of Systems and
Software, 84(2):328–339.

Sommerville, I. (2010). Software Engineering. Addison
Wesley, Essex, UK, 9 edition.

Thomas, G. and Fernandez, W. (2008). Success in IT
projects: A matter of definition?International Jour-
nal of Project Management, 26(7):733–742.

Thomas, J. and Mullaly, M. (2007). Understanding the
value of project management: first steps on an inter-
national investigation in search of value.Project Man-
agement Journal, 38(3):74–89.

Walia, G. S. and Carver, J. C. (2009). A Systematic Lit-
erature Review to Identify and Classify Software Re-
quirement Errors.Information and Software Technol-
ogy, 51(7):1087 – 1109. Special Section: Software
Engineering for Secure Systems - Software Engineer-
ing for Secure Systems.

Ward, J. M. (2012). Information Systems Strategy: Quo
Vadis? The Journal of Strategic Information Systems,
21(2):165–171.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

124



Wirth, N. (2008). A Brief History of Software Engineering.
IEEE Annals of the History of Computing,, 30(3):32–
39.

Yourdon, E. (1999).Death March: The Complete Software
Developer’s Guide to Surviving “Mission Impossible”
Projects. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1st edition.

Zhang, L., Lee, M. K. O., Zhang, Z., and Banerjee, P.
(2003). Critical success factors of enterprise resource
planning systems implementation success in china. In
Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS’03) - Track 8
- Volume 8, HICSS ’03, pages 236–242, Washington,
DC, USA. IEEE Computer Society.

Projects�Characteristics�Determining�Suitability�of�Software�Development�Process

125


