
Transparent Persistence Appears Problematic for Software Maintenance
A Randomized, Controlled Experiment

Pietu Pohjalainen
Department of Computer Science, University of Helsinki, Helsinki, Finland

Keywords: Transparent Persistency, Self-configuring Software Architecture, Randomized, Controlled Experiment.

Abstract: Information retrieval from a database is the backbone of many applications. For building object-oriented
systems with a relational persistence engine, a common approach is to use an object-to-relational mapping
library for handling the mismatch between object-oriented and relational data models. These components
should make the application programmer oblivious to the choice of relational database.
To study the effects of transparent persistency, we conducted a randomized, controlled study for 16 students,
who were given a number of maintenance tasks on a sample software. For half of attendees, the sample
software was written using the transparent persistency approach. For the second half the sample software used
a self-configuring component for automatically generating database queries.
We found out that the group using transparent persistency were performing worse than the group using self-
configurative queries. Attendees in both groups were using the same amount of time for performing the given
maintenance tasks, but the transparent persistency group was outperformed by a factor of three in the number
of correct submissions. The use of transparent persistency turned out to be a major error source. This gives us
a reason to doubt the usefulness of transparent persistency in the long run.

1 INTRODUCTION

Relational databases are used for storing data in vir-
tually all kinds of information systems. Telephone
switching systems, e-commerce transaction systems,
human resources information systems and e-mail in-
dexing systems, for example, have implemented data
persistency by relying on relational database engines.
Although these engines often include some support
for building application logic into them, it is popu-
lar to build applications using a general purpose lan-
guage, such as Java or C#.

In these cases the way in which the relational
database is used is a major architectural decision. Us-
ing plain database interfaces, such as Java’s database
connectivity interface (Fisher et al., 2003) easily
leads to tedious work of manually implementing rou-
tines for storing and retrieving data to and from the
database. Some researchers estimate that the low-
level code for accessing a database can be up to 30%
of the total line count of a normal business application
written in direct access style (Atkinson et al., 1983;
Bauer and King, 2004). Manual labour is known
to be error-prone and have low productivity figures.
For this reason, many architects choose to use object-
to-relational mapping components, such as those de-

fined by the Java persistency interface (DeMichiel and
Keith, 2007) to handle the mismatch between object-
oriented program logic and relational database mod-
els.

Object-to-relational mapping (ORM) components
aim to reduce the manual labour needed in build-
ing object-oriented database applications. Instead of
manually defining database queries for retrieving ap-
plication data, an external component handles the
generation of the needed queries. This is done by
defining mappings between application objects and
database tables. These mappings define how object-
oriented structures, such as inheritance, object collec-
tions, and other object links should be made persistent
in the database. The goal of this component is to lib-
erate the object-oriented programmer from thinking
at a relational database abstraction level. For this, the
we use the term transparent persistency.

Transparent persistency refers to the idea of data
persistency should not affect the way programmers
build the application logic. Instead, persistency
should be a modular aspect, as envisioned in aspect-
oriented programming (Kiczales et al., 1997). At first
glance, this seems to be a clever idea: in many cases,
the routines needed for storing and retrieving data
from the database makes algorithms look unnecessar-

25Pohjalainen P..
Transparent Persistence Appears Problematic for Software Maintenance - A Randomized, Controlled Experiment.
DOI: 10.5220/0004417900250035
In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2013), pages 25-35
ISBN: 978-989-8565-62-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

ily complex and cluttered.
However, the drawback of the approach is that the

exact workings of the software system are blurred,
since the database accessing code is faded away from
the working view of the programmer. Since transpar-
ent persistency removes the link between algorithms
using the data from the database and the accessing
code, programmers who are not intimately familiar
with the system may conceive an incorrect under-
standing of the system.

Self-configuring components are a recently intro-
duced novel approach to building links between dif-
ferent software layers. The idea is to recognize au-
tomatically resolvable dependencies within the code-
base, and to implement corresponding resolver com-
ponents. This helps in maintenance, since instead of
the programmer manually following all the dependen-
cies in the event of a functionality change, the au-
tomated component does the task. Examples have
been implemented in areas of building consistent user
interfaces (Pohjalainen, 2010) and database queries
(Pohjalainen and Taina, 2008).

Currently, it is not very well known how these ar-
chitectural decision affect programmer performance.
To gain understanding on what works in practice, em-
pirical validation is needed. To better understand
the effect of transparent persistency’s consequence
for maintenance, we have formulated the following
research questions regarding development speed and
quality:

An initial hypothesis for introducing configur-
ing component that is based on meta-programming
on byte-code level would suggest that at least ini-
tially it would be harder and slower to produce cor-
rectly working code. Probably after a run-in pe-
riod, the programmers involved would learn to under-
stand the workings and responsibilities of the meta-
programming component. This leads us to formulate
a null hypothesis:

RQ1: Do self-configuring components make it
faster to perform maintenance tasks?

RQ2: Do self-configuring components produce
better quality in maintenance tasks?

RQ3: Do self-configuring components make pro-
grammers more productive?

To gain initial insight in these questions, we con-
ducted a randomized, controlled experiment on us-
ing Java persistency interface for database queries. In
this experiment, the attending students were randomly
divided into two groups, the transparent persistency
group and the control group. Attendees were given
slightly modified versions of the same software and
were asked to perform given maintenance tasks upon
the software. We tracked the time for performing the

asked modifications. Each submission was afterwards
graded for correctness. Productivity is defined as a ra-
tio of the number of correct submissions per hour used
on the tasks.

The rest of the paper is organized as follows. Sec-
tion 2 gives a short introduction to self-configuring
software components, object-to-relational mappings
and implementation techniques used in the presented
experiment. Section 3 defines the used research
methodology. Section 4 shows results obtained in the
experiment. Section 5 discusses these findings. Sec-
tion 6 concludes the paper and outlines future work.

2 PRELIMINARIES

In this section we first review the object-to-relational
approach to using databases in object-oriented pro-
grams. We then introduce self-configuring queries in
the context of the example used in the experiment.
Object-to-relational mapping components are com-
monly used to allow developers concentrate to code
within one paradigm. The idea is that special map-
pings are used to translate an object’s persistent fields
into corresponding relational database concepts.

These mappings provide a placeholder for defin-
ing handling rules for issues rising from the mismatch
between object and relational paradigms. Examples
of these problems are e.g. the problem of handling
inheritance, navigability of one-way object links ver-
sus bi-directionality of relational links, and represen-
tation of object collections, to name a few. The map-
ping also provides a place for defining the fetching
rules for certain object classes. This is often a major
source of performance problems in applications using
the object-to-relational approach for persistency.

Title: String
Author: String
ISBN: String

Book Title

BookIdentifier: Int
Book

*1
 < is instance

Figure 1: One-to-many mapping in the experiment applica-
tion.

The fundamental problem in using default rules in
database fetches is that most often the set of data ob-
jects being fetched from the database is context sen-
sitive. For example, let us consider a fragment of our
experiment’s class diagram that is presented in Figure
1. The model shows a one-to-many connection be-
tween a book title and a number of books. The idea is
to show that for each book title, its author name and
ISBN number are stored only once; and for each book
copy, there’s a distinct object in the system.

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

26

The use case of listing all book titles in a given
database is implemented as Algorithm 1. This algo-
rithm fetches only objects of the BookTitle class.

Algorithm 1: List all book titles.

procedure PRINTTITLES(List allTitles)
for all title in allTitles do

print title.Author
print ": "
println title.Title

end for
end procedure

Another use case for this system is to count all
copies of a certain title. This is implemented as Algo-
rithm 2. This version needs to fetch not only objects
of the BookTitle class, but also to consult the Book
class as well.

Algorithm 2: List all book copies.

procedure PRINTBOOKS(List allTitles)
for all title in allTitles do

print title.Author
print ": "
println title.Title
cnt 0
for all book in title:Books do

println book.BookIdentifier
cnt cnt +1

end for
println cnt + ” copies.”

end for
end procedure

Given these two use cases, using a default fetch-
ing rule for the BookTitle class is always somehow
wrong: if the default rule is to eagerly fetch Books
with its BookTitle, then the execution of Algorithm
1 is unnecessarily slow, since the algorithm does not
need all that information. However, if the default rule
is not to fetch associated books with their titles, then
Algorithm 2 cannot be executed unless the default
rule is overridden or some other internal magic is per-
formed.

A common approach in this case is to use the
Proxy design pattern (Gamma et al., 1995) to guard
against cases where the algorithm is requiring some
object data that is not fetched from the database. The
proxy represents the object’s external interface, and
upon usage of the object data, it generates the nec-
essary database queries needed to lazily retrieve that
data from the database.

This is a way to implement transparent persis-
tency: all algorithms can be written in an object-

oriented language, and it is the responsibility of the
object-to-relational mapping component to provide
the implementation for relational database queries.

The downside of this approach is that it is easy
to implement inefficient algorithms, as the proxying
approach queries the database only at when a certain
object is first accessed. This creates the n+1 queries
problem, which happens when traversing collections
of objects. The first query to the database fetches the
root object. For each object link in the root object that
is being accessed by the traversal algorithm, a new
query is generated. Due to n+1 round-trip queries to
the database, performance usually severely degrades.

For this reason, the object-to-relational mapping
frameworks provide means to explicitly specify a
query for fetching an initial data set. However, this
approach is arguably an inelegant solution, since it
breaks the promise of transparent persistency and
generates dependencies between the explicitly spec-
ified query sites and actual data usage sites.

One solution to provide more precise control over
the fetched data set is to use self-configuring database
queries (Pohjalainen and Taina, 2008). In this ap-
proach, the software contains a query-resolved com-
ponent, which analyzes the code that accesses the
database and estimates the right database query to use.
It is claimed that the component improves software
maintainability, since the database usage is made
more explicit, yet the dependencies between the data
accessing algorithms and data fetching code are auto-
matically resolved.

To the application programmer, the use of self-
configuring database queries is shown by the need
to parametrize database access with the algorithm
that the queried data is being subjected upon. In
traditional transparent persistency, the programmer
fetches an initial object, e.g. a certain Title from
the database and then executes the handling code,
such as the one shown in Algorithm 2. With self-
configuring queries, instead of providing an initial
guess for the needed data, the programmer gives the
name of the algorithm (PrintBooks in this case) to
the self-configuring component. The self-configuring
component analyzes the behavior of the algorithm
and provides an approximation of the required data
for running the algorithm with an optimal number of
database queries.

In our implementation, the self-configuring query
component analyzes the byte code of the method in
the containing Java class. The configurator builds a
control-flow graph of method execution, and includes
database joins to the generated query whenever a class
with object-to-relational mapping is encountered in
the control flow. The control flow of Algorithm 2 is

Transparent�Persistence�Appears�Problematic�for�Software�Maintenance�-�A�Randomized,�Controlled�Experiment

27

shown in Figure 2. For this control flow, the self-
configurator deduces that for all BookTitles the at-
tributes Author and Title and for all Books the at-
tribute BookIdentifier will be used during algorithm
execution.

Begin

BookTitle.Author

BookTitle.Title

Book.BookIdentifier

Last
Booktitle?

Last Book?

BookTitle.Books

NoNo

Yes

End

Yes

Figure 2: Control flow of persisted entities in Algorithm 2.

From the control flow graph in Figure 2, the self-
configurator deduces that a query set of fbook titles,
booktitle.booksg will be a sufficient query.

This approach is believed to give benefits in two
ways: improved maintainability and improved mod-
ularity. Maintainability is improved, because the
database query site does not explicitly define what
data to fetch from the database, but instead the self-
configuring query determines that. For this reason,
the database accessing algorithms can be changed
more easily, since dependence on the database query
site is automatically updated to reflect the updated al-
gorithm.

Modularity is improved because the one self-
configuring component can handle a number of dif-
ferent usage sites. This is an improvement of the
traditional n-tiered software architecture, where the
database access layer needs to contain functionality
specific to business logic. In the context of this exper-
iment, the traditional way would be to implement one
database query that fetches all book titles for execut-
ing Algorithm 1 and another query that joins all the
book titles with the books for running Algorithm 2.

3 METHODOLOGY

To gain understanding on how this approach works
in practice, we recruited a sample of 16 students to at-
tend a randomized, controlled experiment. About half
of the students were freshmen (n=10), and the rest
were in their final bachelor year or master’s students
(n=6). Before attending the test, a two-hour lecture on
concepts of relational databases, object-oriented pro-
gramming and object-to-relational mapping tools was
given to each participant.

We built two versions of a simple library book-
keeping application. The application consists of five
classes that are programmed to manage book titles,
books, lenders and book loans in a database. Each
attendee is randomly assigned to one of the versions,
in which he stays during the whole experiment. The
baseline application contains a functionally working
version of the software with the same set of function-
ality implemented in both of them. For example, use
cases for listing all book titles, as implemented in Al-
gorithm 1 and for listing all books, as implemented
in Algorithm 2 are contained in the package given to
each test subject.

The first version (group ’transparent persistency,
TP’) of the sample application was written in the
style of transparent persistency: the complexity of
handling database queries is hidden behind the per-
sistency framework’s internals, which in this case
was to use bytecode-instrumented proxying imple-
mentation of database queries. In the second ver-
sion (group ’self-configred, SC’), the application con-
tained method calls to self-configuring instructions to
automatically prefetch the correct objects from the
database, and to rewrite the corresponding fetching
query.

In the variant given to the self-configured group,
the database access is not fully obscured away. The
database access component is parametrized with the
actual algorithm that is going to be executed. The
component analyzes the algorithm and produces the
database query to be used at the subsequent database
access time. This construct helps to remove depen-
dencies between database access code and the ac-
tual algorithms that are being executed. A change in
the algorithm is automatically reflected by the self-
configuring component, thus removing the need to
manually update the database query.

The initial application consists of a functionally
consistent set of program code. The test subjects are
asked to perform modifications to the sample applica-
tion; depending on the skill and speed of the attendee,
up to 7 functional tasks can be performed during the
trial. Each task was time-boxed, meaning that the at-

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

28

tendee is asked to return his version even if it is in-
complete when the time is up. If an attendee thinks
that he/she cannot be performing any more tasks, he
is free to leave at any given point. Attendees were
awarded with credit units or extra points to a course
test regardless of how many tasks they opted to com-
plete during the test. All test subjects were physi-
cally present in the classroom during the experiment.
The submission mechanism was to send the source
code for each application version via e-mail after each
completed task.

To moderate the application complexity, the sam-
ple application was written as a command-loop tool.
In the following code listings we will illustrate the dif-
ferences between the two groups’ variants using the
following notation: line prefix ”TP” notifies that this
line is present only in the transparent persistency vari-
ant. ”SC” lines are present in the self-configured vari-
ant. ”C” lines are common to both of the variants.

Using this notation, the command line loop for the
use case of listing all book copies in the database is
implemented as listed in Program 1.

Program 1: Two variants of the list books use case.
C: switch(cmd) {
C: [..]
C: case "list books":
SC: String alg="BookTitles.PrintBooks";
SC: Resolver r = new Resolver(alg);
SC: bookTitles.fetchFromDatabase(r);
TP: bookTitles.fetchFromDatabase();
C: bookTitles.printBooks();
C: break;
C: }

As can be seen in the listing, the only difference
between the two variants is that the self-configured
version contains a stronger hint of the fact that this
command is accessing the database. The Resolver
component is parametrized with the name of the al-
gorithm that is going to be executed subsequently. It
is important to note that in the transparent variant,
although the name of the method suggests that the
method is going to access the database, there is no
explicit link between the data-fetching code and the
algorithm used to print out the books. Consequences
of this omission are further explored later in the re-
sults section.

In the resolver version, the component analyzes
the internal workings of the method that is given as
an argument and produces an estimate of what data
objects should be fetched. This gives the maintainer a
stronger binding between the data-fetching code and
the algorithm used to process the fetched data.

The fetchFromDatabase routine as listed in Pro-

gram 2 also differs a bit in the two variants. The
variant for the transparent persistency group creates a
database query by using the object querying language
defined in the Java persistency interface. This query
fetches an initial set of book titles from the database.
In this variant when Algorithm 2 execution arrives to
a book copy that has not yet been fetched from the
database, the automatically generated proxy instance
generates a new query to get the missing information.

Program 2: Two variants of database fetching code.
SC: void fetchFromDatabase(Resolver r) {
TP: void fetchFromDatabase() {
TP: Query q;
TP: q = createQuery("from BookTitle");
SC: Criteria q = r.resolve();
C:
C: bookTitles.clear();
C: List<BookTitle> list = q.list();
C: for(BookTitle bt : list)
C: bookTitles.add(bt);
C: }

In the self-configuring variant, Algorithm 2 is
given as an argument to the resolver component. The
resolver analyzes the code of the algorithm and initi-
ates a database query to fetch the required data. If the
resolver happens to underestimate the required set of
objects, the normal proxy-based fallback is used as a
safeguard. At this point, it is important to note that the
self-configured version does not contain the match-
ing between database and business logic, but instead
it operates in the business logic domain.

The essential difference between the two variants
is the degree of how explicit the database query is. In
the transparent persistency variant, the database ac-
cess code is minimized, with the design goal of reduc-
ing the mental load of the programmer, as he should
not be worrying about how to access a database. This
can also be misleading, since there is no hint of the
mechanism of how the persistency framework should
be used. In the control group variant, the database ac-
cessing is more explicit, since the algorithm calling
site generates the database query component before
actually executing the query.

Armed with the initial example cases of Algo-
rithms 1 and 2 given to the test subjects, they are
asked to implement a number of maintenance tasks to
the software. All of the tasks follow the same pattern:
fetch some data from the database and then print
out information. Task 0, which was to change the
source code character set to UTF-8, was not graded.
It was used to give the attendees an opportunity to
gain understanding of the sample application and
to practice the submission procedure. The tasks are

Transparent�Persistence�Appears�Problematic�for�Software�Maintenance�-�A�Randomized,�Controlled�Experiment

29

summarized below:

Identifier Task description
Task 0 Fix source code charset (not graded,

used to practice the submission proce-
dure)

Task 1 List all book loaners in the system
Task 2 List all book loans in the system
Task 3 Fetch specific book title by its ISBN
Task 4 Modify task 3 result to print out all

books associated with the given title
Task 5 Fetch specific lender by his social secu-

rity number
Task 6 Modify task 5 result to print out all

books borrowed by this lender
Task 7 Modify the list of book titles to print out

all lent books associated with that title

The tasks list contains maintenance tasks that can
be classified as adaptive maintenance in IEEE Std
14764-2006 terms (IEEE14764, 2006). Each of the
tasks delivers an added functionality that is requested
to make the sample software able to be a better fit for
its task of handling a database of library books. Each
of the tasks are implementable without inducing new
requirements or other needs for architectural changes.

4 RESULTS

We graded each submission based on correctness on
a dichotomous scale: a correct submission to a given
task is programmed to connect to the database, fetch
certain data, and print out corresponding results. Mi-
nor stylistic problems, such as output formatting did
not affect the grading.

In the freshmen group, the assignments were gen-
erally considered to be hard. This is understandable,
since outside the persistency code, the implementa-
tion followed object-oriented principles in both ver-
sions. However, even in this group, some test subjects
succeeded in getting some of the tasks submitted cor-
rectly.

The second problem to occur frequently among
all test subjects was the failure to fetch the database
correctly. Often the modified application seemed to
work perfectly, but an underlying problem (”a bug”)
was introduced by accidentally re-using the applica-
tions internal data instead of targeting the query to
the database. This problem was most often seen in
the transparent persistency group. We believe this
to be the consequence of the interface between busi-
ness logic and database access code. Since the busi-
ness logic explicitly defines only the initial object
of the processed object graph, thus making all other

database access translucent, the students often failed
to correctly handle the cached versions of the objects.

Other programming errors included various incor-
rect structures, such as null pointer exceptions, cache-
handling errors etc. Each of these were unique to the
given submission.

For each test subject, we noted the state of his
studies (freshman/advanced), randomization group
(transparent persistency / self-configured), time spent
on each submission (rounded to next 5 minutes) and
the correctness of the submission. Overall, these re-
sults are shown in Figure 3. In the figure, the symbol
Xis used to show a correct submission and the sym-
bol 7 shows an incorrect submission. Each attempt
was also followed by a submission. An empty box
means that the test subject did not attempt the task in
question.

To study the productivity between the two ap-
proaches, we measured the time for producing a sub-
mission to all given tasks. However, we are analysing
this information in the advanced group only. The
test subjects in the freshmen group are omitted due
to their submissions having such low success rate;
there is only one pair of submissions where two test
subjects belonging to different randomization groups
have been able to produce a correct submission to the
corresponding task (test subjects #7 and #8 for task
3).

In the advanced students’ group, there was one
case, where the test subject had to leave early due
to a medical condition before he was able to send a
single submission. He was randomized to the self-
configuring. Due to the nature of that situation, his
results are not included in the analysis. Outside this
case, no test subject left the experiment prematurely.

4.1 RQ1

Given this information, we can return to our research
questions. RQ1 proposes that self-configuring queries
make it faster to perform maintenance tasks. Accord-
ing to Figure 3, the test subjects in the transparent
persistency group returned a total number of 27 sub-
missions, be they correct or incorrect. The test sub-
jects in the self-configured group returned 33 submis-
sions. There are an equal number of subjects in each
of the randomization groups, and the maximum al-
lowed time was the same for everybody.

The self-configuring turned in more submissions,
but the difference between the two groups is small.
From this viewpoint, we cannot support the idea
of transparent persistency making the completion of
these maintenance tasks faster, but the self-configured
group does not get a decisive victory, either.

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

30

Subject # Study state Randomization Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7
#1 freshman SC 7 7
#2 freshman TP 7 7
#3 freshman TP 7
#4 freshman SC X 7
#5 freshman SC 7 X 7
#6 freshman TP 7 7 7
#7 freshman SC X 7 X
#8 freshman TP 7 7 X
#9 freshman SC 7 7 7
#10 freshman TP 7 7 7
#11 advanced SC X X X X X X X

35 45 35 10 5 10 5
#12 advanced SC X X 7 X X 7 X

30 55 15 30 15 30 15
#13 advanced TP X 7 X X X 7

45 50 20 10 20 15
#14 advanced SC X X X X X X X

30 45 10 10 10 10 10
#15 advanced TP 7 7 7 7 7

55 35 20 15 20
#16 advanced TP 7 7 7

45 30 40
#17 advanced (*)

Figure 3: Summary of results: Xfor a correct submission, 7for incorrect; number below the result indicates minutes spent on
the task.

4.2 RQ2

Figure 4 summarizes the frequency of correct sub-
missions. For example, two attendees in the self-
configured group got zero submissions correct and six
attendees in the transparent persistency group got zero
submission correct.

0	

1	

2	

3	

4	

5	

6	

7	

0	 1	 2	 3	 4	 5	 6	 7	

	 A
#
en

de
e	
co
un

t	

Number	 of	 correct	 submissions	

Self-‐configured	

Transparent	 persistency	

Figure 4: Count of correct submissions for both groups.

The grading distribution in Figure 4 leads us to
formulate the null hypothesis for RQ2:

H0: Transparent persistency makes it easier
to produce correct database handling code than
self-configuring queries.

When the test data is normally distributed, a
parametrized test should be used to determine dif-
ferences between populations. Otherwise, a non-
parametric test should be used (Robson, 2011, p. 450-
452). Our data is based on human behavior, and
could be believed to be normally distributed. How-
ever, the results look like a non-normal distribution.
For this reason, we calculated both parametric and
non-parametric statistical tests.

Both the one-tailed independent samples t-test and
Mann-Whitney U test result a p-value of a < 0:05,
giving a suggestion that the null hypothesis needs to
be rejected. Informally, the self-configured group was
performing much better than the transparent persis-
tency group: two attendees who got assigned the self-
configuring, query rewriting-based base software got
all seven graded tasks implemented correctly. On the
other hand, six attendees using the traditional trans-
parent persistency failed to produce a single correct
submission.

4.3 RQ3

Finally, as a measure of productivity, we consider
the time consumed in programming tasks in the non-
freshmen group. The times for producing a correct
submission (n=23) varied between 5 and 55 minutes.

Transparent�Persistence�Appears�Problematic�for�Software�Maintenance�-�A�Randomized,�Controlled�Experiment

31

There was no statistically significant difference in
time consumed between the two groups.

As the number of correctly returned submission
series is low, statistical analysis of these series would
not serve a purpose. As a reference information, when
ordering the correct by-task submissions as a speed
contest, all test subjects in the self-configured group
were producing submissions faster, on average.

We defined productivity as a number of correct
submissions per time consumed. Thus, for an indi-
vidual we calculate his productivity index as

7

å
i=1

timei

7

å
i=1

corri

where the variable timei refers to the time for produc-
ing the answer for task i and corri is 1 for a correct
answer and 0 for an incorrect answer in task i. This
formula slightly favors the productivity of incorrect
answers, since the time needed to rework an incor-
rectly piece of software, as would happen in a real-
world software development situation, is not included
in this productivity index.

Applying this formula to the test subjects in the
advanced group yields a productivity index of 105
minutes per correct task submission in the transpar-
ent persistency group. For the self-configured group,
the index stands at 24 minutes.

For producing correctly working code, the self-
configured group outperformed the transparent persis-
tency group by a factor of four.

4.4 Threats to Validity

We have found a statistically significant effect be-
tween two alternative ways of querying a database in
an object-oriented program. However, a number of
threats to the validity of this finding do exist.

In general, a controlled experiment like this differ-
entiates from industrial use in the scope of time that
can be spent in understanding the associated technolo-
gies. In an industrial setting, programmers usually
work with the same technology stack for months or
years. In this study, some of the test subjects were ex-
posed to the technologies for the first time. However,
some of this concern can be argued to be mitigated
by the randomization process; these technologies can
be assumed to be equally unknown to both groups. A
related problem is the small size of the software used
in the experiment. It might be the case that the com-
plexity of transparent persistency pays off only after a
certain software size has been achieved.

Another concern is that using students in con-
trolled experiments limits the generalizability of re-
sults to a industrial setting. However, previous stud-
ies, e.g. (Arisholm and Sjoberg, 2004) have found a
high correspondence between (1) undergraduate and
junior programmers; and (2) graduate and senior pro-
grammers in terms of understanding object-oriented
programming, which can be interpreted to mean that
at least half of the experiment population were up to
industrial standards. This distribution of attendees is
probably not fully unrealistic, since companies often
use junior programmers to perform maintenance tasks
(Gorla, 1991). Another interpretation of our work is
that the finding in (Arisholm and Sjoberg, 2004) is
probably valid: the advanced group in our study was
able to grasp the functionality of the object-oriented
system, while the freshmen group clearly had prob-
lems understanding it.

Our third concern is the the sample size, which
is small. We conducted this study on 17 students,
of whom 10 were in their first year, and 7 students
were more advanced. Since one student in the ad-
vanced group was excluded from the experiment due
to a medical condition, the total number of test sub-
jects is 16. Due to the small sample size, individual
performance shows a large role in our statistical anal-
ysis.

Our fourth concern regards the use of number of
submissions as productivity measure. Most of the
tasks are equidistant in substance in the sense that for
most tasks, the task n is not dependent on whether
he succeeds in n+ 1. For tasks T 4 and T 6 there is
a dependency to the previous task. This dependency
plays some role for subjects #12 and #13. Subject #12
failed in task T3, but was able to fix the problem in T4
submission. He also got task T5 correct but failed his
task T6. The latter dependency is present for subject
#13 as well.

5 DISCUSSION AND RELATED
WORK

The use of transparent persistency for storing objects
is not a new idea. A number of systems for vari-
ous languages and programming environments have
been described in the literature; (Atkinson et al.,
1983; Atkinson and Morrison, 1995; Bauer and King,
2004), to name a few.

Similarly to the self-configured queries, re-
searchers have used the program source as a source
model for model transformations in various contexts.
For example when building portable interpreters, the
opcode definitions can be implemented in the inter-

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

32

preter implementation language. When the defini-
tion is compiled, the end result, in byte code or other
low-level representation can be used as a building
block when interpreting the opcode in question (El-
liott et al., 2003; Yermolovich et al., 2008).

Using program analysis for extracting database
queries has been proposed by various researchers. We
used the component documented in previous work
(Pohjalainen and Taina, 2008), using the same object-
to-relational mapping framework, Hibernate (Bauer
and King, 2004). In addition to this style, Ibrahim and
Cook have proposed a dynamically optimizing query
extractor (Ibrahim and Cook, 2006). Wiedermann et.
al have implemented a version which combines static
and dynamic techniques (Wiedermann et al., 2008).
In the simple examples used in this experiment, a sim-
ple analyzer was able to deduce the required queries.
However, when the business logic involves more com-
plex decisions, the automated self-configuring com-
ponent needs to be updated to be able to handle the
more complex case. In a way, the situation resem-
bles the full-employment theorem of compiler writ-
ers (Rice, 1953): since the business logic can be ar-
bitrarily complex, the evolution for implementations
of automated resolvers are restricted by laws of eco-
nomics rather than some self-configurator being opti-
mal to every case.

Although various systems for implementing trans-
parent persistency have been available for decades,
it seems that its actual usage patterns have not been
studied very well. This implementation was ini-
tially employed in an industrial project for building
a product-line for provisioning governmental mobile
subscriptions (Pohjalainen, 2011), where the need for
modular constructs was critical to development suc-
cess and transparent persistency turned out to lack the
support for efficient modularity. However, accord-
ing to our best knowledge, comparisons of the effect
of transparent persistency versus any alternative have
not been empirically studied so far. Considering the
fact that transparent persistency is a frequently em-
ployed technique in industrial software engineering,
the lack of empirical studies is a surprise.

The use of orthogonal, transparent persistency can
be seen as a specialized case of modularizing orthog-
onal features. To relate our findings, we can refer to
literature on empirical studies of aspect-oriented pro-
gramming (Kiczales et al., 1997). We can consider
transparent persistency to be one of the cross-cutting
aspects of the software.

The empirical response to productivity in aspect-
oriented programming seems to be mixed. For exam-
ple, in (Bartsch and Harrison, 2008), the researchers
were unable to find any positive impact of using as-

pect orientation for building maintainable and easier-
to-comprehend software.

Kulesza et al. studied the use of aspect-oriented
programming for a maintenance task (Kulesza et al.,
2006). They implemented two similar systems, the
first one in an object-oriented fashion and the second
one in an aspect-oriented fashion and compared both
systems’ internal metrics, such as size, coupling and
cohesion, before and after a specified maintenance
task. Their conclusion is that the aspect-oriented style
was superior in terms of observed software character-
istics. They did not measure the time spent on pro-
ducing the different versions of the software, nor the
time spent on implementing the maintenance tasks.
Thus, productivity of the maintenance task cannot be
assessed. Contrary to our study, the person doing the
maintenance task was presumably an expert program-
mer and familiar with the system being maintained.
In our setting we had a sample of junior programmers
performing a series of maintenance tasks on a previ-
ously unknown system.

Endrikat and Hanenberg measured the time for
building a system and then performing a number of
adaptive maintenance tasks on a number of test sub-
ject (Endrikat and Hanenberg, 2011). For many of
the tasks, the object-oriented way in the control group
was faster, but for combined build+maintenance time
they suggest that aspect orientation can be beneficial.

Another, indirect finding on this study was the
poor programming performance in the freshmen
group: 70% of test subjects in this group were hav-
ing serious problems with the experiment. Although
they had completed the first programming courses of-
fered by the university and were given a fully func-
tioning system, they failed to perform even simplest
modifications to it. For this reason the university
has already adjusted our first programming courses
to use a new studying method based on extreme ap-
prenticeship (Vihavainen et al., 2011; Vihavainen and
Luukkainen, 2013). In future work, it would be inter-
esting to compare how these adjustments to teaching
methodologies have affected freshmen programming
skills in maintenance tasks.

6 CONCLUSIONS

We performed a randomized, controlled experiment
to assess the usefulness of transparent persistency. In
the experiment we built two versions of a small sam-
ple application and asked a number of test subjects
to perform a number of maintenance tasks upon their
software variant.

We measured the time used to do these main-

Transparent�Persistence�Appears�Problematic�for�Software�Maintenance�-�A�Randomized,�Controlled�Experiment

33

tenance tasks and related them to successful sub-
mission rates. As a result, we concluded that the
self-configured group was performing much better in
terms of producing correctly behaving code.

In terms of correctly returned submissions, the
self-configured group outperformed the transparent
persistency group by a factor of three. This result is a
statistically significant difference (p value a < 0:05)
between the two populations.

In productivity, the self-configured group outper-
formed the transparent persistency group by a factor
of four: on average, the self-configured group was
able to produce a correct submission in under half an
hour. In the transparent persistency, on average it took
almost two hours to do the same. However, due to the
low sample size, we did not perform any statistical
analysis on productivity.

This result casts a shadow of disbelief on the con-
cept of transparent persistency: if the application is
going to access a database, it probably is not a good
idea to try to disguise its functionality to be something
else. This disguise seemed to be the main source of
program miscomprehension within the test subjects in
the transparent persistency group. However, the small
sample application limits the generalizability of the
result. Experiments with larger software and larger
populations are needed to understand the usefulness
of transparent persistency for software development.
On the other hand, the result gives an initial empirical
validation of the usefulness of using self-configuring
software components to reduce the maintenance effort
and to improve architectural modularity.

REFERENCES

Arisholm, E. and Sjoberg, D. I. K. (2004). Evaluating
the effect of a delegated versus centralized control
style on the maintainability of object-oriented soft-
ware. IEEE Trans. Softw. Eng., 30(8):521–534.

Atkinson, M. and Morrison, R. (1995). Orthogonally per-
sistent object systems. The VLDB Journal, 4(3):319–
402.

Atkinson, M. P., Bailey, P. J., Chisholm, K., Cockshott,
W. P., and Morrison, R. (1983). An approach to per-
sistent programming. Comput. J., 26(4):360–365.

Bartsch, M. and Harrison, R. (2008). An exploratory study
of the effect of aspect-oriented programming on main-
tainability. Software Quality Control, 16(1):23–44.

Bauer, C. and King, G. (2004). Hibernate in Action (In
Action series). Manning Publications Co., Greenwich,
CT, USA.

DeMichiel, L. and Keith, M. (2007). JSR 220: Enterprise
JavaBeans 3.0. Technical report, Sun Microsystems.

Elliott, C., Finne, S., and de Moor, O. (2003). Compiling

embedded languages. Journal of Functional Program-
ming, 13(2).

Endrikat, S. and Hanenberg, S. (2011). Is aspect-oriented
programming a rewarding investment into future code
changes? A socio-technical study on development and
maintenance time. In Proceedings of IEEE 19th In-
ternational Conference on Program Comprehension,
ICPC’11, pages 51 –60.

Fisher, M., Ellis, J., and Bruce, J. C. (2003). JDBC API
Tutorial and Reference. Pearson Education, 3 edition.

Gamma, E., Helm, R., Johnson, R. E., and Vlissides,
J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA.

Gorla, N. (1991). Techniques for application software
maintenance. Inf. Softw. Technol., 33(1):65–73.

Ibrahim, A. and Cook, W. R. (2006). Automatic prefetch-
ing by traversal profiling in object persistence archi-
tectures. In Proceedings of the 20th European confer-
ence on Object-Oriented Programming, ECOOP’06,
pages 50–73, Berlin, Heidelberg. Springer-Verlag.

IEEE14764 (2006). International Standard - ISO/IEC
14764 IEEE Std 14764-2006 software engineering
#2013; software life cycle processes #2013; mainte-
nance. ISO/IEC 14764:2006 (E) IEEE Std 14764-
2006 Revision of IEEE Std 1219-1998), pages 1–46.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C. V., Loingtier, J.-M., and Irwin, J. (1997).
Aspect-oriented programming. In Proceedings of the
11th European Conference on Object-Oriented Pro-
gramming, ECOOP’97, pages 220–242.

Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., von
Staa, A., and Lucena, C. (2006). Quantifying the
effects of aspect-oriented programming: A mainte-
nance study. In Proceedings of 22nd IEEE Interna-
tional Conference on Software Maintenance, ICSM
’06, pages 223 –233.

Pohjalainen, P. (2010). Self-configuring user interface com-
ponents. In Proceedings of the 1st International Work-
shop on Semantic Models for Adaptive Interactive
Systems, SEMAIS ’10, pages 33–37, New York, NY,
USA. ACM.

Pohjalainen, P. (2011). Bottom-up modeling for a software
product line: An experience report on agile modeling
of governmental mobile networks. In Proceedings of
15th International Software Product Line Conference,
SPLC’11, pages 323–332.

Pohjalainen, P. and Taina, J. (2008). Self-configuring
object-to-relational mapping queries. In Proceedings
of the 6th international symposium on Principles and
practice of programming in Java, PPPJ ’08, pages 53–
59, New York, NY, USA. ACM.

Rice, H. G. (1953). Classes of recursively enumerable sets
and their decision problems. Trans. Amer. Math. Soc.,
74:358–366.

Robson, C. (2011). Real World Research: A Resource for
Users of Social Research Methods in Applied Settings.
John Wiley & Sons.

Vihavainen, A. and Luukkainen, M. (2013). Results from
a three-year transition to the extreme apprenticeship
method. In To appear in Proceedings of the The 13th

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

34

IEEE International Conference on Advanced Learn-
ing Technologies, ICALT ’13.

Vihavainen, A., Paksula, M., and Luukkainen, M. (2011).
Extreme apprenticeship method in teaching program-
ming for beginners. In Proceedings of the 42nd ACM
technical symposium on Computer science education,
SIGCSE ’11, pages 93–98, New York, NY, USA.
ACM.

Wiedermann, B., Ibrahim, A., and Cook, W. R. (2008). In-
terprocedural query extraction for transparent persis-
tence. In Proceedings of the 23rd ACM SIGPLAN con-
ference on Object-oriented programming systems lan-
guages and applications, OOPSLA ’08, pages 19–36,
New York, NY, USA. ACM.

Yermolovich, A., Gal, A., and Franz, M. (2008). Portable
execution of legacy binaries on the Java virtual ma-
chine. In Proceedings of the 6th international sym-
posium on Principles and practice of programming in
Java, PPPJ ’08, pages 63–72, New York, NY, USA.
ACM.

Transparent�Persistence�Appears�Problematic�for�Software�Maintenance�-�A�Randomized,�Controlled�Experiment

35

