
Yet, Another Method for Detecting API Deadlock

Suvarin Ploysri and Wanchai Rivepiboon
Department of Computer Engineering, Chulalongkorn University, Bangkok, Thailand

Keywords: Static Analysis, Deadlock Detection, Multithreading, Java API.

Abstract: Currently, developing a multithreading Application Programming Interface (API) for special use is
extensive. Defects that are the most concern are deadlocks since the deadlock causes the application
developed on top of the API stops working. The deadlock detection algorithm has been developed widely.
We present another deadlock detection algorithm using the concept of static analysis. The algorithm detects
potential deadlocks in the source code of the multithreading API. Finally, it reports deadlock sites. The
result assists the developer to be aware of code synchronization that potentially encounters deadlocks.
Moreover, it is related information to find the root cause of the deadlock in the future.

1 INTRODUCTION

Deadlock is a general problem for concurrence
programming. Developing the API that has multi-
threads also confronts with the deadlock problem.
Lacking of understanding of developers in the
architecture of the multithreading API for
development and testing coverage causes the
deadlock defects. If defects are not fixed and the
API is used to develop the application, the
application will encounter the deadlock later. Amy
Williams, William Thies, and Michael D. Ernst
(2005) quoted that finding and fixing deadlock was
difficult. If the deadlock occurs in the application, it
is possible that fixing deadlock in the API layer may
affect to the behaviour of the API. Deadlock
prevention is the first solution; however, it is still not
sufficient and inevitable that we can avoid this
problem. Deadlock detection is also another
alternative to detect and later solve deadlocks in
early of the Software Development phase of the API.
After we know the deadlock site and even though we
cannot fix the deadlock because it leads to the design
of the API changed, knowing it early can help us to
manage adding on the limitation of the API usage in
the document to caution developers about defect
parts.

Using static analysis for detecting the deadlock
in the multithreading API is more suitable than using
other analysis; dynamic analysis or hybrid analysis,
because we still don’t know the exactly scenario of
the customer’s application implementation when

using the multithreading API and we should
consider all potential deadlock in the API source
code.

For the deadlock detection algorithm, we use six
necessary conditions for the deadlock proposed by
Mayur Naik, Chang-Seo Park, Koushik Sen and
David Gay (2009) and two code patterns presented
by Frank Otto and Thomas Moschny (2008) as
conditions for developing the deadlock detection
algorithm. We also have to consider synchronization
objects, synchronization statements and wait-notify
methods in the source code of the multithreading
API.

Finally, our algorithm can detect the potential
deadlock in the multithreading API. The reported
result of the deadlock detection algorithm matches
with the reported deadlock that was investigated by
the support consultant of the multithreading API.

The remainder of this paper is organized as
follows. In section 2, we provide information about
background knowledge for more understanding in
the term of the deadlock in the multithreading API.
In section 3, we discuss related works for the
deadlock detection algorithm. In the section 4, we
present our deadlock detection algorithm. In section
5, we provide the result from the deadlock detection
algorithm. In section 6, it is the limitation of the
deadlock detection algorithm. And finally, in the
section 7, it is the conclusion and future work.

132 Ploysri S. and Rivepiboon W..
Yet, Another Method for Detecting API Deadlock.
DOI: 10.5220/0004417801320139
In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2013), pages 132-139
ISBN: 978-989-8565-62-4
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2 BACKGROUND KNOWLEDGE

2.1 Deadlock in Multithreading API

Before we explain about the definition of the
deadlock in the multithreading API, let see the
definition of the deadlock and the multithreading
API as follows.

2.1.1 Deadlock

The deadlock is a general term in several fields.
Pallavi Joshi, Chang-Seo Park, Koushik Sen and
Mayur Naik (2009) give the definition that a
deadlock is a liveness failure that happens when a
set of threads blocks forever because each thread in
the set is waiting to acquire a lock held by another
thread in the set. Qichang Chen, Liqiang Wang, Ping
Guo and He Huang (2011) completely provides the
definition that a deadlock occurs when a chain of
processes/threads are involved in a cycle in which
each process is waiting for resources/locks that are
held by some other processes. When a deadlock
happens, none of the processes/threads can proceed,
which in turn causes the whole or part of the
program to halt. In summary, the deadlock occurs
when the resources are blocked by more than two
threads and causes the program stops working.

The general root cause of the deadlock problem
is incorrect synchronization of a pair or more
objects (Holt, 1972), incorrect ordering of lock
acquisitions said by Tong Li, Carla S. Ellis, Alvin R.
Lebeck and Daniel J. Sorin (2005) or incorrect
implementation of the API or the application.

2.1.2 Multithreading API

The multithreading API is implemented on top of
the general API such as Java for specific use. The
multithreading API is an API designed to have
several threads to process their tasks. There are some
threads communicate with each others to process
data. Threads will be created when the application

Figure 1: The application layer, the multithreading API
layer and the Java API layer.

multithreading API is an API designed to have
several threads to process their tasks. There are some
threads communicate with each others to process
data. Threads will be created when the application
calls into the API layer at runtime. Figure 1 shows
the building block of the application including
underlying layers that are the multithreading API
layer and the Java API layer.

2.1.3 Deadlock in Multithreading API

The deadlock occurs in the multithreading API when
the API creates several threads calling by the
application layer at runtime. There are some threads
locks and waits for the same objects. Figure 2 shows
the deadlock occurs in the multithreading API.

Figure 2: The deadlock occurs in the multithreading API.

Figure 2 demonstrates that the main thread of the
application layer calls to the multithreading API
layer and it creates 2 threads that are Thread A and
Thread B. R1, R2 and R3 are represented as
resources used by threads. Thread A locked for R1
and R2 and Thread B locked for R2 and R3. In
runtime, there will be only one thread that locks for
R2 and R3 at a time. Therefore if Thread A locks R2
and Thread B locks R3 and then Thread A requires
to lock R3 and Thread B requires to lock R2, the
deadlock will occur. The application will stop
working because each thread cannot continue its
task.

2.2 Static Analysis

Static analysis makes predictions about a program’s
runtime behaviour based on analyzing its source
code (Chen et al., 2011). Static analysis focuses on
the structure of the program and does not require its
execution. All possible (but also infeasible)
execution paths can be taken into consideration
(Otto et al., 2008). Static analysis is more suitable
for detecting deadlock in the multithreading API
because we still don’t know the exact scenario that
will be used to develop the application.

Yet,�Another�Method�for�Detecting�API�Deadlock

133

The root cause of the deadlock problem is
incorrect synchronization of pair or more objects
(Holt, 1972), incorrect ordering of lock acquisitions
(Li et al., 2005) or incorrect implementation of API
or application. Using static analysis can help us to
detect all synchronized statements, synchronized
methods and wait-notify methods in the source code
of the multithreading API.

3 RELATED WORKS

There are algorithms developed on the concept of
static analysis such as the work of Naik et al. (2008).
They used 0-CFA call graph, flow-insensitive k-
object-sensitive analysis, thread-escape analysis and
may-happen-in-parallel analysis to get the result of
the deadlock site. Otto and Moschny (2008) used the
point-to and may-happen-in-parallel analysis.
Agarwal and Stoller (2006) proposed operations to
detect the deadlock that are acquired and released of
locks, wait-notify on condition variables, up and
down operations on semaphores, accesses to shared
variables and thread start and join and termination
operations. Williams et al. (2005) used flows-
sensitive and context-sensitive analysis for static
deadlock detection in Java libraries and lock-order
graphs to represent locking. They focused on
deadlocks occurred by synchronized statements and
the wait-notify methods of Java. Jyotirmoy
Deshmukh, E. Allen Emerson and Sriram
Sankaranarayanan (2009) used symbolic deadlock
analysis. They used lock-order graph analysis,
logical formulae for symbolic enumeration of alias
patterns, Soot framework, may-aliases for tracking
locked objects across methods. They detected
deadlocks in Java, concurrent libraries and
multithreaded client applications. Gianpiero
Francesca, Antonella Santone, Gigliola Vaglini and
Maria Luisa Villani (2011) used the Calculus of
Communicating System (CCS) to detect deadlocks.
CCS is temporal-logic formula representing the
requirement verified by the concept of Model
Checking for complex system and proving
correctness of a system. Engler and Ashcraft (2003)
developed a static tool named RacerX using flow-
sensitive, interprocedural analysis to detect both race
conditions and deadlocks in the code. Mikhail
Moiseev, Alexey Zakharov, Ilya Klotchkov and
Sergey Salishev (2011) presented an approach of
deadlock detection in the SystemC design based on
static code analysis and implemented in the
Deadlock Analyzer tool.

4 DEADLOCK DETECTION
ALGORITHM

For the deadlock detection algorithm, we use six
conditions of the deadlock (Naik et al., 2009) and a
code pattern (Otto et al., 2008). We adapt them to
implement our own algorithm to detect the potential
deadlock in the source code of the multithreading
API. Six conditions of the deadlock (Naik et al.,
2009) consider locked objects whether they can be
accessed by several threads or not. A code pattern
(Otto et al., 2008) provides information about the
Cyclic Lock Dependency that if the lock order of
two fragment of code is reverse order, it shows the
cyclic and causes a deadlock. In summary, the
deadlock detection algorithm considers
synchronized statements, synchronized methods and
wait-notify methods in the source code of the
multithreading API. Then the algorithm will find the
relation of locked objects, methods and threads from
all these statements, methods and classes in the
source code to get information for locked objects in
each thread. Using six conditions of deadlock (Naik
et al., 2009) the algorithm will verify whether there
are more than 2 threads lock the same object or not.
Using the Cyclic Lock Dependency (Otto et al.,
2008) to verify whether there are more than 2
threads locks the same object in reverse lock order.
If it is in this case, it is possible that the deadlock
occurs. For easier to implement the deadlock
detection algorithm, we will split the deadlock
detection algorithm up to 3 parts that are 4.1 Source
Code Information that gets information of object
names, method names and thread names in the
source code of the multithreading API, 4.2 Source
Code Analyzing that analyzes the relation of objects,
methods and threads and which threads call methods
and lock which objects. And the last part is 4.3
Deadlock Detection that detects the deadlock using
information from prior parts.

4.1 Source Code Information

Firstly, the deadlock detection algorithm should
have source code information of the multithreading
API. We will use java.lang.reflect package of the
Java API to get Meta data of the class, synchronized
methods, synchronized objects, fields of class, wait-
notify methods, Thread names and names of method
callers and callees. The algorithm collects
information into the container for providing relation
and detecting the deadlock in next steps.

The following part of example code is used to
demonstrate our algorithm for getting source code

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

134

information.

public class CodeDummy extends

SuperDummy implements InterfaceDummy{
 CodeDummy _cd = new CodeDummy();
 CodeDummy _cd2 = new CodeDummy();
 ...

 public CodeDummy(){
 this.push();
 synchronized(this){
 //...
 }
 doSomething(_cd);
 synchronized(_cd2){
 //...
}
 }

 synchronized void push(){
 //...
 }
 String doSomething(CodeDummy cd){
 _cd2.wait();
 push();
 //...
}
}

The algorithm will collect following information of
the class into the container as initial information.

4.1.1 Class

The class name, superclass extending and the
interface implementation are information to get
exact locked objects that are used in the
synchronized statements, synchronized methods and
wait-notify methods of a class of the source code of
the multithreading API. Sometimes the developer
uses ‘this’ or ‘super’ or instant objects that are not
relevant the exact locked object. We have to collect
this information to uncover the objects that are in the
synchronized statements and synchronized methods
and call wait-notify methods. The above example
code shows the CodeDummy class extends from the
SuperDummy class and implements the
InterfaceDummy interface. The locked object can be
the CodeDummy object or the SuperDummy object.
When it calls this.push();, ‘this’ is the CodeDummy
object that is locked.

4.1.2 Synchronized Methods

We will get the information which methods are
synchronized in a class of the source code of the
multithreading API to get the locked object from the
class name or the extended class. From above
example code, it shows that the push() method is
synchronized. Therefore we will collect the push()
method. In runtime, when the API calls this point the

CodeDummy object will be locked.

4.1.3 Synchronized Objects and Fields
of Class

The synchronized objects or synchronized
statements are blocks of object synchronization.
Normally, the object variable doesn’t relevant the
information of the object type locked therefore we
have to collect all variable declaration of the class.
In above example code, when calling
synchronized(this), ‘this’ refers to the CodeDummy
object. There is one more example on
synchronized(_cd2); line, we will not know the type
of _cd2 at this point. In addition, there is another
example of code that calls doSomthing(_cd);, we do
not know the exact type of _cd as well. Therefore we
have to collect all variable declaration of the class to
define the type of the object later. If there are more
than a method calls the same synchronized object, it
is possible that the deadlock occurs on this object.

4.1.4 Wait-notify Methods

Normally, calling the wait-notify method have to
call via the object. In above example code, _cd2
calls the wait() method. We will collect information
that _cd2 calls the wait() method and which method
calls the wait() methods. From above example code,
the doSomething() method calls _cd2.wait(). For the
notify() method, the algorithm has to collect this
information in the same way of the wait() method.

4.1.5 Thread

We have to check which class extends the Thread
class and implements the Runnable interface to find
all threads in the multithreading API.

4.1.6 Method Caller and Callee

To know exact method calling of the multithreading
API, we also have to collect which methods are
callers and callees.

After we know what information we have to
collect from the source code, then we will
implement the algorithm to get all information from
the source code of the multithreading API.

The following is the source code to get the
package name and the class name of several java
files of the source code of the multithreading API.
We will add package names and class names to the
containers to get information from several java files.

Yet,�Another�Method�for�Detecting�API�Deadlock

135

scanner = new Scanner(fr[i]);
while(scanner.hasNext()){
 temp1 = scanner.next();

 if(temp1.equals("package"))
 temp2 = scanner.nextLine();
 temp3 = new String(temp2.trim());

 temp3 =
temp3.substring(0,temp3.length()-1);

 packageName.add(temp3);
 scanner.nextLine();
}
if(temp1.equals("class")){
 temp1 = scanner.next();

 if(temp1.contains(keyword) &
!temp1.contains("{")){

 scanner.next();
 continue;
 }
 else if (!temp1.contains(keyword) &

!temp1.contains("{")){
 classname = new String(temp1);
 className.add(classname);
 break;
 }
}

After we get package names and class names, we
will use java.lang.reflection to get exact information
of the each class that are superclass name, its
methods and fields. The code is shown as follows.

myClass =

Class.forName(packageName.get(j)+"."+
className.get(j));

System.out.println(myClass.getName()
);

for(Type type :

myClass.getGenericInterfaces()){
System.out.println(type.toString());
}
Method [] methods =

myClass.getDeclaredMethods();
for(Method methodname : methods){
System.out.println(methodname.toStri

ng());
}
Field [] fields =

myClass.getFields();
for(Field fieldname : fields){
System.out.println(fieldname.toStrin

g());
}

The following source code is the algorithm to get the
inner class of the source code of the multithreading
API.

Class [] declaredClasses =
myClass.getDeclaredClasses();

for(Class itsClass :
declaredClasses){

 System.out.println(itsClass.getCano
nicalName());

 for(Type type :
itsClass.getGenericInterfaces()){

 System.out.println
(type.toString());

 }
 for(Method itsClassmethod :

itsClass.getDeclaredMethods()){
 System.out.println

(itsClassmethod.toString());
 }
}

Source code information will be collected with the
form of the table for each class. Table 1 is the
synchronized object table to collect object names
and types of objects that are synchronized by
statements or methods or called by wait-notify
methods. Table 2 is the synchronized method table.
It will collect synchronized method names and the
object names that are synchronized. Table 3 will
collect the class names that extend the Thread class
or implement the Runnable interface and their fields.
Table 4 collects class names and their methods.
Table 5 collects method callers and callees which
are called by the same thread or not.

The following are tables that will be used for
analyzing the source code.

Table 1: The synchronized object table.

Synchronized object
types

Synchronized object
names

CodeDummy _cd
CodeDummy _cd2
CodeDummy this

... ...

Table 2: The synchronized method table.

Synchronized method
names

Synchronized method
objects

push CodeDummy
doSomething _cd

wait _cd2
... ...

Table 3: The class name extending Thread or
implementing Runnable and their fields.

class names fields

EventQueue
LinkedList _queue,

Runnable _event
Table 3: The class name extending Thread or
implementing Runnable and their fields. (Cont.)2

CodeDBFactory
CodeDBFactory facDb,

Hashtable manager
... ...

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

136

Table 4: The class names and their methods.

class names methods
CodeDummy push, doSomething

... ...

Table 5: The method callers and callees.

method callers method callees
doSomething push

... ...

4.2 Source Code Analyzing

After the algorithm gets all information of the source
code, it will find the relation of information in each
table which threads calls which methods and which
methods lock which objects. And the algorithm will
rearrange information into the following structure
shown in Figure 3.

Figure 3: Information restructuring.

The structure in Figure 3 is used for representing the
name of thread in line 1, the synchronized method in
line 2, the synchronized statement in line 3, object
that calls the notify() method in line 4 and the object
that calls the wait() method in line 5. It is possible
that each line of detection result is arranged
randomly since the programming technique and
logic of the multithreading API.

The result of this part will get all threads and the
flow of the each thread when calling methods and
locked objects. Figure 4 provides visualization of
threads in the multithreading API from the result of
the algorithm.

Figure 4: Threads from the result of the algorithm.

In Figure 4, it shows 3 threads that are Thread1,
Thread2 and Thread3. Thread1 calls method11
locking Obj1 and Obj2 and then calls method12
locking Obj3 after that calls method13 locking Obj4.
Thread2 calls method21 locking Obj4 and calls
method22 locking Obj3. And Thread3 calls
methods31 locking Obj6, calls methods32 locking
Obj2 and calls methods33 locking Obj1.

4.3 Deadlock Detection

After getting all Threads, called methods, locked
objects and their paths as structure shown in Figure
3 and thence the algorithm will check which objects
are locked by another thread with reverse lock order.
If there is more than one object called by another
thread with reverse lock order, it is possible that the
deadlock occurs. The algorithm of deadlock
detecting is shown in Figure 5.

Figure 5: The deadlock detection algorithm.

The algorithm is designed using deadlock definition,
concept of six conditions of deadlock (Naik et al.,
2009) and a code pattern; Cyclic Lock Dependency
(Otto et al., 2008). The deadlock occurs when there
are two or more than two objects blocked by 2
threads in reverse order. Therefore Figure 5 shows
that the algorithm will get locked objects of a thread.
After get all objects, it will check whether there are
2 objects is locked by another thread or more than
one thread or not. If 2 objects are locked by another
thread or more than one thread, it will check whether
the lock order is in reverse or not. If the lock order is
a reverse order, it means that the deadlock can occur.

5 RESULT

Our deadlock detection algorithm is able to detect

Yet,�Another�Method�for�Detecting�API�Deadlock

137

the potential deadlock site in the source code of the
multithreading API.

The result reports threads that occurs deadlock
sites, objects that are locked, methods that call these
objects and line numbers of the source code of the
multithreading API for the deadlock site. Figure 6
shows the reported result of the algorithm.

Figure 6: The report of deadlock site.

We compare the result of the deadlock detected by
the algorithm with manual. And for other deadlocks
that haven’t been reported, we try to manually
reproduce them and deadlocks encounter.

Table 6: The result of the detection algorithm compares
with manual.

API version Manual Algorithm
1.0 3 9
2.0 4 6
2.1 2 2

Table 6 shows the result of the deadlock comparing
between manual and the deadlock detection
algorithm. We have tested the result with several
versions of the multithreading API. API version 2.0
has addition features and was fixed defects from API
version 1.0. API version 2.1 was fixed defects that
were found in API version 2.0.

For the result, in API version 1.0, deadlock sites
that are found by manual reproduction are 3 and by
the deadlock detection algorithm are 9. In API
version 2.0, deadlock sites that are found by manual
reproduction are 4 and by the deadlock detection
algorithm are 6. In API version 2.1, deadlock sites
that are found by manual reproduction and by the
deadlock detection algorithm are 2.

In summary, using manual reproduction is not
sufficient to find all deadlocks in the multithreading
API. Using the deadlock detection algorithm can
help us to find more deadlock sites that have not
been reported by customers, support consultants,
developers or testers.

6 LIMITATION

In this research we do not focus on the performance
of the deadlock detection algorithm in speed and
CPU consumption and the false positive.

7 CONCLUSIONS AND FUTURE
WORK

In summary, using static analysis to develop the
deadlock detection algorithm can help us to detect
deadlock sites in the source code of the
multithreading API. Static analysis is appropriate to
detect deadlocks in the multithreading API because
we do not know exactly scenarios that the customer
will use to develop their own application.

Our deadlock detection algorithm considers
enough conditions to detect the deadlock from
synchronized statements, synchronized methods, and
wait-notify methods. The result is accurate and we
can find more deadlock sites that have not been
reported by manual reproduction before.

Therefore, we should add deadlock detection as a
process in the Software Development, Software
Testing or Software Maintenance phase of the
Software Development Life Cycle of the
multithreading API. Since detecting deadlock early
can help we reduce defects before the application is
developed using the multithreading API.

For the future work, it is possible to add more
conditions to detect the deadlock for other
conditions and programming designs such as using
the Lock class and the Semaphore class in
java.util.concurrent package for implementing the
multithreading API. In addition, we can focus on the
performance of the deadlock detection algorithm in
speed and CPU consumption and the false positive
to get more effective algorithm. Moreover, we can
use other algorithms to find the root cause of the
deadlock, not just only detect sites of the deadlock.

REFERENCES

Amy Williams, W. T., and Michael D. Ernst. (2005, 25-
29th July). Static Deadlock Detection for Java
Libraries. Paper presented at the ECOOP2005,
Glasgow UK.

Ashcraft, D. E. a. K. (2003). RacerX: Effective, Static
Detection of Race Conditions and Deadlocks. Paper
presented at the SOSP '03.

Frank Otto, T. M. (2008). Finding Synchronization
Defects in Java Programs Extended Static Analyses

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

138

and Code Patterns. Paper presented at the IWMSE’08,
Leipzig, Germany.

Gianpiero Francesca, A. S., Gigliola Vaglini and Maria
Luisa Villani. (2011, 18-22 July). Ant Colony
Optimization for Deadlock Detection in Concurrent
Systems. Paper presented at the 2011 35th IEEE
Annual Computer Software and Applications
Conference, Washington, DC, USA.

Holt, R. C. (1972). Some Deadlock Properties of
Computer Systems. Computing Surveys, 4(3), 18.

Jyotirmoy Deshmukh, E. A. E. a. S. S. (2009). Symbolic
Deadlock Analysis in Concurrent Libraries and Their
Clients. Paper presented at the 2009 IEEE/ACM
International Conference on Automated Software
Engineering, Washington, DC, USA.

Mayur Naik, C.-S. P., Koushik Sen and David Gay.
(2009). Effective Static Deadlock Detection. Paper
presented at the ICSE’09, Vancouver, Canada.

Mikhail Moiseev, A. Z., Ilya Klotchkov and Sergey
Salishev. (2011). Static analysis method for deadlock
detection in SystemC designs. Paper presented at the
SoC 2011, Tampere, Finland.

Pallavi Joshi, C.-S. P., Koushik Sen and Mayur Naik.
(2009). A Randomized Dynamic Program Analysis
Technique for Detecting Real Deadlocks. Paper
presented at the PLDI '09, New York, USA.

Qichang Chen, L. W., Ping Guo, and He Huang. (2011).
Analyzing Concurrent Programs for Potential
Programming Errors. Modern Software Engineering
Concepts and Practices: Advanced Approaches, 1-43.
doi: 10.4018/978-1-60960-215-4.ch016

Tong Li, C. S. E., Alvin R. Lebeck, and Daniel J. Sorin.
(2005, April 10–15). Pulse: A Dynamic Deadlock
Detection MechanismUsing Speculative Execution.
Paper presented at the 2005 USENIX Annual
Technical Conference, Anaheim, California.

Yet,�Another�Method�for�Detecting�API�Deadlock

139

