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Abstract: With the ongoing deployment of smart grids, price-responsive demand is playing an increasingly important 
role in the paradigm shifting of electricity markets. Taking a multi-agent system modeling approach, this 
paper presents a conceptual platform for discovering dynamic pricing solutions that reflect the varying cost 
of electricity in the wholesale market as well as the level of demand participation, especially regarding 
household customers and small and medium sized businesses. At first, an agent-based meta-model 
representing various concepts, relations, and structure of agents is constructed. Then a domain model can be 
instantiated based upon the meta-model. Finally, a simulation experiment is developed for use case 
demonstration and model validation. The simulation is for the supplier to obtain the profit-maximizing 
demand curve which has such a shape that it follows the spot price curve in inverse ratio.  The result 
suggests that this multi-agent-based construct could contribute to 1) estimating the impacts of various time-
varying tariff options on peak-period energy use through simulation, before any experimental pilots can be 
carried out; 2) modeling the electricity retail market evolving interactions in a systematic manner; 3) 
inducing innovative simulation configurations.  

1 INTRODUCTION 

The deployment of Advanced Metering 
Infrastructure (AMI) in many countries allows bi-
directional communications between electricity 
consumers and suppliers. It is creating a platform for 
demand-responsive load control within the smart 
grids, which will shift the paradigm of electricity 
markets in many ways. Foreseeably, consumers will 
be able to manage and adjust their electricity 
consumption in response to real-time information 
and changing price signals. Accordingly, electric 
utilities will be capable of altering the timing, level 
of instantaneous demand, or the total electricity 
consumption at times of high wholesale market 
prices or when electric system reliability is 
jeopardized (Albadi and El-Saadany, 2007). Such a 
price-responsive interaction between demand and 
supply (a.k.a. Demand Response) will in turn impact 
the spot market prices directly as well as over time 
(CEER, 2011), eventually, improve the link between 
wholesale and retail power markets which to a great 
extent are disconnected currently. The potential 

benefits of full participation by demand include 
flattening daily load patterns, optimizing the 
production portfolio by mitigating the variability of 
generation from renewable sources, and reducing the 
investment in reserve capacity needed to maintain 
resource adequacy and system reliability (Schuler, 
2012), thus improving overall market efficiency.  

However, in order for the above mentioned 
demand responsive paradigm to be realized, the 
understanding of the ever-evolving interaction 
between the demand and the supply sides in the 
electricity retail market is crucial. Agent-based 
modeling (ABM), compared to traditional system-
modeling techniques, is one appealing approach for 
studying how the market participants (e.g., 
consumers, suppliers, producers, prosumers, etc.) 
might act and react to the complex economic, 
financial, regulatory, and environmental 
circumstances embedded in the electricity sector.  

Agent-based modeling has been extensively 
studied for the simulation of electricity markets in 
recent decades, alongside with the electricity 
industry restructuring and unbundling. Very often 
the demand side is represented as a fixed and price-
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insensitive load (Weidlich and Veit, 2008). In this 
paper, we will introduce a multi-agent-based meta-
model (MAMM) for systematically modeling the 
price-responsive emergent behavior in the context of 
demand response electricity retail market. The 
proposed MAMM is to present a conceptual 
platform for discovering dynamic pricing solutions 
that reflect the varying cost of electricity in the 
wholesale market as well as the level of demand 
participation (e.g., demand responsiveness vs. 
various rate designs), especially regarding household 
customers and small and medium sized businesses. 

Firstly, we introduce a MAMM that defines the 
concepts, relations, and structure of utility-based 
agents on abstraction level being independent of any 
concrete domain. Secondly, instantiating the 
MAMM with domain specific notions provides a 
uniform abstract interpretation of all domain models 
that conform to the MAMM. Thirdly, given a 
MAMM, it supports systematic construction of 
models that articulate different static, dynamic, 
and/or interactive aspects relevant to specific 
simulation experiment. Thus, our research objective 
is to demonstrate how the MAMM guided domain 
model construction can be exploited to address the 
impacts analysis problems of various time-varying 
tariff options by means of agent model simulation 
experiments.  

The paper is organized as follows: the next 
section will present the research method and related 
research. The conceptual construct will be 
introduced in Section 3&4. In Section 5, a use case 
is used to demonstrate the simulation, in the 
meantime, to validate the conceptual model. In the 
final part of this paper, the conclusion will be drawn 
and future research will be addressed. 

2 METHODOLOGY 
AND RELATED WORKS  

Agent-based modeling for electricity markets 
simulation has experienced increasing popularity in 
recent decades. For instance, within the research 
paradigm of Agent-Based Computational Economics 
(ACE), agent-based simulation offers methods to 
understand electricity market dynamics and to derive 
advice for the design of appropriate regulatory 
frameworks (Weidlich and Veit, 2008). Compared to 
other electricity market modeling approaches, such 
as optimization models or equilibrium models, 
agent-based modeling as a bottom-up approach has 
the advantage of integrating a high level of detail 
and players’ interactions, which are necessary to 

analyze short-term development in the electricity 
markets (Sensfuß et al., 2007). Agent-based models 
not only offered the possibility of realistically 
describing relationships in complex systems, but 
growing them in an artificial environment (Epstein 
and Axtell, 1996), thus the evolving behavior can be 
observed step by step (Holland and Miller, 1991).  

A great deal of research in the field of agent-
based simulation of electricity markets has 
concentrated on the analysis of market power and 
market design in wholesale electricity trading. 
Various wholesale electricity market simulation 
models were developed, for instance, by Bower and 
Bunn (2000) in England and Wales electricity 
market, Bower et al. (2001) for German electricity 
sector, Cau and Anderson (2002) for the Australian 
National Electricity Market, and by the research 
group at Iowa State University for the Wholesale 
Power Market Platform proposed by the U.S. 
Federal Energy Regulatory Commission 
(Koesrindartoto et al., 2005); (Sun and Tesfatsion, 
2007). In addition, different computational 
algorithms were examined for the agent-based 
electricity market modelling, including genetic 
algorithms for representing the agents’ bidding 
behavior (Nicolaisen et al., 2000); (Richter and 
Sheblé, 1998), Erev-Roth reinforcement learning 
algorithm (Nicolaisen et al., 2001; Petrov and 
Sheblé, 2001), and rule-based learning mechanisms 
combining reinforcement learning and genetic 
algorithms (Bagnall and Smith, 2005). In the 
meantime, an alternative body of agent-based 
research modeled electricity consumer behavior at 
the retail level. Zhou et al. (2011) studied the 
consumption behavior of commercial buildings with 
different levels of demand response penetration in 
different market structures. Ehlen et al. (2007) 
presented a simulation based on N-ABLETM, in 
which they studied the effects of residential real-
time pricing contracts on demand aggregators’ load, 
pricing, and profitability. Müller et al. (2007) 
investigated the interdependencies between the 
customer’s engagement and the suppliers’ pricing 
strategies in the German retail market. In addition, 
some agent-based studies focused on the Time of 
Use (TOU) pricing for residential customers under 
different context (Roop and Fathelrahman, 2003) 
and (Hämäläinen et al., 2000). 

The heterogeneity of agent-based electricity 
market research, as discussed above, has led to that 
the models are rarely comparable, and sometimes 
cannot be described in all necessary detail, 
especially in terms of electricity retail market 
simulation. Therefore, it is necessary and relevant to 
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take an integral and systematic approach in this 
regard.  

The multi-agent-based conceptual model is 
constructed with the deregulated European 
electricity market structure in mind, in which the 
electricity generation, transmission, distribution, and 
supply business are legally unbundled, with the 
generation and supply sectors open for free 
competition while the transmission and distribution 
business are subject to regulation due to their 
monopolistic nature. Any producers can deliver 
electricity to their respective common electricity 
wholesale market - for example, the producers in 
Nordic area can deliver electricity to Nord Pool 
exchange. The electricity wholesale market consists 
of power producers, power transmission and 
distribution operators, suppliers, industry and other 
large undertakings. The electricity retail market 
includes all end-users equipped with hourly 
measured smart meters, for instance, industries, 
public/commercial buildings, households, small 
businesses, and so on. These are the prerequisites for 
the demand response under study.  

3 THE CONCEPTUAL 
FRAMEWORK  

We propose a customized version of utility-based 
agents meta-model introduced by Russell and 
Norvig (2003). Our MAMM contains abstract 
concepts interrelated via abstract relations. Each 
domain model that refines MAMM is considered as 
its instantiation. To give some intuition about the 
notions of MAMM we describe them informally by 
showing their relationships in the form a semantic 
network depicted in Figure 1.  

An agent has one or more roles; each of these 
roles determines one or more goals. The way how an 
agent reacts to the environment (to other agents) 
with different actions depends on the mode and its 
goal. A mode includes a set of agent's states. To 
fulfil its role an agent performs actions that are 
triggered by some event. The actions, in turn, can 
generate new events when terminating (atomic 
actions) or in the course of execution (non-atomic 
actions). Event is a notion related to both - time and 
state. Event reflects the instant of time when some 
change of state occurs. A state is defined as a 
valuation of agent attributes. State is changed by 
actions. Action may have non-zero extent in time. 
Since each action describes only a subset of state 
changes, the action is enabled only in certain states. 

 
Figure 1: Semantic network of the meta-model. 

For the clarity of further presentation we introduce 
some meta-notions that refine MAMM but are still 
domain independent. We call a set of actions to 
interaction if the agents' actions on shared states are 
in the changes and depends relations.  

Before delving into MAMM-based construction 
of DM we summarize the key properties of agents 
that constitute our further space of discourse: 
autonomy (capable of operating and making 
decision on its own), sociability (capable of 
interacting with other agents), reactivity (capable of 
responding to a change of environment), proactivity 
(capable of acting on its own initiative in order to 
achieve certain goals/utilities), and adaptivity (with 
sophisticated learning capabilities) (Müller et al., 
2007); (Wooldridge and Jennings, 1995).  

4 DOMAIN MODEL 
FOR PRICE-RESPONSIVE 
DEMAND ANALYSIS 

The agent is to represent the market actors in the real 
world and act on behalf of them. In the context of 
electricity markets, it includes producers, 
transmission and distribution operators, suppliers, 
consumers, prosumers, and other load servicing 
entities (e.g., demand aggregators). Even though the 
environment is external and largely uncontrollable, it 
is necessary to be simulated also as an agent to make 
explicit the way how it will affect production and 
consumption activities of the market actors. 

For price-responsive demand modeling, a 
domain instantiation can be characterized as in 
Figure 2. Since the consumer and the supplier are 
the focal market players in this context, the focus of 
the DM is on their roles, actions and interactions.  
The supplier’s major business activities include (1) 
pricing in the retail market (i.e., offering various 
retail electricity rates to different consumer groups) 
according to the supplier’s  market share  and  profit 
maximization objectives; (2) bidding in the
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Supplier’s Action-State Diagram 

 

Consumer’s Action-State Diagram 

 

Supplier-Consumer Interaction Diagram 

 
Figure 2: Instantiation of MAMM with domain specific 
concepts. 

wholesale market, which will generate the following 
day’s hourly spot price; and (3) hedging in the 
financial market in order to avoid the risk caused by 
energy price volatility.  

The consumer’s activities in relation to 
electricity consumption include (1) consuming 
electricity according to their business nature and 
living needs; (2) analyzing the possible saving from 
choosing the demand response tariff, and the 
feasibility and the cost/the inconvenience of 
rescheduling electricity consuming activities in order 
to respond to changing price signals (i.e., cost-
benefit analyzing when facing time-varying price or 
demand response tariff); (3) adjusting timing and 
level of consumption based on the real-time 
information and price signals.  

The supplier’s initial pricing action is determined 
by their state. Various ownership relations, different 
marketing and risk management strategies, the 
supplier’s market share and profit maximization 
objectives, and the supplier’s rate portfolio and 
dynamic pricing program design have decided the 
supplier’s state. The varying state, in turn, will have 
influence on the supplier’s pricing practice.  

Similarly, the consumer’s state will determine 
the consumer’s actions in terms of electricity 
consuming and the possibility to respond to dynamic 
pricing. The varying demographic attributes (e.g., 
price sensitivity, risk preferences, and the 
composition of electric appliances), the feasibility to 
shift certain electricity usage to off-peak time, the 
perceived saving, the rescheduling cost, the 
tolerance towards inconvenience, and so on will all 
affect the consumer’s price responsiveness when the 
consumer is facing new pricing offer.  

The adjusted electricity consumption is the 
consumer’s price-responsive demand, which will 
have impact on the supplier’s bidding activities in 
the next day. Accordingly, the new spot price 
resulted from the current interaction will trigger the 
next round interaction between the supplier’s pricing 
activity and the consumer’s cost-benefit analyzing 
and electricity usage adjusting (if possible) 
activities. 

5 USE CASE  

Based on the domain model described above, 
simulation experiments can be carried out. In this 
section, we will demonstrate a use case, in order to 
validate the conceptual construct. The simulation 
model is formalized and run on the UPPAAL 
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environment (Bengtsson and Yi, 2004), which is an 
academic-free modeling, simulation, and model-
checking tool.  

As mentioned earlier, one of the potential 
benefits of demand response is to flatten daily load 
patterns. Therefore, the specific theoretical 
simulation scenario is for the supplier to obtain the 
ideal demand curve which has such a shape that it 
follows the spot price curve in inverse ratio 
(Belonogova et al., 2011).  

5.1 Simulation Design 

The simulation setup consists of 1 supplier and N 
consumers. The consumers belong to high 
consumption cluster (HCC), which makes steering 
their demand according to the spot price a priority in 
relation to the supplier’s goal of profit maximization. 
The spot price is based on the Nord Pool Spot 
published system price for Estonia during the 2nd 
week of January, 2013 (www.nordpoolspot.com). 
The consumption pattern of HCC depends on the day 
of the week and also on external factors, e.g. outdoor 
temperature. To be able to compare the simulation 
results of different days we take two consecutive 
days in the middle of the week Wednesday and 
Thursday being closest in their energy consumption, 
and calculate the hourly price of Thursday based on 
the spot price on Wednesday and show how the 
hourly price influences the consumption. We assume 
that the difference between contextual factors on 
Wednesday and Thursday is insignificant. 

5.2 Simulation Assumptions 
and Constraints  

We introduce the simulation model representing the 
Supplier-Consumer interaction where the only 
interaction observables are hourly price and hourly 
consumption by HCC. Thus, the main agents in the 
simulation model are Consumer and Supplier. The 
third agent - Environment serves to demonstrate the 
flexibility and scalability of the model for different 
time scales and contexts. It allows us to take into 
account the dynamics of long term factors - outdoor 
temperature, hours of daylight, etc. - that all have 
impact on the consumption.  

The pricing algorithm. When designing the 
pricing function for hourly price we aim at getting 
the driving effect that smoothens sharp fluctuations 
in consumption without alternating HCC's total 
consumption and possibly increasing supplier's 
profit. Also we set an upper limit TL to hourly price 

change  to avoid overshoots and instability of 
consumption. 

The basis of next day hourly price P'(T) at hour T 
is the spot price P(T) of the previous day at T. Let 
Q(T) be the consumption at T on previous day. Then 
the next day hourly price P'(T) at hour T is 
calculated in our simulation by formula (1). 
 

P'(T) = P(T) (1 + (T)/100), where (1)
 

 
 

where 
    is parameter to amplify or suppress the effect of 
calculated price correction; 
TL is acceptable price change (%);  
sign((T)) is the sign function with co-domain {-1, 
1} showing if the price correction is positive or 
negative comparing to previous day spot price. 

The hourly price calculated by (1) is proportional 
to the difference P(T)·Q(T) - avg(P(T)·Q(T)), where  
avg(P(T)·Q(T)) is arithmetic mean of P(T)·Q(T) 
over 24 hours. The formula (2) guarantees that the 
calculated change of hourly price never exceeds the 
limit set byTL. That is needed for keeping the 
stability of price response. 

Consumer's behaviour. All consumers of HCC 
are modeled with the same model template. The 
template is parameterized with cluster specific 
attributes that allow modeling variations in cluster 
consumption patterns. 

The consumption pattern includes consumption 
activities, e.g. ironing, room heating, water heating, 
etc. Each activity is characterized by following 
attributes: enabling condition and consumption 
interval or function. When consumption dependency 
is well-defined it is specified by means of explicit 
function. When non-determinism is presented in the 
consumption pattern the consumption interval is 
specified instead so that random value from that 
interval is generated for variable Q'(T) update. 

Since our simulations are approximating we 
abstract away from exact prices and use price 
intervals called Price Sensitivity Zones (PSZs) 
instead. PSZs approximate the price intervals 
acceptable for a customer for his/her consumption 
activities. PSZs may be different for different 
consumer clusters. For instance, PSZs of HCC are 
following: Z1 = [, 34], Z2 = [35, 39], Z3 = [40, 44], 
Z4 = [45, 49], Z5 = [50, T] (EUR/MWh). The zones 

           ·[P(T)·Q(T)-avg(P(T)·Q(T))] , if (T) 
           avg(P(T) ·Q(T))            P(T) 

                 (2)
  sign((T)) · TL · ·        , otherwise

< TL

(T) = 

P(T) 
100 
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define the factor space of hourly price, where  and T 
denote respectively the bottom and top element of 
the price domain.  

Table 1: Descriptive attributes of HCC’s consumption.  

Action 
 

Enabling condition(s) Consumption 
interval/ 

func. (W/h)
Time 

interval 
Price 
zone 

Outdoor 
temp. 

Laundry, 
dish-
washing 

00 - 24 P  Z1 - [C1,C2] 

Ironing 19 - 22 
P  

Z1Z2 
- [C3,C4] 

Water 
heating 

06 - 23 
P  

Z1Z2 
- [C4,C5] 

Cooking 
07 - 08; 
18 - 19 

P  
i=1,5 Zi 

- [C6,C7] 

Lighting 
07 - 09; 
18 - 24 

P  
i=1,5 Zi 

- [C8,C9] 

Space 
heating 

00 - 24 
P  

i=1,3 Zi 
T < Tcrit

a Eb (Tcrit-T) 

Note:  
a. Tcrit  is the highest outdoor temperature when the space heating 
is activated (e.g., Tcrit = 16 oC); 
b. E is the amount of energy needed for space heating in order to 
compensate the decrease of outdoor temperature by one degree 
(e.g., E = 50 W/ o C). 

5.3 Formalization Preliminaries 

Model constructs. We formalize the agent as a 
template of UPPAAL timed automaton (UPTA).  

An atomic action is represented in UPTA as a 
model fragment consisting of pre-location, post-
location and body-location connected via edges (see 
Figure 3). Pre- and post- locations are for composing 
aggregate actions from the atomic ones. 
 

 
Figure 3: The model fragment of an atomic action. 

Having two actions ai and aj with post- and pre- 
locations Post(ai) and Pre(aj), their sequential 
composition ai ; aj is constructed by merging Post(ai) 
and Pre(aj) into one location. The pre- and post- 
locations are of type “committed”, meaning that 
their execution is instantaneous.  

Consumer template. The template modeling 
Consumer is depicted in Figure 4. The guards and 

updates of each action are defined in Table 1 and 
implemented by using the function programming 
language of UPPAAL. 

To avoid the overloading of model templates with 
technical details we model time counting and energy 
metering functions in separate templates that have 
joint actions synchronized via channels 'evolve', 
'sum_up', and 'spot_price' with the templates 
Consumer, Supplier, and Environment.  

Supplier template. As in Figure 5, it has two 
actions 'Collect_consumption_data' and 
'Planning'. The later is joint action with implicit 
template Meter. Supplier waits until the metering of 
daily consumption is completed which triggers the 
action 'Planning' that calculates the next day 
hourly prices by function 'NewHourlyPrice' 
(following formula (1) and (2)). Recall that the 
consumer's choice of consumption actions depends 
on that hourly price.  
 

 

Figure 4: Consumer template. 

Environment template. To keep the simulation model 
tractable for given use case we model the dynamics 
of only one observable state component - 
'OutDoorTemperature' as in Figure 6. Changing 
fuel prices and macro-economic factors are assumed 
to be constants. Modeling the temperature changes 
allows to simulate the consumers' responses in 
broader variety of contexts, e.g., at very low winter 
temperatures, at sharp changes of day and night 
temperatures, etc. In our simulations, the actual 
outdoor temperatures during 09-10 Jan., 2013 did not 
change considerably and have minor effect. 

 
Figure 5: Supplier template. 
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Figure 6: Environment template. 

5.4 Simulation Results 

The simulation results show that in the presence of 
HCC consumption patterns the implemented pricing 
strategy allows to smoothen the demand peak in 
relation to the spot price. 
 

 

Figure 7: Price-responsive demand. 

Figure 7 shows the dynamics of pricing-demand 
interplay: P is the curve of spot price of Jan. 09, 
2013, and P' represents the hourly price curve 
generated by the model as described in formula (1). 
If the price is lowered from 44 to 42 EUR/MWh at 
off-peak time period (11-17hrs), it will encourage 
considerable demand shifting to this period (from 
500 to 1000 MWh). On the contrary, if the price is 
increased during the spikes of Q from 40 to 44 
EUR/MWh at 19hrs and from 34 to 38 EUR/MWh at 
22hrs, it will cut down the demand to Q' (from 2600 
and 2800 to 2200 MWh).  

The pricing strategy specified in Supplier model 
demonstrates the effect of flattening the daily load. 
The standard deviation of the demand Q' decreases 
about 57 % in comparison to demand Q. 

It is important to note that the simulation is based 
on a theoretical scenario. It does not take into 
account the impact of other market actors' activities 
such as the producer’s actions and other 
environmental factors except the outdoor temperature 

caused spot price change and demand adjustment. In 
addition, the agent capacity of learning and 
adaptation is not considered in the simulation due to 
short time range. 

5.5 Discussion 

Based on the domain model and its formalized 
representation described above, also other 
simulation experiments can be developed. In this 
section, we show that the DM is rich enough in order 
to validate the conceptual construct and these 
constructs provide a set of model patterns that are 
easy to handle when formalizing the domain model. 
We have chosen UPPAAL timed automata to 
formalize the domain model and UPPAAL tool to 
run the simulation experiments, but we do not limit 
the approach with UPPAAL tool only. Large 
simulations presume highly scalable modeling 
environments, hence we consider NetLogo as likely 
environment for our future work. 

6 CONCLUDING REMARKS 

We present a conceptual platform for modeling the 
price-responsive demand, in order to discover the 
dynamic pricing solutions that reflect the varying 
cost of electricity in the wholesale market as well as 
the level of demand participation. We took an agent-
based modeling approach, in the attempt to capture 
and observe the emergent behavior in the electricity 
demand and supply interactions.  

We hope that the proposed construct will 
contribute to both the real-world practice and the 
agent-based research community by allowing 1) to 
estimate the impacts of various time-varying tariff 
options on peak-period energy use through 
simulation, before any experimental pilots can be 
carried out; 2) to model the electricity retail market 
evolving interactions in a systematic manner; 3) to 
induce innovative simulation configurations. Going 
without saying, the applicability and scalability of 
this construct need to be further examined. 
Additionally, the agent capacity of learning and 
adaptation needs to be included in future research. 
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