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Abstract: Multinomial probabilistic values were first introduced by one of us in reliability and later on by the other,
independently, as power indices. Here we study them on cooperative games from several viewpoints, and es-
pecially as a powerful generalization of binomial semivalues. We establish a dimensional comparison between
multinomial values and binomial semivalues and provide two characterizations within the class of probabilis-
tic values: one for each multinomial value and another for the whole family. An example illustrates their use
in practice as power indices.

1 INTRODUCTION

Weber’s general model for assessing cooperative
games (Weber, 1988) is based on probabilistic val-
ues, a family of values axiomatically characterized by
means of linearity, positivity, and the dummy player
property. Every probabilistic value allocates, to each
player in each game of its domain, a weighted (con-
vex) sum of the marginal contributions of the player
in the game. These allocations can be interpreted as a
measure of players’ bargaining relative strength. The
most conspicuous member of this family (in fact, the
inspiring one) is the Shapley value (Shapley, 1953).
In the present paper we study a subfamily of proba-
bilistic values that we call multinomial (probabilistic)
values.1 Technically, their main characteristic is the
systematic generation of the weighting coefficients in
terms of a few parameters (one parameter per player).

Our research group has been studying semival-
ues (Dubey et al., 1981), a subfamily of probabilis-
tic values characterized by anonymity and including
the Shapley value as the only efficient member. In
the analysis of certain cooperative problems we have
successfully used binomial semivalues (Freixas and
Puente, 2002), a monoparametric subfamily that in-
cludes the Banzhaf value (Owen, 1975).

From this experience, we feel that multinomial

1They were introduced in reliability (Freixas and
Puente, 2002) with the name of “multibinary probabilistic
values” and independently defined for simple games only
—i.e. as power indices— in a work on decisiveness (Car-
reras, 2004), where they were called “Banzhaf a–indices.”

values (n parameters, n being the number of players)
offer a deal of flexibility clearly greater than binomial
semivalues (one parameter), and hence many more
possibilities to introduce additional information when
evaluating a game. Fig. 1 describes the relationships
between the above values and families of values and
the main characteristics of each one of them.

Probabilistic values provide tools to study not
only games in abstracto (i.e. from a merely structural
viewpoint) but also the influence of players’ person-
ality on the issue. They are assessment techniques
that do not modify the game but only the criteria by
which payoffs are allocated. Parameters will be ad-
dressed here to cope with different attitudes the play-
ers may hold when playing a given game, even if they
are not individuals but countries, enterprises, parties,
trade unions, or collectivities of any other kind. We
will attach to parameter pi the meaning of generical
tendency of player i to form coalitions, assuming pi
and p j independent of each other if i 6= j.

Multinomial values are a consistent alternative or
complement to classical values (Shapley, Banzhaf).
They represent a wide generalization of binomial
semivalues, whose monoparametric condition implies
a quite limited capability of analysis of cooperation
tendencies. Of course, these tendencies can neither
be analyzed, without modifying the game, by means
of the classical values, which can be concerned only
with the structure of the game.

The organization of the paper is as follows. Sec-
tion 2 includes a minimum of preliminaries. In Sec-
tion 3, we introduce multinomial values. Section 4
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linearity
positivity

dummy player property + anonymity + efficiency

Probabilistic values  Semivalues  Shapley value

" "

Multinomial values  Binomial semivalues  Banzhaf value

n parameters (one per player) 1 parameter parameter = 1/2

Figure 1: Inclusion relationships between values and families of values.

contains a result on the dimension of the subspace
spanned by multinomial values and two characteriza-
tions: one, individual, for each multinomial value; an-
other, collective, for the whole subfamily they form.
For space reasons, proofs have been omitted. Section
5 is devoted to analyze a political problem by using
these values.

2 PRELIMINARIES

Let N be a finite set of players, usually denoted as
N = f1;2; : : : ;ng. A (cooperative) game in N is a
function v that assigns a real number v(S) to each
coalition S � N, with v( /0) = 0. This number is un-
derstood as the utility that coalition S can obtain by
itself, that is, independently of the remaining players’
behaviour.

Game v is monotonic if v(S) � v(T ) when S �
T � N. Player i 2 N is a dummy in v if v(S[fig) =
v(S) + v(fig) for all S � Nnfig. Players i; j 2 N
are symmetric in v if v(S[fig) = v(S[f jg) for all
S� Nnfi; jg.

Endowed with the natural operations for real–
valued functions, v+v0 and lv for all l2R, the set of
all cooperative games in N is a vector space GN . For
every nonempty T � N, the unanimity game uT in N
is defined by uT (S) = 1 if T � S and uT (S) = 0 oth-
erwise, and it is easily checked that the set of all una-
nimity games is a basis for GN , so dimGN = 2n�1.

By a value on GN we mean a map g : GN ! RN ,
which assigns to every game v a vector g[v] with com-
ponents gi[v] for all i 2 N. The total power of value g
in v is

p
g(v) = å

i2N
gi[v]: (1)

Following Weber’s axiomatic definition (Weber,
1988), f : GN !RN is a (group) probabilistic value if
it satisfies the following properties:

(i) linearity: f[v+ v0] = f[v] + f[v0] and f[lv] =
lf[v] for all v;v0 2 GN and l 2 R;

(ii) positivity2: if v is monotonic, then f[v]� 0;
(iii) dummy player property: if i 2 N is a dummy

in game v, then fi[v] = v(fig).
There is an interesting characterization of the

probabilistic values (Weber, 1988): (a) given a set
P = fpi

S : i 2 N; S � Nnfigg of n2n�1 weighting co-
efficients, such that

all pi
S � 0 and å

S�Nnfig
pi

S = 1 for each i; (2)

the expression

fi[v] = å
S�Nnfig

pi
S[v(S[fig)� v(S)] (3)

for all i 2 N and v 2 GN defines a probabilistic value
f on GN ; (b) conversely, every probabilistic value can
be obtained in this way; (c) the correspondence given
by P 7! f is one–to–one. Thus, the payoff that a prob-
abilistic value allocates to each player in any game is
a weighted sum of the marginal contributions of the
player in the game. We quote (Weber, 1988):

“Let player i view his participation in a
game v as consisting merely of joining some
coalition S and then receiving as a reward his
marginal contribution to the coalition. If pi

S is
the probability that he joins coalition S, then
fi[v] is his expected payoff from the game.”

The action of a probabilistic value f on the basis
of unanimity games is as follows: if /0 6= T � N then

fi[uT ] = å
S�Nnfig:
Tnfig�S

pi
S if i 2 T (4)

and fi[uT ] = 0 otherwise.

2Weber calls monotonicity to this property, but we prefer
to call to it positivity (Dubey et al., 1981).
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Among probabilistic values, semivalues (Dubey et
al., 1981) are characterized by the anonymity prop-
erty: there is a vector fpsgn�1

s=0 such that pi
S = ps for

all i 2 N and all S � Nnfig, where s = jSj, so that all
coalitions of a given size share a common weight and
Eq. (3) reduces therefore to

fi[v] = å
S�Nnfig

ps[v(S[fig)� v(S)]

for all i 2 N and v 2 GN . The weighting coefficients
fpsgn�1

s=0 of any semivalue f satisfy two characteris-
tic conditions, derived from Eq. (2): each ps � 0 and
å

n�1
s=0

�n�1
s

�
ps = 1.

Among semivalues, the Shapley value (Shapley,
1953), denoted here by j and defined by ps =

1=
�n�1

s

�
n for all s, is the only efficient semivalue, in

the sense that åi2N ji[v] = v(N) for every v2GN . The
Banzhaf value (Owen, 1975), denoted here by b and
defined by ps = 1=2n�1 for all s, is the only semivalue
satisfying the total power property: for every v 2 GN ,

å
i2N

bi[v] =
1

2n�1 å
S�N

å
i=2S

[v(S[fig)� v(S)]: (5)

The multilinear extension (Owen, 1972) of a game
v 2 GN is the real–valued function defined in Rn by

f (x1;x2; : : : ;xn) = å
S�N

Õ
i2S

xi Õ
j2NnS

(1� x j)v(S):

As is well known, both the Shapley and Banzhaf val-
ues of any game v can be obtained from its multilinear
extension. Indeed, j[v] can be calculated by integrat-
ing the partial derivatives of the multilinear extension
of the game along the main diagonal x1 = x2 = � � � =
xn of the cube [0;1]n (Owen, 1972) while the partial
derivatives of that multilinear extension, evaluated at
point (1=2;1=2; : : : ;1=2), give b[v] (Owen, 1975).

3 MULTINOMIAL VALUES

Definition 3.1. Set N = f1;2; : : : ;ng and let a profile
p2 [0;1]n, that is, p= (p1; p2; : : : ; pn) with 0� pi� 1
for i = 1;2; : : : ;n, be given. Then the coefficients

pi
S = Õ

j2S
p j Õ

k2NnS
k 6=i

(1� pk) (6)

for all i2N and S�Nnfig (where the empty product,
arising if S = /0 or S = Nnfig, is taken to be 1) define
(Freixas and Puente, 2002) a probabilistic value on
GN that we call the p–multinomial value lp. Thus,

l
p
i [v] = å

S�Nnfig
Õ
j2S

p j Õ
k2NnS

k 6=i

(1� pk)[v(S[fig)� v(S)]

for all i 2 N and v 2 GN .
As was announced in Section 1, we will attach

to pi the meaning of generical tendency of player i
to form coalitions, and thus we will say that p is a
tendency profile on N. According to Eq. (6), coef-
ficient pi

S, the probability of i to join S, will depend
on the positive tendencies of the members of S to
form coalitions and also on the negative tendencies
in this sense of the outside players, i.e. the members
of Nn(S[fig).

Remarks 3.2. (a) For example, for n = 2 we have
p = (p1; p2) and, if i 6= j,
l

p
i [v] = (1� p j)[v(fig)� v( /0)]+ p j[v(N)� v(f jg)]:

Hence, the allocation given by lp to player i does
not depend on pi but only on p j. If player j is not
greatly interested in cooperating (say, p j tends to 0),
player i’s allocation will tend to his individual utility
v(fig). Instead, if player j is highly interested in co-
operating (say, p j tends to 1), player i’s allocation will
tend to his marginal contribution to the grand coali-
tion v(N)� v(f jg).

(b) It is easy to check that the action of lp on any
unanimity game uT is given by:

l
p
i [uT ] = Õ

j2T
j 6=i

p j if i 2 T (7)

and l
p
i [uT ] = 0 otherwise. Using Eq. (7), it readily

follows that, for n � 2, p 6= p0 implies lp 6= lp0 (if
n = 1 all profiles give rise to a unique multinomial
value).

(c) Whenever, in particular, p1 = p2 = � � �= pn =
q for some q 2 [0;1], coefficients pi

S reduce, for all
i 2 N, to
pi

S = ps = qs(1�q)n�s�1 for s = 0;1; : : : ;n�1;
where s = jSj and 00 = 1 by convention in cases q =

0 and q = 1. These coefficients fpsgn�1
s=0 define the

q–binomial semivalue yq (Freixas and Puente, 2002)
and, obviously, lp = yq. If, moreover, q = 1=2 then
we obtain y1=2 = b, the Banzhaf value.

(d) The multilinear extension procedure extends
well to all binomial semivalues and even to any multi-
nomial value lp (Freixas and Puente, 2002): if f is the
multilinear extension of game v 2 GN then

l
p
i [v] =

¶ f
¶xi

(p1; p2; : : : ; pn) for all i 2 N:

4 THEORETICAL RESULTS

We devote this section to extending three results
stated in the previous literature on binomial semival-
ues. In all cases the extension is not straightforward
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and reveals new features of multinomial values. We
assume n� 2 because for n = 1 all is trivial.

4.1 About Dimensions

Let L(GN ;Rn) denote the space of all linear maps
from GN to Rn, which includes most values studied
in the literature. It is clear that dimL(GN ;Rn) =
n(2n � 1). Let BS(GN ;Rn) denote the subspace
spanned by binomial semivalues. It is known that
dimBS(GN ;Rn) = n (Freixas and Puente, 2002).
Moreover, it coincides with the subspace spanned by
all semivalues, and any n different binomial semival-
ues yq1 ;yq2 ; : : : ;yqn form a basis.

Now, let M V (GN ;Rn) denote the subspace
spanned by multinomial values. We shall determine
its dimension. To this end, the following auxiliar no-
tion is useful (and a basis for this subspace is found
during the proof).

Definition 4.1. A value g on GN satisfies the property
of neutrality (for unanimity games) if, for each T �N
with 0� jT j � n�2,

gi[uT[fig] = g j[uT[f jg] for any i; j =2 T :

This property is satisfied by any multinomial value3

since, by Remark 3.2(b), we have

l
p
i [uT[fig] = Õ

k2T
pk = l

p
j [uT[f jg]:

Theorem 4.2. Let M V (GN ;Rn) be the subspace
spanned by multinomial values within the space
L(GN ;Rn) of linear maps. Then dimM V (GN ;Rn) =
2n�1.

The difference between n = dimBS(GN ;Rn) and
2n� 1 = dimM V (GN ;Rn) reflects the much greater
versatility of multinomial values.

4.2 Individual Characterization of each
Multinomial Value

The notion of total power given by Eq. (1) has been
proven to be fruitful in absence of efficiency. For ex-
ample, when applying a normalization process to a
value. The total power property of the Banzhaf value
given by Eq. (5) was the natural substitute of effi-
ciency in well–known axiomatic characterizations of
this value (e.g. Feltkamp, 1995). It was extended to
all binomial semivalues (Carreras and Puente, 2012),
giving rise to the q–binomial total power property:

å
i2N

y
q
i [v] = å

S�N
qs(1�q)n�s�1

å
i=2S

[v(S[fig)� v(S)]

3In particular, all binomial semivalues, but also the
Shapley value, satisfy this property.

for every v 2 GN .
For each q 2 [0;1], this property characterizes the

q–binomial semivalue yq among semivalues, and this
characterization can be alternatively stated as follows:
if y is a semivalue such that åi2N yi[v] = åi2N y

q
i [v]

for all v 2 GN then y = yq. The natural extension
of the property to probabilistic values must be carried
out in the following terms.

Definition 4.3. Let p 2 [0;1]n be a profile on N. A
(probabilistic or not) value g on GN satisfies the p–
multinomial total power property if, for all v 2 GN ,

å
i2N

gi[v] =

å
S�N

å
i=2S

Õ
j2S

p j Õ
k2NnS

k 6=i

(1� pk)[v(S[fig)� v(S)]:

(8)
However, this property, clearly equivalent to

åi2N gi[v] = åi2N l
p
i [v] and hence obviously satisfied

by the p–multinomial value lp, does not characterize
it within the class of probabilistic values. Indeed, it is
easy to see, e.g. for n = 2 and using Eqs. (4) and (7),
that in general not only lp but also infinitely many
probabilistic values satisfy Eq. (8) for a given p.

Therefore, we need to introduce a second prop-
erty in order to characterize each lp within the class
of probabilistic values. The reader will notice that,
due to anonymity, this property holds for all binomial
semivalues and hence it was irrelevant for them.

Definition 4.4. Let p 2 [0;1]n be a profile on N. A
value g on GN satisfies the property of p–weighted
payoffs for unanimity games if, for every nonempty
T � N,

pigi[uT ] = p jg j[uT ] for all i; j 2 T :

By Eq. (7) it is clear that lp satisfies this property.

Theorem 4.5. (Characterization of each p–multino-
-mial value). Let p be a profile on N. Then the
unique probabilistic value on GN that satisfies the p–
multinomial total power property and the property of
p–weighted payoffs for unanimity games is the multi-
nomial value lp.

4.3 Collective Characterization
of Multinomial Values

Among semivalues, the binomial family is character-
ized by the monotonicity of the weighting coefficients
(Alonso et al., 2007): a semivalue y on GN is bino-
mial if and only if its weighting coefficients fpsgn�1

s=0
are in geometric progression, i.e. satisfy, for some
µ, the condition ps+1 = µps for s = 0;1;2; : : : ;n� 2
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(maybe the simplest form of monotonicity).4 The ex-
tension, not completely straightforward, will be given
by Theorem 4.9. To this end, we need to consider two
special types of players with regard to the weighting
coefficients of a probabilistic value.

Definition 4.6. Let f be a probabilistic value on GN
with weighting coefficients fpi

Sg.

� A player h 2 N is a f–ordinary player5 if there
is µh � 0 such that, for all i 2 N, pi

S = µh pi
Snfhg

whenever h 2 S� Nnfig.
� A player h 2 N is a f–magnetic player if pi

Snfhg =

0 whenever h 2 S � Nnfig. This condition is
equivalent to saying that pi

S = 0 for all S �
Nnfi;hg.

Examples 4.7. (a) For the Banzhaf value b, all play-
ers are ordinary, with µh = 1 for all of them. The
same happens for every binomial semivalue yq, with
µh = q=(1� q), unless q = 1 (marginal index), in
which case all players are magnetic.

(b) The Shapley value j does not admit magnetic
players. For n = 2 both players are ordinary, with
µh = 1. For n > 2 there are not ordinary players.

(c) Let n = 3 and assume that, for a given prob-
abilistic value f, players 1 and 2 are ordinary and
player 3 is magnetic. Then we have, for some µ1;µ2,
the links given by Table 1. Imposing Eq. (2) yields
the relevant weighting coefficients in terms of µ1;µ2:

p1
f3g =

1
1+µ2

; p2
f3g =

1
1+µ1

;

p3
/0
=

1
1+µ1 +µ2 +µ1µ2

:

Choosing, for example, µ1 = 1=2 and µ2 = 1, we ob-
tain all weighting coefficients and hence a probabilis-
tic value.

Remarks 4.8. (a) The conditions of Definition 4.6 are
incompatible. If there were a simultaneously ordinary
and magnetic player h then, for any other i 2 N, we
would have pi

S = 0 for all S � Nnfig, contradicting
that these coefficients sum up to 1.

4Strictly speaking, the condition is as follows: (i)
ps+1 = µps for all s or (ii) ps = µ 0ps+1 for all s. The dic-
tatorial index y0 satisfies (i) only, with p0 = 1 and µ = 0.
The marginal index y1 satisfies (ii) only, with pn�1 = 1 and
µ 0 = 0. Any other binomial semivalue, with q 6= 0;1, satis-

fies (i) and (ii) because µ =
1�q

q
6= 0; thus, q =

µ
1+µ

and

p0 =
1

(1+µ)n�1 .
5We use this term to emphasize that exceptionality cor-

responds to the next option, that of magnetic player.

(b) The condition of ordinary player means that
the relation between pi

S and pi
Snfhg follows a pattern

common to all i 2 N and very similar to the mono-
tonicity in the binomial semivalue case, although the
proportionality factor depends here on player h.

(c) Instead, the existence of a magnetic player h
implies that none of the other players would join a
coalition excluding h.

(d) Let f = lp, a multinomial value. Then player
h2N is f–ordinary if ph < 1, and f–magnetic if ph =
1. This follows from the proof of the next result.

Theorem 4.9. (Collective characterization of all
multinomial values). A probabilistic value f on GN
is a multinomial value if and only if all players h 2 N
are f–ordinary or f–magnetic. In this case, f = lp,
where p = (p1; p2; : : : ; pn) is given by

ph =

8><>:
µh

1+µh
if h is a f–ordinary player;

1 if h is a f–magnetic player.

The difference between monotonicity at individ-
ual level established in Theorem 4.9 and the uniform
monotonicity that characterizes binomial semivalues
is a new good sample of the higher versatility of the
multinomial values.

Examples 4.10. (a) The Shapley value is multinomial
only for n = 2. In fact, in this case j and b coincide.

(b) According to Theorem 4.9, the value obtained
in Example 4.7(c) is multinomial. From µ1 and µ2 we
get the profile that defines it: p = (1=3; 1=2; 1).

(c) Let f be the probabilistic value for n = 3 de-
fined by the weighting coefficients

p1
/0
= 0; p1

f2g = 0; p1
f3g = 0:2;

p1
f2;3g = 0:8; p2

/0
= 0; p2

f1g = 0;

p2
f3g = 0:8; p2

f1;3g = 0:2; p3
/0
= 0:4;

p3
f1g = 0:1; p3

f2g = 0:4; p3
f1;2g = 0:1:

It is easy to check that, with regard to f, player 1 is
ordinary (with µ1 = 1=4) and player 3 is magnetic, but
player 2 is neither ordinary nor magnetic. Then, using
again Theorem 4.9, f is not a multinomial value.

5 A POLITICAL EXAMPLE:
IDEOLOGICAL CONSTRAINTS

The model based on multinomial values is able to en-
compass additional information due to ideological re-
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Table 1: Links between weighting coefficients in Example 4.7(c).

p1
/0
= 0

µ2�! p1
f2g = µ2 p1

/0
= 0; p1

f3g
µ2�! p1

f2;3g = µ2 p1
f3g;

p2
/0
= 0

µ1�! p2
f1g = µ1 p2

/0
= 0; p2

f3g
µ1�! p2

f1;3g = µ1 p2
f3g;

p3
/0

µ1�! p3
f1g = µ1 p3

/0
; p3

f1g
µ2�! p3

f1;2g = µ2 p3
f1g;

p3
/0

µ2�! p3
f2g = µ2 p3

/0
; p3

f2g
µ1�! p3

f1;2g = µ1 p3
f2g:

strictions. We will discuss here a political problem
described by a simple game.6

We recall that v is a simple game if it is monotonic
and v(S) = 0 or 1 for all S � N. It is determined by
the set W (v) = fS � N : v(S) = 1g of winning coali-
tions and even by the subset W m(v) = fS 2W (v) :
T =2W (v) if T � Sg of minimal winning coalitions. In
particular, v is a weighted majority game if there ex-
ist a quota q > 0 and weights w1;w2; : : : ;wn � 0 such
that S 2W (v) if and only if åi2S wi � q. We denote
this fact by v� [q;w1;w2; : : : ;wn].

Example 5.1. We consider a 50–member parliamen-
tary body with n = 4 parties and a seat distribution
of 21, 18, 7 and 4 seats, respectively. Assuming that
voting is ruled by absolute majority and voting disci-
pline holds within each party, its structure is described
by the weighted majority game v � [26;21;18;7;4].
The family of minimal winning coalitions is
W m(v) = ff1;2g;f1;3g;f2;3;4gg, so that W (v) =
ff1;2g;f1;3g;f1;2;3g;f1;2;4g;f1;3;4g;f2;3;4g;
f1;2;3;4gg is the family of all winning coalitions.
The expression of game v in terms of unanimity
games is

v= uf1;2g+uf1;3g�uf1;2;3g+uf2;3;4g�uf1;2;3;4g: (9)

Let us assume that the basic ideological feature is
defined by a classical left–to–right axis7 where parties
can be precisely located as for example in Fig. 2.

6As to the additional information given by ideological
constraints in politics, it is worthy of mention, at least inci-
dentally, a singular example. In the general elections held in
Greece in May 7 and June 17, 2012, the willingness of the
parties to form any coalition was being, due to Greek econ-
omy’s dramatic situation, much more decisive than the ide-
ological constraints. Our model might well apply to study
this situation. The profile components after May 7 were
very low and led to an impasse, whereas they increased af-
ter June 17 and gave rise, finally, to a coalition government.

7A similar scheme could be applied if the relevant notion
were nationalism (vs. centralism), as for example in regions
like Catalonia or the Basque Country. Higher–dimensional
ideological spaces might be treated in a similar but more
complicated way.

The Shapley value yields the following evaluation
of the game:

j[v] = (5=12; 3=12; 3=12; 1=12):

It is clear that the Shapley value strictly represents the
relative strength of each party in the game, disregard-
ing the effect, in the coalition formation process, due
to the ideological positions of the involved parties.
We wish to incorporate this exogenous information to
the evaluation of the game by using a suitable proba-
bilistic value.

Any probabilistic value f is defined by a set fpi
Sg

of weighting coefficients for all i 2 N and all S �
Nnfig. For each i 2 N, coefficients fpi

Sg must pro-
vide a probability distribution on the family of coali-
tions S � Nnfig. In our case (n = 4), 32 coefficients
pi

S are needed in principle. However, since the game
is simple, we only have to define pi

S when i is crucial
for S[fig in v, i.e. when S =2W (v) but S[fig 2W (v)
(we will set S2Cv(i) to denote this fact). This reduces
the set to 12 coefficients,

p1
f2g; p1

f3g; p1
f2;3g; p1

f2;4g; p1
f3;4g;

p2
f1g; p2

f1;4g; p2
f3;4g; p3

f1g; p3
f1;4g; p3

f2;4g; p4
f2;3g;

and there are restrictions in choosing these coeffi-
cients for each S 2Cv(i):

all pi
S � 0 and å

S2Cv(i)
pi

S � 1 for each i.

Once the coefficients are chosen, we will simply have,
from Eq. (3),

fi[v] = å
S2Cv(i)

pi
S: (10)

Note that: (a) fi[v]� 1 for all i, and (b) the total power
is åi2N fi[v]� n.

Given fpi
Sg, let qi(v) be the probability that i joins

any coalition S =2 Cv(i), i.e. such that i is not crucial
in S[fig. This is the amount of irrelevant probability
that we may leave undefined. Then, from Eq. (10)
it follows that fi[v] = 1� qi(v). Thus, the more is
probability qi(v) the less is the allocation that player
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Figure 2: Party–distribution on a left–to–right axis.

i will get according to the corresponding probabilistic
value.

How should we take into account the ideological
constraints? At this point, it is worthy of mention that,
in Weber’s general model, pi

S may well depend not
only on i’s interest in forming coalition S[ fig but
also on the opinion of the members of S as to join-
ing (accepting) i. In other words, coefficient pi

S needs
not being only a choice of i himself. The multinomial
values offer a reasonable solution to this since, given
a profile p = (p1; p2; : : : ; pn), the corresponding value
lp is defined by means of Eq. (6).

Thus, we will use multinomial values. It remains
only to choose the profile p=(p1; p2; : : : ; pn) in terms
of Fig. 2. An alternative interpretation of the profile in
simple games is as follows (Carreras, 2004). There is
a status quo Q and a proposal P to modify it. The ac-
tion of the parliamentary members reduces to vote for
or against P. Then each pi can be viewed as the prob-
ability that player i votes for P. Since the result of a
voting is essentially equivalent to forming a coalition
(the coalition of players that vote for P), this interpre-
tation of pi agrees with that of “tendency to form a
coalition” that we are using in this paper.

Step 1. Additional Assumption. Initially, we will
assume that the coalition to form will also have an
ideological degree µ, such that 0 � µ � 1. Then, it is
natural to take pi as the level of agreement of party i
with this “coalitional” degree, i.e.

pi = 1�jµ�µij; (11)

where µi is the position of party i in Fig.2. This is a
simple but not too radical assumption. If µi � µ then
pi can vary between 1� µ and 1, whereas if µ � µi
then pi can vary between µ and 1. As extreme cases,
pi = 0 if and only if either µ = 0 and µi = 1 or µi = 0
and µ = 1, and pi = 1 if and only if µ = µi.

Step 2. A Particular Case. E.g., let us take µ = 0.5.
Then, by Eq. (11),

p1 = 0:9; p2 = 0:9; p3 = 0:7; p4 = 0:6:

The weighting coefficients are given by Eq. (6).
To compute lp[v] we can use Eq. (10) or, directly,
Eq. (9), linearity, and the action of a multinomial
value on unanimity games, given by Eq. (7). Then
we obtain

l
p
1 [v] = 0.592; l

p
2 [v] = 0.312;

l
p
3 [v] = 0.144; l

p
4 [v] = 0.063:

Table 2: Parameters p1; p2; p3; p4 as functions of µ.

µ p1 p2 p3 p4
[0;0.1] 0.6+µ 0.4+µ 0.2+µ 0.9+µ
[0:1;0.4] 0.6+µ 0.4+µ 0.2+µ 1.1�µ
[0.4;0.6] 1.4�µ 0.4+µ 0.2+µ 1.1�µ
[0.6;0.8] 1.4�µ 1.6�µ 0.2+µ 1.1�µ
[0.8;1] 1.4�µ 1.6�µ 1.8�µ 1.1�µ

These allocations are the result of combining both the
strategic position of each party in the game and its ide-
ological relevance in forming a “politically balanced”
coalition (µ = 0:5). Notice that the symmetry of 2
and 3 in the game, reflected by the Shapley value, has
been broken. The total power is plp

(v) = 1:111.
Looking at qi(v) we find

q1(v) = 0:408; q2(v) = 0:688;
q3(v) = 0:856; q4(v) = 0:937:

These amounts represent the probability wasted by
each party in joining coalitions where it is not cru-
cial. For example, party 1 is not crucial in f1g, f1;4g
and f1;2;3;4g, and q1(v) is therefore the probability
that party 1 joins /0, f4g or f2;3;4g. This waste of
probability is the effect of the choice of p1 but also of
p2; p3; p4.

Step 3. Arbitrary Ideological Degree. Now we pro-
ceed for a general µ. Then, from Eq. (11), we have
the results displayed in Table 2. So we get the multi-
nomial value lp[v] in terms of µ:

l
p
1 [v] =

8>>><>>>:
�µ3�2.5µ2 +0.78µ+0.448;
µ3�1.5µ2 +0.82µ+0.432;
�µ3 +3.5µ2�2.62µ+1.128;
µ3�5.5µ2 +8.02µ�2.648;

if, respectively,
0� µ� 0.1; 0.1� µ� 0.6;
0.6� µ� 0.8; 0.8� µ� 1;

and similar expressions for the remaining values l
p
i [v]

for i = 2;3;4.
Finally, if we wish to aggregate these results and

obtain a single evaluation of the relative strength of
each party in the coalition formation process in ab-
stracto, i.e. without prescribing any ideological de-
gree µ to the coalition, it suffices to integrate the
multinomial value of each party with respect to µ, thus
getting

x1[v] =
Z 1

0
l

p
1 [v]dµ� 0:6333
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and, similarly,

x2[v]� 0:3365; x3[v]� 0:2681; x4[v]� 0:1393:

Remark 5.2 An important difference between the
Shapley value assessment and the result of applying
a (multinomial or not) probabilistic value is that the
former is efficient whereas the latter, in general, is not
(Weber, 1988). For this reason we speak of relative
strength. If the results have to be applied to shar-
ing political responsibilities, they can be directly ap-
plied in the Shapley value case by efficiency, whereas
a normalization process, similar to that of the original
Banzhaf power index, is needed in the multinomial
case, by defining

L
p
i [v] =

l
p
i [v]

plp
(v)

=
l

p
i [v]

å
j2N

l
p
j [v]

for each i 2 N and any v 2 GN for which this nor-
malization makes sense. The normalization may of
course be applied also to the single evaluation x[v] ob-
tained in Step 3, giving normalized values

x1[v]� 0:4598; x2[v]� 0:2443;
x3[v]� 0:1947; x4[v]� 0:1012:

Which is therefore the meaning of the results ob-
tained in Step 3? In the same way as one accepts the
Shapley value of the game as an a priori evaluation
of the relative strength of each player in the coalition
formation bargaining, the values just obtained repre-
sent an analogous a priori evaluation of this relative
strength when the political relationships between the
parties are taken into account. The differences be-
tween our (normalized) assessment and the mere eval-
uation of the game provided by the Shapley value are
interesting: if Di[v] = xi[v]�ji[v] for all i, then

D1[v] = 0:0431; D2[v] =�0:0057;
D3[v] =�0:0553; D4[v] = 0:0179:

This indicates that the political relationships in
this particular game improve party 1 strongly (around
10.34%) and party 4 very strongly (around 21.37%),
while they damage party 2 very slightly (around
2.28%) and party 3 very strongly (around 22.12%).
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