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Abstract: Memory-based collaborative recommender system (CRS) computes the similarity between users based on 
their declared ratings. The most popular similarity measure for memory-based CRS is the Pearson 
correlation coefficient which measures how much the two users are correlated. However, not all ratings are 
of the same importance to the user. The set of ratings each user weights highly differs from user to user 
according to his mood and taste. This will be reflected in the user’s rating scale. Accordingly, many efforts 
have been done to introduce weights to Pearson correlation coefficient. In this paper we propose a fuzzy 
weighting to the Pearson correlation coefficient which takes into account the different rating scales of 
different users so that the rating deviation from the user’s mean rating is fuzzified not the rating itself. The 
experimental results show that Pearson correlation coefficient with fuzzy weighting outperforms the 
traditional approaches. 

1 INTRODUCTION 

Web services grow very fast letting Web users in a 
difficult position to select from a huge number of 
choices. Web personalization tools, especially 
recommender systems (RS) help Web users navigate 
Web easily and in a personalized way. The most 
successful recommender system is the collaborative 
recommender system (CRS) which recommends 
items people with similar tastes and preferences 
liked in the past to a given active user.  

Formally, CRS have ܯ users, ࣯ ൌ ሼݑଵ,… ,  ,ெሽݑ
rating explicitly or implicitly ܭ items, 	S ൌ
ሼsଵ, … , s୏ሽ, such as news, web pages, books, movies, 
or CDs. Each user ݑ௜ has rated a subset of items ௜࣭. 
The declared rating of user uୡ for an item ݏ௞ is 
denoted by rୡ,୩ (Goldberget al., 1992; Schafer et al., 
2007; Burke, 2002; Adomavicius and Tuzhilin, 
2005) and the user’s average rating is denoted by 
mୡ. To do its job, a memory-based CRS matches the 
active user to the available database according to a 
suitable similarity measure. The similarity between 
two users is a measure of how closely they resemble 
each other. Once similarity values are computed, the 
system ranks users according to their similarity 
values with the active user to extract a set of 
neighbors for him. According to this set of 

neighbors, the CRS assigns a predicted rating to all 
the items seen by the neighborhood set and not by 
the active user (Adomavicius and Tuzhilin, 2005). 
The predicted rating, ݎ݌௫,௞, indicates the expected 
interestingness of the item s୩ to the user u୶.  

 The similarity computation phase for any RS 
plays an important rule for the RS success. Different 
similarity functions often leads to different sets of 
neighbors for a given active user. A good similarity 
function will be that one produces a close set of 
neighbors for a given active user. The existing 
similarity measures for memory-based CRS based 
their work on the users’ raw declared ratings or on 
the deviation of these ratings from the users mean 
ratings. However, the users’ tastes for ratings differ 
from time to time and the actual employed rating 
scale differs from user to user. Therefore the raw 
declared users’ ratings need to be weighted so that a 
weighted rating scale is obtained for all users.  

Most of the previous work was focusing either 
on genetic algorithm (GA) to evolve weights 
(Bobadilla et al., 2011; Min and Han, 2005) or on 
trust and reputation as similarity modifiers for the 
existing Pearson correlation coefficient (Bharadwaj 
and Al-Shamri, 2009). However, GA approach takes 
a long time for training and requires the system to 
store the evolved weights which is an extra load for 
the system. In this paper we propose a fuzzy 
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weighting to the Pearson correlation coefficient. 
This weighting will increase the effectiveness of the 
correlation-based RS (CBRS) without loading it in 
time or in space. Thus a close set of neighbors is 
obtained which will increase the system accuracy. 

The rest of this paper is organized as follows: an 
introduction to some similarity measures for 
memory-based CRS is given in Section 2. Fuzzy-
weighted Pearson correlation coefficient for CRS is 
introduced in Section 3. Section 4 presents the 
experimental results for the proposed approach with 
the traditional approaches. Finally, we conclude our 
work in the last section. 

2 SIMILARITY MEASURES FOR 
MEMORY-BASED 
COLLABORATIVE RS 

The most popular similarity function for memory-
based CRS is the Pearson correlation coefficient 
(Burke, 2002; Adomavicius and Tuzhilin, 2005), 
where the similarity between two users is computed 
only based on the common ratings, S୶୷, both users 
have declared. The Pearson correlation coefficient 
(PCC) is: 

,ܠܝ൫ݎݎ݋ܿ ൯ܡܝ ൌ
∑ ݇,ݔݒ݁݀ ൈ ݕݔ࣭∋݇ݏ݇,ݕݒ݁݀

ට∑ ݇,ݔݒ݁݀
2 	∑ ݇,ݕݒ݁݀

2
ݕݔ࣭∋݇ݏݕݔ࣭∋݇ݏ

 (1)

where ݀݁ݒ௬,௞ ൌ ௬,௞ݎ െ ݉௬. The literature describes 
also the cosine similarity measure (Adomavicius and 
Tuzhilin, 2005), which treats each user as a vector in 
the items’ space and then finds the cosine of the 
angle between the two vectors.  

,ܠܝ൫ݏ݋ܿ ൯ܡܝ ൌ
∑ ௫,௞ݎ ൈ ௬,௞௦ೖ∈࣭ೣ೤ݎ	

ට∑ ௫,௞ݎ
ଶ ൈ	∑ ௬,௞ݎ

ଶ
௦ೖ∈࣭ೣ೤௦ೖ∈࣭ೣ೤

 (2)

Recently, Bobadilla et al., (2011) proposed the 
mean difference weights similarity measure. This 
similarity measure gets the average of the weights of 
the ratings differences between the two users. These 
weights are evolved using GA; however, they can be 
assumed fixed to the mean of each difference weight 
interval that have been proposed in (Bobadilla et al., 
2011). For our experiments, we set the weights fixed 
to ݓሺ݅ሻ ൌ൏ 1, 0.5, 0, െ0.5, െ1 ൐. 

,ܠܝ൫݉݅ݏ ൯ܡܝ ൌ
∑ ௬,௞ห൯௦ೖ∈࣭ೣ೤ݎ	௫,௞െݎ൫หݓ

ห࣭௫௬ห
 (3)

Bobadilla et al., (2011) divide Formula (3) by the 
difference between the maximum and minimum 

values of the rating scale. However, this factor is not 
necessary because Formula (3) already divides the 
weights by their number. The numerator cannot 
exceed หS୶୷ห in any way since ݓ ∈ ሾെ1,1ሿ. The only 
effect this factor has is reducing the similarity values 
which in turn will reduce the contribution of each 
neighbor’s rating in the aggregation process. 

3 FUZZY-WEIGHTED PEARSON 
CORRELATION COEFFICIENT 

Weighting user ratings is an effective way to capture 
the users’ different tastes for ratings scale. However, 
most of the previous work based this weighting on 
GA as a learning technique which is a good way if 
we have time and space. Even GA can focus on the 
good items while removing bad ones or reducing 
their impacts but it requires a long time for learning 
the weights and a large space for storing them. 
Moreover, these weights have to be recalculated 
periodically to capture the users changing tastes over 
time.  

A simple and effective way to alleviate the GA 
difficulties will be that one uses fuzzy logic to get 
the rating weights by employing the ratings 
themselves. However, this will suffer from the 
different users’ rating scales. Not all users use the 
rating scale similarly; some users rate an item by 3 
as bad item while others rate the same item by 3 as 
good item. Thus instead of employing direct ratings 
for evolving fuzzy weights, we can fuzzify the rating 
deviation from the user’s mean ratings, ݀݁ݒ௬,௞. This 
will avoid the different rating scales problem. The 
fuzzy-weighted Pearson correlation coefficient will 
be as follow: 

,ܠܝ൫ݎݎ݋ܿ ൯ܡܝ ൌ
∑ ௞ݓ ൈ ௫,௞ݒ݁݀ ൈ ௬,௞௦ೖ∈࣭ೣ೤ݒ݁݀

ට∑ ௫,௞ݒ݁݀
ଶ 	∑ ௬,௞ݒ݁݀

ଶ
௦ೖ∈࣭ೣ೤௦ೖ∈࣭ೣ೤

 (4)

To fuzzify dev୷,୩., we define five fuzzy sets for 
each deviation value (Figure 1). The membership 
values for these fuzzy sets are defined as below: 

݉ଵሺ݀ሻ ൌ ൝
1 					 െ 4 ൑ ݀ ൑ െ3
0 ݀ ൏ െ4				ܽ݊݀					݀ ൐ െ2

െ݀ െ 2 					 െ 3 ൏ ݀ ൑ െ2	
 (5a)

݉ଶሺ݀ሻ ൌ ൞

0 ݀ ൏ െ3 			ܽ݊݀					݀ ൐ െ0.5
݀ ൅ 3 					 െ 3 ൑ ݀ ൑ െ2
1 		 െ 2 ൏ ݀ ൑ െ1.5	

െ݀ െ 0.5 െ 1.5 ൏ ݀ ൑ െ0.5	

 (5b)

݉ଷሺ݀ሻ ൌ ൞

0 ݀ ൏ െ1.5					ܽ݊݀					݀ ൐ 1.5
݀ ൅ 1.5 െ 1.5 ൑ ݀ ൑ െ0.5
1 			 െ 0.5 ൏ ݀ ൑ 0.5	
1.5 െ ݀ 								0.5 ൏ ݀ ൑ 1.5	

 (5c)
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݉ସሺ݀ሻ ൌ ൞

		0																					݀ ൏ 0.5					ܽ݊݀					݀ ൐ 3
	݀ െ 0.5														 								0.5 ൑ ݀ ൑ 1.5
		1																									 											1.5 ൏ ݀ ൑ 2
		3 െ ݀																	 															2 ൏ ݀ ൑ 3

 (5d)

݉ହሺ݀ሻ ൌ ൝
	0																					݀ ൏ 2					ܽ݊݀					݀ ൐ 4
	1																								 													3 ൏ ݀ ൑ 4
	݀ െ 2																 													2 ൏ ݀ ൑ 3

 (5e)

 

Figure 1: Fuzzy sets and their membership values for the 
deviation values. 

Accordingly, each deviation value will get a 5-
tuple membership values (5-tuple vector) to these 
five fuzzy sets. For example, if ݀݁ݒ௫,௞ ൌ 2.3, then 
the corresponding 5-tuple membership vector will be 
௫,௞ܞ܍܌ ൌ൏ 0, 0, 0, 0.7, 0.3 ൐. Based on the 
membership vectors, we can get the fuzzy weighting 
for the k୲୦  common item as: 

௞ݓ ൌ √2 െ ,௫,௞ܞ܍܌൫ݏ݅݀ ௬,௞൯ (6)ܞ܍܌

where ܞ܍܌௫,௞ is the membership vector for ݀݁ݒ௫,௞ 
value and ݀݅ݏ൫ܞ܍܌௫,௞,  ௬,௞൯ is any vector distanceܞ܍܌
metric. In this paper, Euclidean distance function is 
used for computing 	dis൫dev୶,୩, dev୷,୩൯. In general 
 ௬,௞ are two vectors of size ݈ (in thisܞ܍܌ ௫,௞ andܞ܍܌
paper 	l ൌ 5 ). 

,௫,௞ܞ܍܌൫ݏ݅݀ ௬,௞൯ܞ܍܌ ൌ ඩ෍ቀ݀݁ݒ௫,௞
௝ െ ௬,௞ݒ݁݀

௝ ቁ
ଶ

௟

௝ୀଵ

 (7)

where dev୶,୩
୨  is the membership value of the dev୶,୩ 

value to its j௧௛ fuzzy set [Al-Shamri & Bharadwaj, 
2008]. We subtract 	dis൫dev୶,୩, dev୷,୩൯ from √2 in 

Formula (6) because √2 is the maximum distance 
value that we can get from Formula (7) [in this case 
the two deviation values are belonging to two 
different fuzzy sets with a unity membership value 
to each one of them, for example ࢑,࢞ܞ܍܌ ൌ൏
1,0,0,0,0 ൐ and ࢑,࢟ܞ܍܌ ൌ൏ 0,0,0,1,0 ൐]. 

4 EXPERIMENTS 

We conduct our experiments using the one million 
MovieLens (http://www.movielens.umn.edu, Dec 
2012) dataset. This dataset consists of 1000209 
ratings by 6040 users on 3900 movies. Table 1 
illustrates the distribution of this dataset’s users 
according to the number of each user’s declared 
ratings.  

The total dataset is divided into three datasets, 
DataSet1, DataSet2, and DataSet3 according to each 
user’s total ratings. We randomly select 500 users 
out of 6040 users such that 50% (250 users) are 
selected from DataSet1, 40% (200 users) are 
selected from DataSet2, and 10% (50 users) are 
selected from DataSet3. Keeping in mind the actual 
users’ distribution, we subdivide the resulting 
dataset into 10 mutually exclusive folds, fold(1), …, 
fold(10), each of which having the same size, 50 
users (25 users from DataSet1, 20 users from 
DataSet2, and 10 users from DataSet3). Thus each 
fold mimics the whole dataset distribution.  

Training and testing are performed 10 times 
where in iteration-i, fold(i) is reserved as the test set 
and the remaining folds are collectively used to train 
the system. That is in Split-1 dataset, fold(2),…, 
fold(10)  collectively serve as the training set while 
fold(1) is the test users; Split-2 is trained on fold(1), 
fold(3), …, fold(10) and tested on fold(2); and so on 
(Han & Kamber, 2006). Thus each fold is used the 
same number of times for training and once for 
testing. Thus the number of total users, training 
users, and active users are ൌ ்ܯ	, 500 ൌ 450 , and 
஺ܯ ൌ 50, respectively. During the testing phase, the 
set of declared ratings, ࣭௔, by an active user, ݑ௔, are 
divided randomly into two disjoint sets, namely 
training ratings ሺ࣭௔்ோሻ (34%) and test ratings ሺ࣭௔்ாሻ 
(66%) such that ࣭௔ ൌ ࣭௔்ோ ∪ ࣭௔்ா. The RS treats ࣭௔்ோ 
as the only declared ratings while ࣭௔்ா are treated as 
unseen ratings that the system would attempt to 
predict for testing the RS performance. 

Table 1: The one million Movielens dataset users’ 
distribution. 

DataSet 

No. of 

Users’ 

Ratings 

No. of 

Users 

Total 

Ratings 

Percentage 

(%) 

DataSet1   20 ‐‐ 100  3154  155677  52 

DataSet2   101 ‐‐ 500  2491  550580  41 

DataSet3  > 500  395  287913  7 

To test the effectiveness of our approach, we 
conduct four experiments on the 500 users’ dataset, 
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the first experiment uses Pearson correlation 
coefficient (Formula (1)) for the similarity 
computation and we call it Correlation-Based RS 
(CBRS). The second experiment uses Cosine Vector 
similarity measure (Formula (2)) for the similarity 
computation and we call it Cosine Vector RS 
(CVRS). The third experiment uses mean difference 
weights similarity measure (Formula (3)) for the 
similarity computation and we call it Difference 
Weights RS (DWRS). Finally, the forth experiment 
uses the proposed fuzzy weighted Pearson 
correlation coefficient (Formula (4b)) for the 
similarity computation and we call it Fuzzy-
Weighted RS (FWRS).  

The performance of each CRS is evaluated using 
coverage, percentage of the correct predictions 
(PCP), and mean absolute error (MAE) 
(Adomavicius and Tuzhilin, 2005; Breese et al., 
1998; Herlocker et al., 2004). Coverage is the 
measure of the percentage of items for which a RS 
can provide predictions. We compute the active user 
coverage as the number of items for which the RS 
can generate predictions for that user over the total 
number of unseen items (Vozalis and Margaritis, 
2003; Herlocker et al., 2004). The split coverage 
over all the active users is given by: 

݁݃ܽݎ݁ݒ݋ܥ ൌ
∑ ௜ܰ

௣ெಲ
௜ୀଵ

∑ ห ௜࣭
்ாหெಲ

௜ୀଵ

 (8)

Here,  N୧
୮ is the total number of predicted items 

for user u୧, and M୅ is the total number of the active 
users. The active user PCP is the percent of the 
correctly predicted items by the system for a given 
active user to the total number of items in the test 
ratings set of that user. The set of correctly predicted 
items for a given user and the split PCP over all the 
active users are defined by the following formulae: 

௔ሻݑሺݐ݁ܵݐܿ݁ݎݎ݋ܥ ൌ ൛ݏ௞|	ݏ௞ ∈ ࣭௔்ா	, ௔,௞ݎ݌ ൌ ௔,௞ൟ (9)ݎ

ܲܥܲ ൌ
∑ |௜ሻݑሺݐ݁ܵݐܿ݁ݎݎ݋ܥ|
ெಲ
௜ୀଵ

∑ ห ௜࣭
்ாหெಲ

௜ୀଵ

ൈ 100% (10)

The MAE measures the deviation of predictions 
generated by the RS from the true ratings specified 
by the active user (Breese et al., 1998; Vozalis and 
Margaritis, 2003; Herlocker et al., 2004). The split 
MAE over all the active users (M୅) is: 

ܧܣܯ ൌ
1
஺ܯ

	෍൮
1

ห ௜࣭
்ாห

෍ หݎ݌௜,௞ െ ௜,௞หݎ

ห ೔࣭
೅ಶห

௞ୀଵ

൲

ெಲ

௜ୀଵ

 (11)

Low Coverage value indicates that the RS will not 
be able to assist the user with many of the items he 
has not rated while lower MAE corresponds to more 
accurate predictions of a given RS. Over all splits 
we compute PCP (coverage) by summing all correct 
predictions (predictions) over all active users over 
all splits and divided it by the sum of all testing set 
sizes of all active users over all splits. The MAE 
over all splits is the average of all splits’ MAEs. To 
get the predictions, we have to use a prediction 
formula. The predicted rating, ࢑,࢞࢘࢖, is usually 
computed as an aggregate of the ratings of ࢛࢞’s 
neighborhood set for the same item ࢑࢙. The common 
prediction formulae are (Adomavicius and Tuzhilin, 
2005): 

௫,௞ݎ݌ ൌ
∑ ,ܠܝ൫݉݅ݏ ൯ܡܝ ൈ ೣࣨ∋௬,௞௨೤ݎ

∑ ห݉݅ݏ൫ܠܝ, ೣࣨ∋൯ห௨೤ܡܝ

 (12a)

௫,௞ݎ݌

ൌ ݉௫ ൅
∑ ,ܠܝ൫݉݅ݏ ൯ܡܝ ൈ ሺݎ௬,௞ െ ݉௬ሻ௨೤∈ࣨೣ

∑ ห݉݅ݏ൫ܠܝ, ೣࣨ∋൯ห௨೤ܡܝ
 

(12b)

where ௫ࣨ denotes the set of neighbors for ݑ௫ who 
have rated item ݏ௞ and ݉௫ is the average rating of 
user ݑ௫. Formula (12a) scales the contribution of 
each neighbor’s rating by his similarity to the given 
active user. On the other hand, because users usually 
vary in their use of rating scale, Formula (12b), 
Resnick’s prediction Formula, compensates for 
rating scale variations by keeping predicted ratings 
for a given user to fall around his mean rating. 
However, mean ratings for some users are high and 
thus the predicted ratings may fall outside the rating 
scale’s range [1.0, 5.0]. Thus we use priority-based 
prediction formula where Formula (12b) is used 
first. If its predicted rating is out of the rating range, 
then we switch to Formula (12a). Formula (12a) 
predicted ratings will not exceed the rating scale 
range. The neighborhood set size ௫ࣨ is varied from 
10 to 100 by a step size of 10 each time,  ௫ࣨ ൌ
ሼ10, 20, … , 100ሽ. 

4.1 Analysis of the Results 

The results presented in Figures 2, 3, and 4 show the 
PCP, coverage, and MAE over all active users over 
all splits for the four different RS, CBRS, CVRS, 
DWRS, and FWRS. These results show that FWRS 
performs better that all CBRS, CVRS, and DWRS in 
terms of PCP, coverage and MAE. The higher PCP 
of FWRS obviously illustrates that better set of like- 
minded users is found and therefore the accuracy of 
the RS gets enhanced.  
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Figure 2: Percentage of correct predictions of CBRS, 
CVRS, DWRS, and FWRS. 

The PCP (coverage) increases as N୶ increases for 
all RS. This increasing saturates as ௫ࣨ reaches 80. 
CVRS performs the worst among all RS we have 
examined. This is because CVRS relies directly on 
the ratings themselves. Raw ratings depend on each 
user rating scale and on his mode and taste. Thus 
comparing one user’s raw rating with another user’s 
raw ratings will not give a good indication of their 
similarity. This problem is alleviated with CBRS 
and FWRS by using the deviation from each user’s 
mean rating. 

DWRS gives an indirect way for computing the 
similarity between two users by summing the rating 
difference weights not the differences themselves. 
This approach performs better than both CBRS and 
CVRS. However, it performs worse than FWRS 
which employs both the deviation values and their 
fuzzy weights. The MAE of FWRS is the minimum 
amongst all the recommender systems we have 
examined with all neighborhood set sizes. It starts to 
saturate at N୶ ൌ 90. MAE starts high because only a 
few numbers of items can get predictions. Thus the 
difference will be high, i.e. the actual ratings 
themselves. 

 

Figure 3: Coverage of CBRS, CVRS, DWRS, and FWRS. 

 

Figure 4: Mean absolute error of CBRS, CVRS, DWRS, 
and FWRS. 

5 CONCLUSIONS 

Pearson correlation coefficient is the most widely 
used similarity measure for memory-based CRS. 
However it is found that different users give 
different weightings for their declared ratings. Thus 
many methods have been proposed for introducing 
weights to this similarity measure.  

The proposed fuzzy weighting for Pearson 
correlation coefficient is efficient in terms of time 
and space. This fuzzy weighting is derived based on 
the user rating deviation from his mean rating thus it 
avoids the users’ different rating scales. Instead of 
utilizing GA for small intervals which degrades the 
usefulness of GA such that Bobadilla et al., (2011) 
used, FWRS gives an easy way to get each user 
fuzzy weights for different deviation values. This 
weighting is not fixed and will change by changing 
the neighbor. Experimental results show that FWRS 
outperforms all the examined RSs in terms of PCP, 
coverage, and mean absolute error. 

This paper utilizes five fuzzy sets; however, 
many ways can be proposed for fuzzifying the 
deviation values. This is kept for future work. 
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