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Abstract: One of the most formidable challenges in modern biology is to get a unified view of the various 
mechanisms governing the behavior and of the causal relationships among different parts of a living system. 
It is coming clearer nowadays that to get such comprehensive picture computational models embracing 
different observation levels in space and time have to be formulated to explain the enormous amount of data 
deriving from -omic high throughput measurements methods. In this article we aim at giving a meaning to 
the concept of multi-scale modeling in the framework of studies of biological systems with particular 
interest in understanding human physiology in disease conditions. 

1 INTRODUCTION 

Mathematical models of natural phenomena intend 
to describe reality. By means of the mathematical 
formalism allowing logical reasoning over 
designated variables we account for observations 
made through experimentation. Defining the 
variables of a mathematical model is a fundamental 
step actually setting up the range of logical 
deductions allowed by that model. For example, if 
we use a variable to describe the changes of a 
concentration of a protein in the blood we are 
definitely overlooking the dynamics of the atoms 
and the ions hence we cannot get any information 
about the folding of the protein itself. The origin of 
this oversight lays in a basic principle sometimes 
referred to as the lex parsimoniae most commonly 
known as the Ockam’s Razor. “Pluralitas non est 
ponenda sine neccesitate” in very simple words 
states that in the description of a phenomenon the 
most useful model is the most parsimonious one in 
terms of elements used. In this regard, following up 
the example above, it makes little sense to describe 
the laws governing the forces accounting for the 
folding of the protein if we are interested in the half-
life of the protein and we can estimate its decay rate 
by fitting a curve to a set of experimental data about 
the concentration in the blood of that protein. 

William of Ockham was a Franciscan monk and 
logician who lived in the 14th century in a village of 
the English county of Surrey. At that time the 

principle of parsimony in describing and modeling a 
natural phenomena was well reasoned. However 
today, the situation is a “bit” different. The lex 
parsimoniae is still valid and indeed very much used 
when describing a phenomenon, but besides 
classical mathematical models allowing for an exact 
analytical approach, another modus operandi is now 
commonly employed. This is what we can call the 
synthetic approach consisting in constructing a 
replica or toy of the studied system in terms of the 
most important identified elements and the laws 
governing the relationship among them. Actually 
this approach is not new at all. The “engineer” 
Leonardo used to construct toy models of flight 
machines before attempting anything real-scale. 
What is new today is that we can use digital 
computers to construct toy models. We can instruct 
extremely powerful CPUs to execute algorithms 
representing entities and laws and we can then make 
all kinds of conceptual experiments on those entities 
and laws. This “digital synthetic” approach is 
commonly referred to as simulation. Today, when 
studying a certain natural phenomena, scientists first 
identify elements and basic laws governing the 
dynamics of the system, then they represent them as 
data structures and algorithms and finally execute 
the algorithms to observe how the system evolves. 
The Ockam’s principle is still valid and used in the 
first phase of this process but after that, thanks to the 
fact that computers do the calculations, the 
parsimony is forsaken, and the complexity of the 
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initial toy model is augmented by simply adding 
new entities and laws. Indeed, with little difficulty 
we can detail processes incorporating hypothetical 
or experimentally derived knowledge. We can even 
compose pre-constructed models of different parts of 
the real system or arrange models describing reality 
at different scales of observation. This holistic 
approach is what in biology is called systems biology 
(Kitano, 2002). The class of systemic models 
therefore includes the one of multi-scale models. 

Multi-scale modeling has been drawn a great 
deal of attention in biological modeling and is 
discussed in many recent articles and reviews (Qu et 
al., 2011; Dada and Mendes, 2011; Southern et al., 
2008; Bassingthwaighte et al., 2005; Coveney and 
Fowler, 2005; Engler et al., 2009; Grima, 2008). See 
for example the interesting attempt to provide a 
framework for multi-scale computational modeling 
that is given in (Sloot and Hoekstra, 2010) together 
with two examples showing how to bridge different 
single-scale models.  

The present article aims at giving a meaning to 
the concept of multi-scale modeling in the 
framework of studies of biological systems in 
general with particular interest in understanding 
human physiology in disease conditions. This article 
provides a general introduction to the 
methodological issues of multi-scale modeling. For a 
more extensive reading including examples we 
recommend the above-cited reviews and also 
(Hunter and Nielsen, 2005; Meier-Schellersheim, et 
al., 2009; Murtola et al., 2009; Schnell et al., 2007; 
Bradley et al., 2011; Joshi et al., 2011). 

2 LEVELS OF BIOLOGICAL 
ORGANIZATION 

Before we define what a multi-scale models is, it is 
first necessary to make clear what it is meant to 
formulate a model at a certain scale (Southern et al., 
2008). In the natural sciences, to make an 
observation requires setting a temporal and a 
dimensional scale. For example, freely draw from 
disparate scientific fields, the phenomena of the 
continental drift is better described over a time span 
of million years, the evolution of a disease like 
multiple sclerosis in years or decades, the immune 
recognition of an infectious agent in days, the cell 
cycle and circadian rhythm in twenty-four hours and 
so on, to fast processes like the heart beat lasting 
about a second or the fold of a protein that takes 
place in microseconds and beyond. Likewise, certain 
phenomena are better seen over a length or space 

scale of light years, as for example the formation of 
galaxies, or kilometers, like for the propagation of a 
tsunami wave, or micrometers to describe the 
duplication of a cell, and so on. 

In general terms, while we can intuitively say if a 
determined process involves cells, molecules, or 
organs, it is not so simple to identify values for the 
lengths at which we switch from one level to the 
next (Southern et al., 2008). Major levels of 
biological organization are regulated at scales of 
many orders of magnitude in space and time 
(Figure), with space spanning from the molecular 
scale (10-10m) to the living organism scale (1 m), and 
time from nanoseconds (10-9s) to years (108s). 
 

 

Figure 1: Multi-scale models of the human body targeting 
complex processes span many time and length scales of 
biological organization. 

When combining models in a systemic way, the 
challenge remains in the manner the components are 
put together. Note that, in the study of complex 
phenomena as for instance human pathologies, a 
unified view is indeed necessary to reach a 
comprehension of the various mechanisms in action 
and of the causal relationships among different parts 
of that complex system that is the human body (Di 
Ventura et al., 2006). Complex diseases entail 
phenomena ranging all scales, from observations at 
the microscopic scales (from pico to micro meters) 
to microscopic tissue damage and embracing 
temporal events ranging from very fast processes 
lasting in the order of femto seconds (for example 
protein folding, protein docking, etc.) to slower 
microscopic events like DNA transcription, cellular 
mechanisms like meiosis or even lengthy ones like 
the embryogenesis or the evolution of a disease like 
diabetes or cancer (Hunter and Borg, 2003). In this 
regard, there is another important aspect that should 
not be left out from the whole picture. This is the 
contemporary data explosion deriving from 
genomic, transcriptomics, proteomics and 
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metabolomics studies consisting in high dimensional 
datasets produced by latest high throughput 
measurements methods (Deane et al., 2002). Also, 
other types of data coming from modern microscopy 
and biological imaging contribute to the detailed 
description of the constitutive parts and basic 
structures of living organisms (Southern et al., 
2008). On that account, the current challenge 
expects to relate these datasets to higher level 
phenotypic characteristics and computational multi-
scale modeling approaches are set to reveal 
quantitative mechanistic relationships between these 
various measurements (Di Ventura et al., 2006). For 
example, high throughput gene expression data can 
be used to infer knowledge of the intracellular 
activities that can be later ascribed to the behavior of 
cells in a higher-level description; e.g., the 
expression of the gene GATA3 in CD4 T 
lymphocytes in a certain experimental condition 
gives indication about the differentiation state of 
these cells, on the pattern of cytokine secreted and 
ultimately on the type of the immune response 
(Santoni et al., 2008); this is an information that is 
relevant to the construction of a computational 
model of the immune response.  

For example, we have implemented a gene 
regulatory network (GRN) of the intracellular-level 
gene expression dynamics to characterize the 
Th1/Th2 cell differentiation, a phenomena that takes 
place at the cellular (mesoscopic) level.  The GRN 
used represents the most extensive attempt to model 
the regulatory network controlling the differentiation 
of TH lymphocytes to date (Mendoza, 2006). Before 
integrating the minimalistic Boolean network 
dynamics in an agent-based model of the cell-cell 
interaction, we identified the genes coding for 
membrane receptors and those coding for soluble 
molecules to be secreted by the cell, with the idea of 
interpreting the former as the “input” and the latter 
as the “output” of the cell (left panel of Figure 2). 
Then we analysed the network Boolean dynamics 
using classical logical methods to identify the 
asymptotic regimens. In particular, three ‘attractors’ 
with relevant biological meaning were identified: 
two leading to TH1 (P1 and P2) and one to TH2 (P3) 
phenotype. For each time step of the simulation each 
undifferentiated T helper cell would individually 
transduce the input signals coming from the 
extracellular space through the cell receptors (right 
panel of Figure 2) into a micro-dynamics of the gene 
regulatory network eventually falling (or not) in one 
of the attractors. In the case one of the possible 
attractors is reached, then rule is fired and the cell 
becomes a Th1 or Th2, otherwise the cell remains in 

the undifferentiated state. More formally, we 
obtained a partition of the space of all possible 
configurations Ω ൌ ሼ0,1ሽଵ଻ (17 are the genes of the 
GRN) considering hyper spheres of radius two 
centred in P1, P2 and P3, that is, ܤ௉௜ ൌ ሼݔ ∈
Ω: ݀ሺܲ݅, ሻݔ ൑ 2ሽ, ݅ ൌ 1,2,3, where ∀ܽ, ܾ ∈
Ω, ݀ሺܽ, ܾሻ ൌ ∑ ห ௝ܽെ ௝ܾห

ଵ଻
௝ୀଵ  and ܤ௉଴ ൌ 	Ω െ ሺܤ௉ଵ ∪

௉ଶܤ ∪  ௉ଷ) is the remaining space. Note thatܤ
௉ଵܤ ∩ ௉ଶܤ ് ∅ while ሺܤ௉ଵ ∪ ௉ଶሻܤ ∩ ௉ଷܤ ൌ ∅. The 
rule states that, at time ݐ ൅ 1, undifferentiated Th 
cells at time ݐ, whose internal network state belongs 
to ܤ௉ଵ ∪  ௉ଶ, are marked as Th1; those with internalܤ
state in ܤ௉ଷ are marked Th2 and all the rest do not 
differentiate.  

 

Figure 1: Left panel: The GRN used to control the 
differentiation of Th cells. Nodes correspond to 
genes/molecules involved in the Th1/2 switch. Connectors 
ending with an arrow indicate activation while those 
ending with a dot indicate inhibition. Right panel: The 
differentiation of each uncommitted Th cell depends on 
the concentration of input cytokines surrounding it. These 
cytokines determine the activation level of the 
corresponding input nodes, i.e., if cx denotes the 
concentration of an input cytokine, then the activation 
level of the corresponding input node is given by [m · 
c2/(θ2 + c2)] where [x] denotes the smallest integer greater 
than x, m are the activation levels and θ is a constant. 

The resulting automaton was able to reproduce a 
dynamics that was consistent with macroscopic 
observable phenomena at the cell population level 
still remaining compatible with a realistic gene 
expression profile at the microscopic level (Santoni 
et al., 2008). This example shows that the two levels 
of description (intracellular and extracellular) can 
realistically be integrated supposed that (i) the 
intracellular gene regulatory network is biologically 
sound and allows for relevant asymptotic regimens 
and (ii) the stable dynamics at the lower level can be 
rationally translated into an action (the rule) at the 
upper level. 

As already mentioned, mathematical models that 
try to describe such mechanisms, usually fix a 
spatial and the temporal scale and describe the 
system with a mathematical or computational (i.e., 
algorithmic) formalism (Dada and Mendes, 2011; 
Engler et al., 2009; Qu et al., 2011). Computers do 
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the rest as they provide the dynamics by executing 
(resolving) the rules just described in mathematical 
formalism. The dynamics is dependent on 
parameters and initial conditions so that one 
generally tries hypothetical scenarios modifying 
those initial conditions to get a feeling of the 
systems behavior (Meier-Schellersheim et al., 2009; 
Schenell, 2007). This process leads itself in 
discovering new knowledge. However, the problem 
is that the real system is in general not isolated 
hence a local description is not sufficient to disclose 
crucial mechanisms. It comes quite clear that one of 
the reasons why biological phenomena are 
intrinsically complex is because they are influenced 
by variables that are outside a single level of 
space/temporal description. 

If we take into consideration the space, a good 
way to define a scale is to selectively assign 
processes to their position within a biological 
hierarchy i.e., whether they represent interactions 
between organs, within a tissue, between cells, and 
so on. We can refer to these hierarchical positions as 
levels of a biological organization. A relevant note 
to this question is expressed in (Southern et al., 
2008), namely, when comparing different organisms 
with each other, the specific spatial-temporal scales 
in standard international units may be quite 
different, even when looking at the same level of 
biological organization and it would therefore be 
beneficial for multi-scale modeling in bio-medicine 
to refer to these levels of organization. 

Biological systems can be thought as hierarchical 
structures, i.e., genes that encode proteins; proteins 
that are building blocks of organelles and cells; cells 
that form tissue and organ; organs that form 
organisms; and organisms that give origin to 
individuals and populations. Different levels 
communicate each other in the sense that lower 
levels affect the higher ones and vice versa. For 
example proteins regulate gene expression. 
Therefore, in a biological system, interactions can 
occur both at the same scale (such as interactions 
between different cells) as well as between scales. 
This originates a very complex system in which one 
has to deal with multiple spatial and temporal scales 
and feedback loops.  

In theory, one can develop a model of a 
biological system (such as a cardiac cell or the heart) 
consisting of the genes and proteins, or even the 
atoms. In practice however, existing computational 
tools are yet insufficient for this task. It should be 
noted that experiments are done at many scales, 
ranging from single molecules or proteins to whole 
organs and organisms, and therefore, experimental 

information exists at different scales. Therefore, 
relying on different experimental data, a model can 
be formulated using two main approaches, i.e., top-
down or bottom-up (Alberghina and Westerhoof, 
2008). 

If one chooses to take into account the individual 
elements and their interactions, studying the 
resulting biological system as a consequence of the 
emergent behavior of its single components, then the 
bottom-up approach takes place. The advantage of 
this type of approach is that it is adaptive and robust, 
in the sense that if the available biological 
knowledge varies, one can adapt the new knowledge 
to the specific components of the model, in a very 
selective way. Moreover this kind of approach is 
suitable for studying the emergent properties of 
systems consisting of a large number of interacting 
elements. The intensive computer power required is 
the main disadvantage for the bottom-up approach 
and can be sometimes even prohibitive. Moreover, 
the model itself can become too complicated to 
control. 

Instead, one can decide not to look straight into 
the details of the individual elements, but to consider 
the system at the macroscopic level, using 
experimental observations as guidelines during the 
formulation of the model. The clear advantage of 
this approach is that it is relatively simple. On the 
other hand, the adaptability and the robustness of the 
model are less evident compared with the bottom-up 
approach. Moreover, it should be highlighted that 
the variables and parameters in these models are 
largely phenomenological without direct connection 
with detailed physiological parameters. Due to this 
reason, it may sometimes happen that the top-down 
approach does not correctly reveal the actual 
responsible mechanism, e.g., when there are 
multiple mechanisms for the same behavior or a 
single mechanism resulting in multiple phenomena. 
When existing components have to be integrated 
with some new part a third design principle, named 
“middle-out”, is used (Hunter and Viceconti, 2009).  

3 MODELING ACROSS 
DIFFERENT  
SCALES – FILLING THE GAP 

Going from the lowest scale to higher levels one can 
choose among different modeling choices. Intra-
cellular modeling approaches aim at a detailed, 
mechanistic description of molecular processes 
occurring inside single cells. These models usually 
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adopt the differential equation description to predict 
the molecular kinetics of specific cellular pathways 
starting from experimentally determined parameters. 
These models consist of mass action or Michaelis-
Menten kinetic rate-law equations describing the 
changes of molecular concentrations. An example of 
a bi-domain model describing a phenomenon at a 
level that originates from the microscopic dynamics 
at a smaller space scale is the wave propagation in 
reactive media belonging to the class of the so-called 
Belousov– Zhabotinsky reaction. In a simple form 
(called the “oregonator” model) it may be 
understood in terms of the following schema (Tyson, 
1994) including an autocatalytic reaction 
A+Y→X+P, X + Y → 2P, A + X → 2X + 2Z, 2X 
→ A + P,   B + Z → hY + Q, where the variables 
represents concentrations of specific molecules (e.g., 
bromomalonicacid, carbon dioxide, etc.) and h is a 
constant. Translated to ordinary differential 
equations the system is dX/dt =AY −XY +AX−2X2, 
dY/dt = AY − XY + hBZ, dZ/dt = 2AX – BZ, where 
A, B and P are held constant. The solution of this 
system has an oscillatory dynamics that, transposed 
to two spatial dimensions, describes a propagating 
wave. The bi-domain “nature” of the model in this 
example lays in the emergence of the wave at a level 
that is above the one chosen to describe the 
phenomena, that is the molecular level of the 
reactants (Murray, 2003).  

An alternative to differential equations for intra-
cellular models is the microsimulation of reactions 
within cells where the number of reagents is a small 
number (due to current computational limitations). 
The method developed many decades ago and 
known as the Gillespie algorithm (Gillespie, 1976; 
Gillespie, 1977) allows to accurately simulating 
chemical or biochemical systems of reactions 
generating a statistically correct trajectories as 
possible solutions of a stochastic equation as for 
example the differential equations corresponding to 
the time-evolution of stochastic processes that 
proceed by jumps (e.g., Markov jump process 
(Bailey, 1990)). A simplified version of this 
equation is the master equation describing the time 
evolution of the probability P  of a system to be in a 
set of states with regard to a continuous time 
variable t. The most familiar form of a master 
equation is a matrix form  

dP
M P

dt
   (1)

where M is the matrix specifying the connections. At 
a higher scale level of description, tissues or whole 
organs are modeled in two different ways: either as 
functional compartments or system units or as a 

collection of microscopic components (e.g., cells). 
These two modeling paradigm use a completely 
different point of view in describing a functional 
unit as a tissue or organ. In the former case the organ 
is seen as a black box with known input-output 
relationship. This relation is typically derived from 
known facts and ultimately realized by differential 
equations linking stimulus with response or input to 
output or causes to effects. These kind of 
phenomenological models do not attempt to give an 
explanation of the observed behavior whereas they 
aim merely at reproducing it. They are quite useful 
when combined together to offer a bigger picture. 
The latter modeling paradigm proposes to represent 
a tissue as an array of individual units (i.e., cells) 
exchanging signals with the environment. A 
noticeable example of these multicellular systems 
has been originally developed to study the growth of 
solid tumors (Drasdo et al., 1995; Drasdo, 2000), 
and has later on been applied to simulate the 
function (the regeneration) of complex organs like 
the liver (Hoehme et al., 2010).  

There are a number of ongoing projects whose 
aim is to simulate a whole cell (e.g., virtual cell 
(Schaff et al., 1977), e-cell (Normile, 1999; 
Takahashi et al., 2004)), whereas efforts aiming at 
simulating whole systems or organs are, for 
example, models of the heart (Hunter and Nielsen, 
2005), of the liver (Holzhütter et al., 2012), and of 
the skeletal system (Viceconti, 2012). Other efforts 
aim at creating computational platforms suite to 
integrating various physiological processes (Eissing 
et al., 2011). These are integrative systems biology 
challenges that target the simulation of complex 
biological systems through multi scale integration of 
different mathematical and computational models. 
The approach is the so-called middle-out strategy 
proposed by Brenner, (1998) and Noble (2002; 
2006), based on the principle that, in biology, there 
is no privileged level for the description of a certain 
phenomenon and that the inter-level causal 
relationships are driven by interactions between 
multiple levels. An application of the same modeling 
principle to nutritional sciences can be found in de 
Graaf et al., (2009) where the authors describe how 
multi-scale models integrating processes from the 
cellular up to the physiological levels are indeed 
necessary in answering important nutritional 
questions. 

The use of different modeling paradigms 
however, introduces gaps between scales. Multi-
scale modeling, besides modeling the individual 
system components, needs to address the issue of 
how to bridge the gaps between different 
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methodologies and between models at different 
scales. Unfortunately, there is not a specific or 
simple way to achieve this goal, but there are quite a 
number of empirical principles and methods that can 
provide some hint. For instance, adaptive mesh 
refinement in lattice models (Plewa et al., 2005) is 
used to scale down the details of a certain process, 
the Hidden Markov Models (Baum and Petrie, 1966) 
are used to deduce higher scale logics from the 
observation of lower scale patterns, equation free 
methods (Kevrekidis et al., 2003) based on the 
execution of microscopic simulation models 
allowing for computing the evolution equation of a 
system at a higher (e.g., coarse) level, etc. 

Systems biology is the main area in which one 
can find this help. The goal of systems biology is to 
consider a biological system from a holistic 
perspective, and use both experiments and modeling 
and the interactions between experiments and 
modeling to reveal how the system behaves (Kitano, 
2002; Kohl et al., 2010). 

Specific modeling choices at a lower length scale 
favor the integration of information at higher scales 
and vice versa. For example, the individual- or 
agent-based modeling approach at the mesoscopic 
level (Castiglione et al., 2007) can be integrated to 
the microscopic intracellular description for which 
we can adopt either the continuous approach (as in 
Ribba et al., 2006, that integrates cell cycle 
regulation and macroscopic tumor dynamics with 
the aim with the aim of mathematically investigating 
this therapeutic failure the anti-metastatic agents 
called inhibitors of metalloproteinases), or Boolean 
networks to model intracellular events (like the 
regulation of gene activation as in the differentiation 
of T lymphocytes (Santoni et al., 2008)). In other 
words, taken out the necessary approximation, a 
fruitful approach in constructing large-scale 
mechanistic models is given by combining 
mechanistically detailed kinetic models (either 
continuous - equations based - or discrete - boolean 
networks) and coarse-grained (i.e., individual- or 
agent-based) models (Smallbone et al., 2007). 
Interestingly, it has been shown recently that 
complex system behavior is often largely defined by 
the interaction topology among the various model 
components (Brown et al., 2004; Gutenkunst et al., 
2007). This finding further supports the expectation 
that in order to obtain meaningful predictions most 
likely only a few molecular processes need to be 
described in great detail with precise parameters 
estimates, while the rest of the system can be 
described using the coarse-grained interaction 

topology (de Graaf et al., 2009). 
The very multi-scale nature of novel models in 

computational biology makes their development 
particularly challenging, not just from a biological 
point of view but also from a mathematical and 
computational perspective. Moreover, given the 
availability of already published models targeting a 
single scale, the sharing and reusing of such models 
has become an issue. A prominent attempt at solving 
this problem is provided by the Physiome Project 
(Bradley et al., 2011; Hunter and Borg, 2003), which 
aims at developing a framework for the modeling of 
the “whole” human body. As part of that initiative, 
the mark-up language CellML was introduced with 
the aim of establishing a world-wide-adopted 
standard in the development of cellular level that are 
modeled as sets of ODEs (Garny et al., 2008). 
Similarly, FieldML has been defined to model 
processes on the tissue and organ level that are 
represented as sets of PDEs (Christie et al., 2009). 
Along with CellML, another standard called 
Systems Biology Markup Language (SBML) (Hucka 
et al., 2003) has been proposed and is now beginning 
to make a significant impact on the modeling 
community as a means to exchange models. 
However, neither CellML nor SBML include 
explicit directives to deal with the problem of 
implementing a multi-scale computational model, 
although there are attempts to address this issue 
(Baylei, 1990). 

Regardless the integration framework one 
decides to use there are few aspects that need to be 
taken into account when developing a multi-scale 
model. In general, the time scales on which the 
lower-level processes occur are much faster than 
those on which the higher-level processes occur. 
Usually this means that the lower-level processes 
can be assumed to occur instantaneously and can 
therefore be included as a representation of some 
kind of field at the higher level. The switch to a 
model at a higher level of organization is usually 
determined by the need to ensure that the 
calculations can be performed in reasonable time 
(Southern et al, 2008). When coupling together 
independent models of processes that occur on 
different scales or as part of different physical 
systems (as is in multi-organ systems) it is enticing 
to simply couple existing components (i.e., software) 
for the separate models to one another. However, 
this does not take into account how inaccuracies in 
the values of the variables that are passed between 
the two models may affect the combined model - 
one variable may be accurate enough in one model 
but when these models are coupled may first 
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introduce errors into the solution of the other model, 
and in turn the solution of the combined model. In 
order to prevent these inaccuracies from occurring 
one should consider the whole as a single model 
rather than the combination of two simpler ones. For 
instance, we can consider a microscopic simulator at 
the cellular level can be coupled with the description 
of the intracellular signaling activating a specific 
cellular pathway. In this example the differentiation 
of T lymphocytes into the phenotypes Th1, Th2, 
Treg and Th17 is described at a cellular level by 
means of individual entities (e.g., agent-based) 
whereas the gene regulation is described (at variance 
with the example above which use a Boolean 
network) by a system of differential equations 
describing activation level of each gene of the gene 
network represented with the following equation 

( )

( )(1 )(1 )

i

i

h CCh
i

i ih CCh

dx e e
x

dt e e



 
 

 

 
 

 
 (2)

where ݔ௜ is the activation level of the ith gene, ߱௜ and 
 ௜ߛ

are parameters relative to the network topology 
and C is a constant (Mendoza and Pardo, 2010). 
Here the lower level description of gene activation is 
determined at each upper-level time step by solving 
the system of ODEs, and the cell differentiation is 
executed at the upper level on the basis of the 
information coming from the gene expression levels. 
This procedure is iteratively executed at each time 
step and for each lymphocyte.  

4 CONCLUSIONS 

In the study of complex biological phenomena it is 
necessary to develop a unified view of the various 
mechanisms in action and of the causal relationships 
among different parts of that complex system (Di 
Ventura et al., 2006; Kitano, 2002). In this article we 
have briefly described the problems faced when one 
wants to link mathematical or computational models 
across different time and length scales. 

In many areas of biology and physiology, multi-
scale and multi-physics models are very much 
acclaimed, Although there exist an abundant 
literature for multi-scale models in science and 
engineering domains (Fish, 2010; Weinan, 2011), a 
lot remains to be done in terms of translating these 
mathematical theories and methodologies to the 
domains of biology and physiology (Evans et al., 
2008; Caiazzo et al., 2011; Tahir et al., 2011). 

A key unsolved issue is how to represent 
appropriately the dynamical behaviors of a high-
dimensional model of a lower scale by a low- 

dimensional model of a higher scale, so that it can be 
used to investigate complex dynamical behaviors at 
even higher scales of integration (Qu et al., 2011).  

The use of different modeling techniques, 
introduces gaps between scales. Multi-scale 
modeling, besides modeling the system, needs to 
address the issue of how to bridge the gaps between 
different methodologies and between models at 
different scales. Unfortunately, there is no specific 
or simple way to tell how to achieve this objective, 
but there are empirical principles and methods that 
can be of help. The goal of computational systems 
biology to consider a biological system from a 
holistic perspective, and use both experiments and 
modeling to reveal how the system behaves (Kitano, 
2002; Kohl et al., 2010). It is certainly one of the 
main research fields that can benefit from the use of 
multi-scale models and, at the same time, provide 
methodologies for their development. 
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