
Towards Cloud Data Management for MMORPGs

Ziqiang Diao and Eike Schallehn
Institute of Technical and Business Information Systems, Otto-von-Guericke University Magdeburg,

Universitaetsplatz 2, Magdeburg, Germany

Keywords: MMORPG, Data Management, Cloud Storage System.

Abstract: Massively multiplayer online role-playing games (MMORPG) provide a persistent and collaborative world
for millions of players. With increasing numbers of players and growing volumes of data, architectures based
on conventional RDBMS limit the development of MMORPGs, because issues related to the availability and
scalability of the storage system become a big challenge. These properties are typically well supported by
Cloud data storage systems, while other typical requirements of MMOPRGs are not or not yet supported,
as we will show in this paper. Furthermore, in a current project we assess the usability of Cassandra and
possibly extend its functionality for MMORPGs. In this paper, we will classify data based on its management
requirements, highlight limitations of the existing architecture and identify potentials and issues of Cassandra
in the management of diverse data in MMORPGs.

1 INTRODUCTION

Worldwide revenues for Massively multiplayer online
role-playing games (MMORPG) likeWorld of War-
craft andStar Wars: The Old Republic have increased
to billions of dollars each year. Unfortunately, the
complex architecture of MMORPGs makes them hard
to maintain, resulting in considerable costs and devel-
opment risks. In this paper, we propose to use and
extend Cloud storage systems to address these issues.

Figure 1: A simplified architecture of MMORPGs.

In order to support player interaction and ensure
system security (Zhang et al., 2008) the MMORPG
typically employs a Client-Server model. Figure 1
shows a simplified architecture of an MMORPG
(White et al., 2007; MuchDifferent, 2013). The lo-
gin server is responsible for determining the validity
of players login requests. It cooperates with an ac-

count database that stores user account information.
If the validation is passed, then players communicate
with the gateway server, which maintains the connec-
tion state of a player, monitors the player’s requests
and transmits them to an appropriate server. In order
to reduce the response time, servers are usually de-
ployed in parallel in several data centers (zone servers
from the perspective of players), which locate around
the world. However, according to the choice made
by a player, only one zone server provides services.
The zone server is responsible for maintaining a vir-
tual game world for players, executing the game logic,
simulating interactions among characters, and syn-
chronizing the simulation results to the relevant play-
ers. In order to balance the server workload, a zone
server is composed by multiple map servers and logic
servers. The zone server reads game scripts and rules
from a game database, accesses state data of charac-
ters from a state database, and processes data in an in-
memory database in real-time. Moreover, all player
operations and sometimes also the chat history are
monitored for data mining and intrusion detection.

Note that the data size grows significantly with the
continuation of time. Furthermore, MMORPGs usu-
ally have a large amount of concurrent players, for ex-
ample, World of Warcraft has millions of concurrent
players, which also exacerbates the burden of manag-
ing data. A qualified database system for data persis-
tence in MMORPGs must guarantee the data consis-
tency, and also be efficient and scalable (Zhang et al.,

303Diao Z. and Schallehn E..
Towards Cloud Data Management for MMORPGs.
DOI: 10.5220/0004404403030308
In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 303-308
ISBN: 978-989-8565-52-5
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2008). However, the existing RDBMS cannot fully
satisfy all these requirements simultaneously (White
et al., 2007). Therefore, with the increasing data
volume, the storage system becomes a bottleneck in
MMORPGs, and solving scalability and availability
issues become a major cost factor and development
risk.

As a Cloud storage system, Cassandra (Apache,
2013), which has the ability to support highly concur-
rent data accesses and huge storage, may become a
solution. Unfortunately, in contrast with the conven-
tional DBMS, Cassandra is designed for Web applica-
tions that have different access characteristics and re-
quire lower or different consistency levels. In this pa-
per, we try to apply Cassandra to MMORPGs in order
to assess the usability of Cassandra for MMORPGs,
open issues, and possible solutions. The rest of the pa-
per is structured as follows. In Section 2, we classify
data of MMORPGs into four groups and discuss their
requirements. In Section 3, we analyze potentials of
Cloud-based data management for MMORPGs. In
Section 4, we discuss the usability and challenges of
applying Cassandra to MMORPGs, and, finally, con-
clude and summarize this paper in Section 5.

2 DATA MANAGEMENT
REQUIREMENTS OF
MMORPGs

According to data management requirements, for our
following considerations we classify data slightly
different into four data sets because these different
classes should be managed according to their require-
ments.

• Account Data: this category of data include user
account information, such as user ID, password,
recharge records, and account balance. This data
is usually only used when players log in or log out
of a game or for accounting purposes.

• Game Data:data such as world geometry and ap-
pearance, object and NPC (Non Player Character)
metadata (name, race, appearance, etc.), system
logs, configuration and game rules/scripts in an
MMORPG are generally only modified by game
developers. Some significant part of the game
data is often stored on the client side to minimize
network traffic for unchangeable data.

• State Data: as we discussed above, PC (Player
Character) metadata, position and state of char-
acters and objects, and inventory in MMORPGs
are modified constantly. Currently, the change of

state data is executed by an in-memory database in
real-time and recorded in a disk resident database
periodically.

• Log Data: analyzing user chat history and oper-
ation logs in an MMORPG is the most objective
and direct way for game providers to evaluate a
game, find out the operating habits of players, ex-
plore the game development trends, and even su-
pervise the financial system of the game world.

For these classes we summarize data management
requirements in Table 1 and discuss them in the fol-
lowing.

Support for Different Levels of Consistency: in a
collaborative game players interact with each other.
Changes of state data must be synchronously propa-
gated to the relevant players within an accepted period
of time. For this purpose we need a continuous con-
sistency model in MMORPGs (Li et al., 2004). The
state data and account data changes must be recorded
in the database. It is intolerable if players are sur-
prised to find that their last game records are lost when
they log in the game again. As a result, a strong or at
least a Read Your Writes consistency (Vogels, 2008)
is required for such data. However, strong consistency
is not necessary for log data and game data, for exam-
ple, the existence of a tree in the map, the synchro-
nization of a bird animation, or the clothing style of a
game character can be different in the client side. Log
data is generally not analyzed immediately. Hence,
eventual consistency (Vogels, 2008) is sufficient for
these two classes of data.

Performance/Real-time: state data is modified
constantly by millions of concurrent players in
MMORPGs, which brings a large amount of data
throughput to game servers and thousands of concur-
rent database connection operations. It has become a
challenge to the database performance. Such changes
must be executed in real-time and persisted on disk
efficiently.

Availability: as an Internet/Web application, an
MMORPG system should be able to respond to each
user request within a certain period of time. The sys-
tem also needs to have the ability to tolerate data loss.
This can be achieved by increasing data redundancy
and setting up fail-over servers.

Scalability: typically, online games start with a
small or medium number of users. If the game is
successful, the number can grow extremely. To avoid
problems of a system laid out for too few users or the

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

304

Table 1: Data classification and requirements analysis.

Data Consistency Performance Availability Scalability Partitioning Flexible model Simplified processing Security
Account Data ☆☆☆ ☆☆ ☆☆☆ ☆ ☆☆ ☆ ☆ ☆☆☆

Game Data ☆ ☆ ☆☆☆ ☆ ☆☆ ☆ ☆☆ ☆

State Data ☆☆☆ ☆☆☆ ☆☆☆ ☆☆☆ ☆☆☆ ☆☆☆ ☆☆☆ ☆☆

Log Data ☆☆ ☆☆ ☆ ☆☆☆ ☆☆ ☆ ☆☆☆ ☆☆☆

costs of a system initially laid out for too many users,
the data management needs to be extremely scalable
(Gupta et al., 2008). Furthermore, log data will be ap-
pended continually and retained in the database stati-
cally for a long time (White et al., 2007). The expan-
sion of data scale should not affect the database per-
formance. Hence, the database should have the ability
to accommodate the growth by adding new hardware
(Iimura et al., 2004).

Data Partitioning: performing all operations on
one node can simplify the integrity control, but that
may cause a system bottleneck. Therefore, data must
be partitioned into multiple nodes in order to balance
the workload, process operations in parallel and re-
duce processing costs. Current partitioning schemes
are most often based on application logic, such as par-
tial maps (map servers). This does not easily integrate
with the requirement of scalability, i.e. re-partitioning
is not trivial when new servers are added. Accord-
ingly, suitable partitioning schemes are a major re-
search issue.

Flexible Data Model: part of the state data does not
have a fixed schema, for example PCs have dynamic
skills, tasks, and inventory and MMORPGs are typ-
ically bug-fixed and extended during their runtime.
Therefore, it is difficult to adopt the relational model
to manage such data. A flexible data model without a
fixed schema is more suitable.

Simplified Data Processing: in MMORPGs only
changes of account data and a part of state data must
be executed in the form of transactions. In addition,
the transaction processing in the database of a game is
very different from in a business database. For exam-
ple, in MMORPGs, there are many transactions, but
most of the small size. Parallel operations with con-
flicts occur rarely. Strong consistency is not always
necessary. Hence, a simplified data processing mech-
anism is possible.

Security: game developers always have to be con-
cerned about data security. User-specific data, such
as account data and chat logs, must be strongly pro-
tected. Furthermore, it must be possible to recover

data after being maliciously modified.

Ease of Use, Composability, and Re-usability:
the data management method should be easy for
developers to use, and can be applied to other
MMORPGs. Companies developing and maintaining
MMORPGs should be able to re-use or easily adapt
existing data management solutions to new games,
similar to the idea separating thegame engine from
the game content currently widely applied. This re-
quirement is independent of the class of data.

3 DATA MANAGEMENT FOR
MMORPGs

State of the Art: when a player starts an
MMORPG, all character state data of this player must
be read from the state database at one time. This data
is cached and managed in an in-memory database in
real-time, and written to the disk periodically. When
the player quits the game, this state data is persisted
to the state database, and deleted from the in-memory
database.

A disk resident database is not directly used be-
cause that it cannot cope with the heavy I/O work-
load of MMORPGs, and executing transactions in it
will inevitably pause the game. This pause may oc-
cur at any time, which cannot be tolerated by a real-
time system. However, an in-memory database can-
not guarantee the data persistence when it fails, and
its storage cost is high. Therefore, game providers
still employ the disk resident database to backup data
(White et al., 2007). In order to reduce the database
I/O workload, data is asynchronously (5 to 10 min-
utes) written to the disk in a batch mode.

Currently, MMOPRGs apply distributed RDBS
for data persistence, which can commit complex
transactions and are proven to be stable. As an ex-
ample, consider MySQL Cluster(Oracle, 2013) and
it’s characteristics. MySQL Cluster adopts a shared
nothing architecture to ensure the system scalability.
It automatically partitions data within a table based on
the primary key across all nodes. Each node can help
clients to access correct shards to satisfy a query or
commit a transaction. For the purpose of guarantee-

Towards�Cloud�Data�Management�for�MMORPGs

305

ing availability, data is replicated to multiple nodes.
MySQL Cluster applies a two-phase commit (2PC)
mechanism to propagate data changes to the primary
replica and one secondary replica synchronously, and
then modifies other replicas asynchronously. In this
case, at least one secondary replica has the consistent
and redundant data, which can be used as a fail-over
server while the primary server fails. When MySQL
Cluster maintains tables in memory, it can support
real-time responses. The result is that it can also be
used as an in-memory DBS in MMORPGs.

The Case for Cloud-based Data Management:
unfortunately, RDBMS cannot fulfill some data man-
agement requirements well, or there must be some
provisos(Cattell, 2010). In contrast to RDBMS,
Cloud-based storage systems have inherent advan-
tages regarding their major characteristics like scal-
ability and availability. Nevertheless, some typical
requirements are neither fully supported by any of
the two alternatives. Accordingly, we discuss key
requirements and the suitability of the RDMS vs.
Cloud-based storage systems.

• High Performance: traditional RDBMS are not
designed for managing data with a large number
of attributes, such as PC state data. If we cre-
ate a wide table, i.e. with hundreds of columns,
RDBMS often fail to manage it well. If we par-
tition a wide table into several tables, the mas-
sive join operations would bring a great impact on
the system performance. Different from RDBMS,
Cloud-storage systems can manage all attributes
by applying a simplified data model as well as
data redundancy. Although this solution increases
the storage burden on the system, it improves the
query performance.

• Scalability: for large-scale Internet/Web appli-
cations, a single or a few servers cannot satisfy
the user demand for data access. The only solu-
tion is scaling out. Although some RDBMS (e.g.
MySQL Cluster, Oracle RAC, etc.) also have used
the shared-nothing architecture, the system scala-
bility is limited by its complex schema. Further-
more, data set volume growth has a significant
impact on the system performance (Franke et al.,
2011; Cattell, 2010). With their simplified data
model, Cloud storage systems are proven to have a
great potential for scalability (Franke et al., 2011).

• Flexible Data Model: the relational model of
RDBMS is good at normalizing table schema and
removing data redundancy, but not at adapting
to a dynamic schema and processing big data.
Cloud storage systems typically adopt a flexible

data model, such as a key-value data model. There
is no fixed schema for items. Each item consists
of a key and a dynamic set of attributes.

• Simplified Data Processing:RDMS usually fol-
low a strict transaction mechanism, such as a
table-level or a row-level atomicity, multi-version
concurrency control mechanism, transaction iso-
lation, and rollback. As we discussed above,
this is not necessary for all data in MMORPGs.
Cloud systems are designed for Web applications,
in which strong consistency is not as necessary as
it in business applications. For this reason, they
generally do not support transaction processing.

4 USING CASSANDRA FOR
MMORPGs

For the above reasons, in this paper, we try to as-
sess the usability of a Cloud storage system for
MMORPGs. The existing RDBMS mainly has trou-
ble in the management of state data and log data.
Therefore, we tend to choose a Cloud storage system
based on the access characteristics of these data.

State data is backed up to disk in frequent inter-
vals, so the state database in MMORPGs should be
write-intensive and have the ability to access large
amounts of data in parallel. Cassandra has a simi-
lar application scenario with state database. It is de-
signed for Web applications that perform more equal
shares of concurrent write than read operations, such
as a social networking website. Additionally, Cassan-
dra is always writable, which makes it more suitable
for managing state data than other Cloud storage sys-
tems. Therefore, we choose Cassandra as the object
of the assessment.

In the following, we evaluate and predict poten-
tials and open issues of Cassandra in the management
of diverse data in MMORPGs by analysis of charac-
teristics of Cassandra.

Management of State Data: state data must be per-
sisted to the disk. In this process, a high performance
for concurrent data access, a flexible data model, sim-
plified data processing, and system scalability are re-
quired.

Cassandra has a decentralized structure (Laksh-
man, 2010), i.e., each node is identical and is able
to initiate reads and writes independently. Data are
automatically replicated to multiple nodes. There-
fore, there is no network bottleneck and single
points of failure, which can satisfy the write per-
formance requirements of state data. This is differ-

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

306

ent with RDBMS (e.g., MySQL Cluster) and some
other Cloud storage systems (e.g., Google Bigtable
(Chang et al., 2006)), which usually adopt a pri-
mary/secondary model (the primary node may be-
come a system bottleneck).

Cassandra provides a column family based data
model, which is richer than a simple key-value store.
Every row in a super column family in Cassandra
consists of a row key and a dynamical set of super
columns, each of which maintains a different num-
ber of columns. In this way, we can manage the PC
data of one player in a single row, and partition data
based on row key across multiple nodes in the cluster.
Hence, there is no more join operation during reading
data, and the read performance can be increased.

Cassandra adopts a shared-nothing architecture
and a simplified data model as we mentioned above.
As a result, it can scale out easily by adding new hard-
ware, and reach a linearly increasing read and write
throughput.

Another advantage is that Cassandra provides a
quorum based data replication mechanism. That
means as long as a write can receive a quorum re-
sponses, it can complete successfully. In this way,
Cassandra ensures availability and fault tolerance.
Additionally, by controlling the number of replicas
that must respond to a read request, Cassandra offers
a tunable data consistency.

On the other hand, there are still some open issues
that cannot be well solved by Cassandra directly.

Real-time: as discussed above, managing the state
data in real-time is a big challenge for a disk resident
RDBMS. Unfortunately, Cassandra with its shared
nothing architecture is not intended to provide real-
time support. Although Cassandra firstly manages
data in Memtable in memory, we cannot limit all re-
lated data to one node. The changes of data must be
propagated to other nodes in the form of messages,
which will increase the response time. Therefore, we
have to continue applying an in-memory database in
each zone server.

Data consistency: Cassandra employs Read Re-
pair to guarantee data consistency. It means that all
replicas must be compared in order to return the up-
to-date data to users. In MMORPGs, state data may
have hundreds of attributes and are distributed in mul-
tiple data centers. Hence, such a feature will signif-
icantly reduce the read performance and increase the
network traffic. A common method for solving this
problem is to limit the data consistency in the appli-
cation layer of the system(Gropengieß er et al., 2011).
Note that Cassandra records timestamps in each col-
umn, and uses it as version identification. Therefore,
a possible solution is that we record the timestamps

from a global server in both server side and columns
in Cassandra. When we read state data from Cassan-
dra, the timestamp recorded on the server side will be
sent with the read request. In this way, we can find out
the most recent data easily. We set all columns in a
single row with the same timestamp, so that only one
row key and one timestamp are stored for a single row
on the server side. In addition, these timestamps are
partitioned and managed by servers in parallel. For
these two reasons, accessing these timestamps in the
server side will be not a challenge.

Customized functions: we need to develop some
new functions based on features of MMORPGs.
There are two examples: the mainly task of state
database is data backup. Each value that has been
written in the database must be persistent until it is out
of date. Therefore, if an update operation fails in the
committing process, values that have been recorded
in the database should be applied and other values
must try to update again. To comply with this rule,
a column-level atomicity is sufficient (Cassandra of-
fers an atomicity at the column family level.); note
that writes and queries in games are relatively fixed.
Hence, we propose to add a stored procedure to each
node to optimize the system performance. The stored
procedure is also responsible for splitting a write op-
eration into column-level, which is convenient for of-
fering a column-level atomicity.

Data partitioning: in order to get a high perfor-
mance of accessing the entire state data of a character
or object, we manage these data in a single row and
partition them based on row key horizontally. How-
ever, this method increases the processing costs of
querying data across characters. We can partly relieve
this problem by creating indexes. Unfortunately, it
increases the response time of write. Cassandra can-
not solve this problem autocratically, so a more ef-
ficient data partitioning method based on semantics
(e.g., map zones) or a mix of both has to be proposed.

Management of Log Data: log data has a large
scale. Once it has been written to disk, it does not
need to be modified. In addition, log data is usually
analyzed after a long time, so strong consistency is
not important. Generally speaking, in addition to the
demand for scalability, management requirements of
log data are not difficult to meet. Cassandra provides
scalability, availability, tunable data consistency and
high fault tolerance, as we mentioned. Cooperating
with Hadoop MapReduce, it can also process and an-
alyze large data set in parallel. As a result, Cassandra
can manage log data well.

If there is an update conflict on two nodes in Cas-
sandra, the last write wins. However, update of Log

Towards�Cloud�Data�Management�for�MMORPGs

307

data is append operation. That means, all values need
to be persisted. Therefore, the conflict values need to
be sorted by timestamps and combined. When two
write operations with different timestamps modify a
same log data concurrently, the write operation with
lower timestamp should win, and another needs to put
in the queue. This is convenient for sorting.

Management of Account Data: account data must
be processed carefully because that an operation error
may cause an economic dispute or a player’s informa-
tion disclosure. As a result, each operation needs to be
executed in the form of a transaction. Unfortunately,
Cassandra cannot perform transactions. Furthermore,
account data has no strong requirements for scalabil-
ity and high performance, so RDBMS as a service is
more suitable for it.

Management of Game Data: game data exists typ-
ically in the form of files. However, Cassandra be-
longs to the Cloud structured data system. Moreover,
game data processing does not pose a challenge to the
existing solutions. Unless it is stored on the client
side, we can manage it in a Cloud-based file system,
such as HDFS (Shvachko et al., 2010).

5 CONCLUSIONS

In this paper, we have shown that a single storage sys-
tem cannot meet management requirements of all data
sets of MMORPGs. Although RDBMS are intended
to provide a high-level of consistency, it falls short of
fulfilling requirement regarding scalability and avail-
ability. In this paper, we proposed how to apply
Cloud storage systems, and specifically Cassandra to
MMORPGs. By matching characteristics of Cassan-
dra with application requirements, we found that Cas-
sandra basically can meet the persistence requirement
of state data and log data. However, a Cloud storage
system specifically designed for these data sets still
needs to be developed. Additionally, Cassandra fails
to manage account data and game data well, and pro-
cess state data in real-time. Accordingly, we believe
that a set of co-operating services for MMORPGs,
such as RDBMS as a Service and Cloud-based file
storage systems need to be developed.

REFERENCES

Apache (2013). Cassandra. http://cassandra.apache.org/.

Cattell, R. (2010). Scalable SQL and NoSQL Data Stores.
ACM Special Interest Group on Management of Data
(SIGMOD), 39(4):12–27.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gru-
ber, R. E. (2006). Bigtable: A distributed storage sys-
tem for structured data. InProceedings of 7th Sym-
posium on Operating System Design and Implementa-
tion(OSDI), pages 205–218.

Franke, C., Morin, S., Chebotko, A., Abraham, J., and Bra-
zier, P. (2011). Distributed Semantic Web Data Man-
agement in HBase and MySQL Cluster. InIEEE Inter-
national Conference on Cloud Computing, CLOUD
2011, pages 105–112.

Gropengieß er, F., Baumann, S., and Sattler, K.-U. (2011).
Cloudy transactions cooperative xml authoring on
amazon s3. InDatenbanksysteme fr Business, Tech-
nologie und Web (BTW), pages 307–326.

Gupta, N., Demers, A., and Gehrke, J. (2008). SEMMO :
A Scalable Engine for Massively Multiplayer Online
Games [Demonstration Paper]. InACM SIGMOD
Conference 2008, pages 1234–1238.

Iimura, T., Hazeyama, H., and Kadobayashi, Y. (2004).
Zoned Federation of Game Servers : a Peer-to-peer
Approach to Scalable Multi-player Online Games. In
Proceedings of the 3rd Workshop on Network and
System Support for Games, NETGAMES 2004, pages
116–120.

Lakshman, A. (2010). Cassandra - A Decentralized Struc-
tured Storage System.Operating Systems Review,
44(2):35–40.

Li, F. W., Li, L. W., and Lau, R. W. (2004). Supporting
continuous consistency in multiplayer online games.
In 12. ACM Multimedia 2004, pages 388–391.

MuchDifferent (2013). Mmo architecture. http://
www.muchdifferent.com/?page=game-unitypark-
architecture-mmo.

Oracle (2013). Mysql cluster overview. http://
dev.mysql.com/doc/refman/5.5/en/mysql-cluster-
overview.html.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R.
(2010). The Hadoop Distributed File System. InIEEE
26th Symposium on Mass Storage Systems and Tech-
nologies (MSST), pages 1–10.

Vogels, W. (2008). Eventually consistent.ACM Queue,
6(6):14–19.

White, W., Koch, C., Gupta, N., Gehrke, J., and Demers, A.
(2007). Database research opportunities in computer
games.ACM Special Interest Group on Management
of Data (SIGMOD), 36(3):7–13.

Zhang, K., Kemme, B., and Denault, A. (2008). Persis-
tence in massively multiplayer online games. InPro-
ceedings of the 7th ACM SIGCOMM Workshop on
Network and System Support for Games, NETGAMES
2008, pages 53–58.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

308

