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Abstract: The paper studies the control problem of a class of light- hyper-redundant robots, a tentacle arm, described 
by hyperbolic Partial Differential Equations with uncertain components. The stability analysis and the 
resulting controllers are obtained using the concept of boundary geometric control and a spatial weighted 
error control technique. A hybrid controller with two control components: a PD boundary control and a 
pneumatic system that controls the locking forces in the joints are discussed. Liapunov techniques are used 
to prove the control system stability. Numerical simulations and experimental results are also provided to 
verify the effectiveness of the presented approach. 

1 INTRODUCTION 

This paper implements a control system for a class 
of hyper-redundant robots, a tentacle model. The 
tentacle robots represent one of the most attractive 
domains of robotics during the last decade. A great 
deal of research has been conducted using this type 
of robot and environmental structure. In (Chirikjian, 
1990); (Robinson, 1999); (Gravagne, 2000), the 
kinematic models were analysed. In (Mochiyama, 
1999), the problem of controlling the shape of a 
robot with two-degree-of-freedom joints was also 
investigated using spatial curves. A controller for 
continuum robots was developed by (Braganza, 
2007). Other researchers derived a new kinematic 
model by using the differential geometry (Walker, 
1999) or introduced a real-time controller for 
continuum robots (Jones, 2006). In (Kapadia, 2009) 
it was proposed a sliding controller for extensible 
robots. The control problem of a class of continuum 
arms that performs the grasping function by coiling 
is also discussed in (Ivanescu, 2008). A frequency 
stability criterion for the grasping control problem is 
advanced in (Ivanescu, 2010). Several biomimetic 
robotic prototypes have been developed in (La 
Spina, 2007); (KeJun, 2010) and continuum robots 
with multiple, concentric, elastic tubes were 
analysed and discussed in (Rucker, 2010); (Bailly, 
2011). All these research works underline the 
complexity of control problems, the difficulty in 
implementing feedback controllers and 
compensators determined by the dynamic models 

expressed by partial differential equations (PDE) 
and by the observability problems in distributed 
parameter systems. Controller design for these 
systems is in general based on an approximated 
finite –dimensional model, by truncating the infinite 
number of modes and by neglecting the higher 
frequency modes and by geometric control 
(Christofides, 1996); (Shang, 2005); (Maidi, 2009); 
(Maidi, 2010).  

Our paper treats the control problem of a class of 
light tentacle robots. The dynamic model of the arm 
is described by hyperbolic Partial Differential 
Equations (PDE) with uncertain components. By 
using a spatial weighted error control, the infinite 
dimensional system control becomes a finite 
dimensional control problem. A robust algorithm 
with the characteristics of the conventional PD 
control is proposed. The stability of the system with 
the respect of weighted error is proven. The paper is 
structured as follows: section II presents 
technological model, section III analyses the 
mathematical model, section IV treats the control 
problem, section V verifies the control laws by 
computer simulation, section VI presents the 
experimental results and section VII is concerned 
with conclusions. 

2 TECHNOLOGICAL MODEL  

The technological model basis is a light weight arm. 
Although the conventional hyper-redundant models 
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operate in 3-D space, the motion control will be first 
inferred from the planar models. The 2D model basis 
from Fig 1 consists of a chain of vertebrae with a 
backbone type structure. All the joints of the arm are 
passive. The driving system of this arm has two 
components: a DC motor system with cable-tendons 
ensures the main motion of the arm and a pneumatic 
system controls the locking forces in the joints. 
Because the cables do not drive every element, 
externally attached springs between elements are 
introduced. The high flexibility of the arm is 
obtained by these rotational joints associated with 
the springs, distributed along the arm. The elements 
of the arm are clustered in segments, each segment 
having its own pneumatic control system. The 
pneumatic driven system is composed by a single 
acting mini-cylinder that develops a variable friction 
force in the i-joint. For high value of these forces, all 
the segment joints can be locked. We define this 
case as “the cluster segment (CS) is locked”. If the 
elements of a CS are locked, the locked joints will 
not be rotatable and the cluster position is kept. The 
tendon driving system will rotate only the unlocked 
joints (Popescu, 2013). 

The essence of the arm is the backbone curve C 
(Fig 2). The independent parameter ݏ is related to 
the arc-length from origin of the curve C,	ݏ ∈
	Ω,			Ω ൌ 	 ሾ0, ݈ሿ, where ݈ is the length of the arm. We 
denote by ݍ	the slope of the curve, ݍ = ݍሺݏሻ is the 
generalized coordinate. Also, ߬	 represents the 
equivalent moment at the end of the arm ሺݏ ൌ ݈ሻ 
exercised by the cable forces ܨ஺. The arm can be 
assimilated with an ideal hyper-redundant arm, with 
a distributed mass and damping , with the mass 
density  ߩ , the elastic modulus ܧ, the moment of 
inertia ܫ and the rotational inertial density ܫఘ.The 
position measuring of a cluster segment is obtained 
by electro-active polymer sensors that are placed on 
the surface of each segment. 

 

Figure 1: The 2D technological arm. 

 

Figure 2: The ideal arm. 

The sensors can measure the coordinate ݍሺݐ,  ሻ atݏ
the location  ߦ ∈ 	Ω௦		, Ω௦	∁	Ω , where Ω௦	 denotes the 
domain of permissible sensor locations. 

3 MATHEMATICAL MODEL  

The dynamic model can be expressed by the 
following Partial Differential Equation (PDE) 
(Gravagne, 2000), 

ఘܫ ሷݍ ൌ ܫܧ
డమ௤

డ௦మ
െ ܾ ሶݍ ൅ ݍ	ܿ ൅ ݄ 

where ݍ ൌ ,ݐሺݍ ,ሻݏ ݍ ∈ ΓሺΩሻ	∁	ܮଶሺΩሻ, Ω ൌ
ሼݏ|ݏ ∈ ሾ0, ݈ሿሽ, ݍ߲ =ሶݍ ⁄ݐ߲  ఘ is the rotational inertialܫ ,
density, ܫܧ is the arm bending stiffness, b is the 
equivalent damping coefficient of the arm, ܿ 
characterizes the elastic behaviour and ݄ defines the 
nonlinear gravitational term. We assume the 
following initial and boundary conditions 

,ሺ0ݍ ሻݏ ൌ ሻݏ଴ሺݍ 

ܫܧ
ݍ߲
ݏ߲
ሺݐ, 0ሻ ൌ 0, ܫܧ

ݍ߲
ݏ߲

ሺݐ, ݈ሻ ൌ ߬ሺݐሻ 

where ߬ is the equivalent moment generated by the 
cable forces. In (1), the friction is modelled using the 
viscous component ܾ and neglecting the Coulomb 
and static friction (Qing, 2006), 

ܾ ൌ ݇஻ ܤ 

where ݇஻ is the coefficient of joint geometry and ܤ 
is the viscous coefficient. The state of the system is 
defined by the vector	ሺݍ		ݍሶ ሻ் ∈ Γ∁	ܮଶሺΩሻݔ	ܮଶሺΩሻ. 
The input is represented by the moment ߬ሺݐሻ at the 
boundary of the arm. For the gravitational term 
݄ሺݐ,  ሻ, that is difficult to be evaluated in a complexݏ
motion, we consider that the following constraint is 
verified ( Khopalov, 2010) 

‖݄ሺ. , ሻ‖ଶݐ ൑ .ሺݍ‖ܯ , ሻ‖ଶݐ 
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where M is a positive constant. We consider a 
desired state	ݍௗሺݏሻ,ݍௗ ∈ 	 ,ଶሺ0ܮ ݈ሻ, that satisfies (1) 
with boundary conditions (3) and we denote by  

݁ሺݐ, ሻݏ ൌ ሻݏௗሺݍ െ ,ݐሺݍ ሻݏ 

the distributed error variable,	݁	 ,ଶሺ0ܮ ∋ ݈ሻ. 

Definition 1 (Popescu, 2013). The Weighted Error 
with respect to a sensor ൫ݏ ൌ  is ,(௝W-Errorߦ) ,	௝൯ߦ
the spatial weighted value of the distributed error 
variable (6), 

݁̃కೕሺݐሻ׬ ߯൫ݏ, ,ݐ௝൯݁ሺߦ ݏሻ݀ݏ
௟
଴ , ݁̃కೕ	߳	ܥଶ 

 

where ߯൫ݏ,  ௝൯ is the spatial weighting function thatߦ
satisfies the following equation  

݀ଶ߯ሺݏ, ௝ሻߦ
ଶݏ݀

ൌ െΛ௝	߯ሺݏ, ௝ሻߦ 

with boundary conditions 

߯൫0, ௝൯ߦ ൌ 0,
ௗఞሺ௟,కೕሻ

ௗ௦
ൌ 0݆ ൌ 1,2,… , ܰ 


where Λ௝  is a positive constant. We chose a solution 
of (8)-(9) as 

lim
௄→ஶ

න ሺ߯൫ݏ, ௝൯ߦ െ෍݌௜
కೕ

௄

௜ୀଵ

	ሻݏ௜ሺݓ	
௟

଴
ሻ݀ݏ ൌ 0 

where ݓ௜ሺݏሻ, ݅ ൌ 1,2, . .  are the eigenfunctions of ,ܭ
the Sturm-Liouville problem 

߲ଶݓ௜ሺݏሻ
ଶݏ߲

ൌ െߣ௜ ሻݏ௜ሺݓ	 

௜ሺ0ሻݓ ൌ 0,
௜ሺ݈ሻݓ߲
ݏ߲

ൌ 0 



 

Figure 3: The weighting function, ߯ଵሺݏ,  .ଵሻߦ

													߯௝൫ݏ, ௝൯ߦ ൌ ܣ sin ቆ
గ

ఘ
ቀݏ െ ௝ߦ ൅

ఘ

ଶ
ቁቇ ݏ				, ∈ Ω݆ݏ  

 

߯௝൫ݏ, ௝൯ߦ ൌ 0, ݏ ∈ Ω௦ఫതതതത (13)
 

where Ω௦௝ ൌ ൛หݏ െ ௝หߦ ൑
ߩ
2ൗ ൟ	,  ௝ represents the sensorߦ

position,	ܣ is the magnitude and ߩ defines the 

function characteristic (Fig 3). This function verifies 
the boundary conditions (9) and the set ሼሺݓ௜ሻ, ݅ ൌ
1,2, . . ,  ሽ forms a complete set. So we can use theܭ
approximation  

׬ ሺ߯௝൫ݏ, ௝൯ߦ െ ∑ ௜݌
కೕ௄

௜ୀଵ 	ሻݏ௜ሺݓ	
௟
଴ ሻ݀ݏ ൌ 0 (14)

where  

௜݌
కೕ ൌ

׬ ߯௝൫ݏ, ݏሻ݀ݏ௜ሺݓ௝൯ߦ
௟
଴

׬ ሻଶݏ௜ሺݓ
௟
଴ ݏ݀

 

 ሻ can be obtained from (11) - (12) asݏሺ	௜ݓ	݀݊ܽ

ሻݏሺ	௜ݓ ൌ ሺ2݅	݊݅ݏ		 ൅ 1ሻ
గ

ଶ௟
௜ߣ			ݏ ൌ 	 ሺሺ2݅ ൅

1ሻ
గ

ଶ௟
ሻଶ, ݅ ൌ 1,2, … . , ,  ܭ

The boundary conditions (8) are satisfied by ݓ௜ሺݏሻ 
and the constant Λ௝ can be evaluated from (8) and 
(14). 

4 CONTROL 

4.1 Control System 

The control problem consists of finding the control 
law 	߬ሺݐሻ such that the ߦ௝W-Error (7) converges to 
zero. 

Definition 2. The W-Error control system is stable if 

lim
௧→ஶ

݁̃కೕሺݐሻ ൌ 	0 

In terms of this definition we can synthesize a PD - 
 ௜ W-Error  controller that guarantees stability in theߦ
closed loop system. 

Theorem 1. A ߦ௜W -Error control of the system (1)-
(3) is stable (in the sense of Definition 2) if the 
control law is 
∆߬కೕሺݐሻ ൌ 

െ
1

∑ ௜݌
కೕݓ௜

௞
௜ୀଵ ሺ݈ሻ

ሺሺܫܧ෍݌௜
కೕ

௄

௜ୀଵ

௜ሺ0ሻݓ߲

ݏ߲
൫ݍௗሺ0ሻ

െ ,ݐሺݍ 0ሻ൯ ൅	

݇ଵ න ෍݌௜
కೕ

௄

௜ୀଵ

௜ݓ

௟

଴
ሺݏሻ൫ݍௗሺݏሻ െ ,ݐሺݍ ݏሻ൯݀ݏ ൅	

݇ଶ	 න ෍݌௜
కೕ

௄

௜ୀଵ

ሶݍሻሺെݏ௜ሺݓ
௟

଴
ሺݐ,  ݏሻሻሻ݀ݏ

(17)

where ݇ଵ, ݇ଶ are the control coefficients	, that verify 
the conditions: 

݇ଵ ൐ 0, ݇ଶ ൐ 0 
ሺܾെ∝ ൅݇ଶሻ൫∝ ൫ܫܧΛ௝൯൅∝ ݇ଵ൯ െ	

ଵ

ସ
൫∝ ܾ െ

ሺܯ ൅ ݇ଵሻെ∝ ሺܯ ൅ ݇ଶሻ൯
ଶ
൐ 0

(18)



∆߬కೕሺݐሻ ൌ ߬ௗ െ ߬కೕ 
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and ߬ௗ is the desired moment applied at ݏ ൌ ݈	. 
Proof. See Appendix. 

4.2 Control Strategy 

The control system is presented in Fig 4. It is a 
hybrid driving system that controls the cable motors 
and pneumatic system in order to ensure sequential 
locked or unlocked cluster segments. The desired 
trajectory is obtained sequentially by concatenation 
of the locked or unlocked cluster segment effects. 
Let (ݍଵ

ௗሺ݈ଵሻ, ଶݍ
ௗሺ݈ଶሻ, ଷݍ

ௗሺ݈ଷሻ. . ேݍ
ௗሺ݈ሻሻ	 be the desired 

trajectory defined by the position sensors along each 
cluster segment . 

 

Figure 4: Control system. 

Step 1. The position sensor, ݏ ൌ ଵߦ ൌ
݈ଵ	associated to the first CS, is activated (the desired 
position ݍଵ

ௗሺ݈ଵሻሻ	. The control algorithm (17)-(19) is 
applied at the cable driving system. All arm is 
bending (Fig 5a). 

Step 2. When ݁̃కభሺݐሻ ൌ 0, the pneumatic control is 
activated and the CS 1 is locked. 

Step 3. The position sensor, ݏ ൌ ଶߦ ൌ
݈ଶ	associated to the second CS, is activated (the 
desired positionݍଶ

ௗሺ݈ଶሻሻ	.  
 

      
                     (a)                                            (b)     

 

 
(c) 

Figure 5: Control strategy. 

The control algorithm (17)-(19) is applied at the 
cable driving system (Fig 5b). 

Step 4. When ݁̃కమሺݐሻ ൌ 0, the pneumatic control is 
activated and the CS 2 is locked. 

Step 5. The procedure is repeated for the cluster 
segments 3, 4… N. 

Consequently, we can control the arm motion, 
sequentially, step-by-step, by altering the locked and 
unlocked CS configuration. The whole procedure for 
an arm with three cluster segments is shown in 
Figure 5. 

5 NUMERICAL SIMULATION 

Consider the dynamic model of a tentacle robotic 
arm described by (1) where the length of the arm 
is	݈ ൌ 1	݉, the rotational inertial density is ܫఘ ൌ  
0.001 kg m2, the bending stiffness	ܫܧ ൌ 15, the 
viscous coefficient is ܾ ൌ  and the ݀ܽݎ/ݏ݉ܰ	12
elastic coefficient is ܿ ൌ 1.5. These constants are 
scaled to realistic ratios for a long thin arm. The 
initial and boundary conditions are: ݍ଴ሺݏሻ ൌ 	0 , 
,ݐ௦ሺݍ 0ሻ 	ൌ ,ݐ௦ሺݍܫܧ	  ;0	 ݈ሻ 	ൌ ߬, where ߬ is the torque 
applied at the top of the arm ሺݏ ൌ ݈ሻ. The uncertain 
term h(t, s) defines  the gravitational components,  
݄ሺݏሻ 	ൌ ׬ܣ݃ߩ	 sinሺݍሻ ݏ݀

௦
଴ , where ߩ is the linear 

density, g is gravitational acceleration and A is the 
section area. For the characteristic values of these 
parameters (ߩ ൌ 0.8	 ݇݃ ݉⁄ , ݃ ൌ 10	݉ ⁄ଶݏ , ܣ ൌ
4	10ିସ݉ଶ), associated to this thin long arm, the 
inequality (5) is satisfied for M = 2. The arm 
contains two equal cluster segments. 

A spatial weighting function (13) is selected for 
ଵߦ ൌ 0.4݉, ଶߦ ൌ 0.9݉ and an approximation (14) 
with K=100 is used. The constants Λଵ ൌ 4.5 and 
Λଶ ൌ 6.8 are determined. A control law (17) with 
ߙ ൌ 0.2, ݇ଵ ൌ 4, ݇ଶ ൌ 20 is implemented. These 
coefficients verify the stability conditions (18). 

Step 1. The desired state is ݍௗሺݏሻ ൌ 1.8 cosሺ1.5	ݏሻ 
	and represents the objective of the first stage. The 
arm (both segments) is bending to the desired 
position (as in Fig 5a). The position sensor ߦଵ is used 
for position control. The control law (17) with 
௝ߦ ൌ  ଵ is implemented. The dynamic of theߦ
distributed error ݁ሺݐ,  .ሻ is presented in Fig 6ݏ

Step 2. When ݁̃కభሺݐሻ ൌ 0, the pneumatic control is 
activated and CS 1 is locked. 

Step 3. A desired state for the 2nd segment ݍௗሺݏሻ ൌ
െ1.8 cosሺ1.5	ݏሻ	 is imposed. The position sensor ߦଶ 
is used for position control. The control law (17) 
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with ߦ௝ ൌ  ଶ is implemented. The dynamic of theߦ
distributed error ݁ሺݐ,   .ሻ is presented in Fig 7ݏ

 

Figure 6: Error dynamics, e(t, s)- Cluster Segment 1. 

 

Figure 7: Error dynamics, e(t, s)- Cluster Segment 2. 

We remark that the 1st CS is locked, the 
distributed error is ݁ሺݐ, ሻݏ ൌ 0, ݏ	ݎ݋݂ ∈ ሾ0,

௟

ଶ
ሿ and the 

control position is obtained for the 2nd CS, ݏ ∈ ሾ௟
ଶ
, ݈ሿ, 

(Fig 5b). 

Step 4. When ݁̃కమሺݐሻ ൌ 0, the pneumatic control is 
activated and CS 2 is locked. The good 
performances of the proposed control algorithm can 
be concluded from the graphics.  

5 EXPERIMENTAL RESULTS 

In order to verify the suitability of the control 
algorithm, a platform with a 2D tentacle arm has 
been employed for testing. The arm consists of two 
cluster segments, each segment having six links 
serially connected by revolute joints in a chain. All 
the joints are passive. A pair of antagonistic cable 
actuators connected at the terminal point ݏ ൌ ݈ = 0.4 
m ensures the actuation system. The force in each 
cable is determined by the DC motors and a 
transmission system. The “state of locking” of each 
joint is obtained by a pneumatic mini-linear actuator. 
A polymer thick film layer is placed on the upper 
element of each segment. A sensor exhibits a 

decrease in resistance when an increase of the film 
curvature is used. A Wheatstone bridge system is 
used to measure the variation of the resistance. The 
arm in the initial position, a vertical one is shown in 
Fig. 8. 

 

 

 

Figure 8: The arm positions. 

 

Figure 9: Tracking position- Cluster Sensor1. 

A Quanser based platform is used for control and 
signal acquisition. A control law (17) with ߠௗሺݏሻ ൌ
1.8 cosሺ1.5	ݏሻ is implemented. The new positions of 
the arm after steps 1 and 2 are presented in Fig. 8. 
The sensor information on the first segment is 
shown in Fig. 9. 

Now, the cluster segment 1 is locked and a new 
actuation is obtained by bending the segment 2 for a 
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new desired position ߠௗሺݏሻ ൌ 2.7 cosሺ1.5	ݏሻ. This 
position is illustrated in Fig 8 and the sensor data are 
presented in Fig 10. An analyse of this experimental 
result confirms the algorithm performance. 

 

 

Figure 10: Tracking position- Cluster Sensor2. 

6 CONCLUSIONS 

In this paper, the control problem that is related to a 
class of tentacle arms has been discussed. The model 
basis consists of a chain of vertebrae periodically 
spaced, each element having a special joint that 
ensures the rotation, elastic contact and a 
controllable friction force with the following 
element. All the joints are passive.  We propose a 
hybrid controller with two control components: a PD 
boundary control and a pneumatic system that 
controls the locking forces in the joints.  For the 
dynamic model described by a hyperbolic PDE with 
uncertain components, a robust algorithm based a 
spatial weighted error technique is discussed. 
Liapunov methodes are used to prove the control 
system stability. Numerical simulations and 
experimental results verify the effectiveness of the 
presented algorithms and techniques. 
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APPENDIX 

For the desired state ሺݍௗሺݐ,  ሻ)  the W-Errorݏ
dynamics can be obtained from (1), (7), (3), (9), as 
(in order to simplify the notation, the index ߦ௝ is 

omitted), 
 

ఘܫ ݁̃ሷሺݐሻ

ൌ െܾ݁̃ሶሺݐሻ െ ሺܫܧ Λ െ ܿሻ݁̃ሺݐሻ ൅ ෨݄ሺݐሻ

൅ ∆߬෍݌௜ݓ௜

௄

௜ୀଵ

ሺ݈ሻ

െ ௜݌ሺ෍ܫܧ

௄

௜ୀଵ

௜ሺ0ሻݓ߲

ݏ߲
ቀݍௗሺݐ, 0ሻ െ ,ݐሺݍ 0ሻቁ 

(A1)

 

݁̃(0)ൌ 0  where ݌௜ are determined by (15), ෨݄ሺݐሻ is 
obtained from the relation 

	 ෨݄ ൌ න ෍݌௜

௄

௜ୀଵ

௟

଴
௜ሺ݄ݓ െ ݄ௗሻ݀ݏ 

and the constraint (5) becomes, 

ห ෨݄ห ൑ ݁̃ሻሶ		ฮሺ݁̃ܯ	 ்ฮ
ଶ
 

Let us consider the Liapunov function 

ܸ ൌ ܸሺݐሻ ൌ
1
2
ఘ݁̃ሶܫ ଶ ൅

1
2
ሺܫܧ	Λ െ ܿሻ݁̃ଶ ൅  ሶ̃݁	̃݁	ߙ	

where ߙ is a positive constant that satisfies the 
condition 

ଶߙ ൏ Λܫܧఘሺܫ	4 െ ܿሻ 

This inequality ensures that V is a positive definite 
function (Silvester’s Theorem (Krstic,2006)).The 
time derivative will be 

ሶܸ ൌ ܫఘ ݁̃ሶ݁̃ሷ ൅ ሺܫܧΛ െ ܿሻ݁̃ ݁̃ሶ ൅ ሶ̃݁ߙ	 ଶ ൅ ሷ (A2)̃݁̃݁	ߙ	
 

By evaluating (A2) along with the solutions of 
(A1),with the control law (17), we obtain 

ሶܸ ൌ െሺܾ െ ݁̃ሶ	ሻߙ ଶ െ Λܫܧሺߙ	 െ ܿሻ݁̃ଶ ൅ ෨݄	݁̃ሶ ൅ ߙ ෨݄	݁̃ 
െܾ̃݁ߙ ݁̃ሶ ൅ ߬ଵ ݁̃ሶ ൅ ଵ݁̃ (A3)߬ߙ

 

or 

ሶܸ ൑ െሺܾ െ ሻߙ ݁̃ሶ ଶ െ Λܫܧሺߙ െ ܿሻ݁̃ଶ െ ሶ̃݁	ܾ̃݁ߙ െ
݇ଶ ሶ݁ଶ െ ଵ݁̃ଶ +ห݁̃ሶ൫݇ߙ ෨݄ െ ݇ଵ݁̃൯ห ൅ ห̃݁ߙ൫ ෨݄ െ ݇ଶ	݁̃ሶ൯ห

(A4)
 

From (A4), we infer that 

ห݁̃ሶ൫ ෨݄ െ ݇ଵ݁̃൯ห ൑ ห݁̃ሶหሺห ෨݄ห ൅ ݇ଵ|݁̃|ሻ ൑ ሺܯ ൅ ݇ଵሻ|݁̃|ห݁̃ሶห 

ห̃݁ߙ൫ ෨݄ െ ݇ଶ	݁̃ሶ൯ห ൑ ሺห|̃݁|ߙ ෨݄ห ൅ ݇ଶห݁̃ሶหሻ 	൑ ܯሺߙ ൅ ݇ଶሻ|݁̃|ห݁̃ሶห 

Using these inequalities, (A4) can be rewritten as 

ሶܸ

൑ െ ൤݁̃
ሶ
݁̃
൨
்

൦
	ሺܾ െ ߙ ൅ ݇ଶሻ			

1
2
ሺܾߙ െ ሺܯ ൅ ݇ଵሻ െ ܯሺߙ ൅ ݇ଶሻሻ

1
2
൫ܾߙ െ ሺܯ ൅ ݇ଵሻ െ ܯሺߙ ൅ ݇ଶሻ൯	ߙሺܫܧΛ െ ܿሻ ൅ 		ଵ݇ߙ	

൪ ൤݁̃
ሶ
݁̃
൨ 

or  
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ሶ
݁̃
൨
்

ܳ ൤݁̃
ሶ
݁̃
൨ 
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The stability condition requires as the matrix Q to be 
positive definite, 

ሺܾ െ ߙ ൅ ݇ଶሻ	ሺߙሺܫܧΛ െ ܿሻ ൅ ଵሻ݇ߙ	 െ 
1
4
൫ܾߙ െ ሺܯ ൅ ݇ଵሻ െ ܯሺߙ ൅ ݇ଶሻ൯

ଶ

൐ 0 

that corresponds to the condition (18) of Theorem 1. 

A�Hybrid�Control�System�for�a�Tentacle�Arm

57


