
Service Call Graph (SCG)
Information Flow Analysis in Web Service Composition

Ziyi Su1 and Frédérique Biennier2

1Department of Computer Science, Northeast Normal University, Changchun, China
2Lab. LIRIS CNRS, INSA-lyon, Avenue Albert Einstein, Villeurbanne, France

Keywords: Web Service Composition, Workflow, Service Call Graph, Context Slicing, Dependency.

Abstract: This paper presents a method for analyzing Web Service-based dynamic business process, using abusiness
process slicingmethod to capture the asset (service or information) derivation pattern, allowing to maintain
providers’ policies during the full lifecycle of assets in a collaborative context. Firstly, we propose a Service
Call Graph (SCG) model, extending the System Dependency Graph, to describe dependencies among partners
in a business process. Analysis can be done based on SCG to group partners into sub-contexts. Secondly, for
analyzing SCG, we propose two slicing strategies, namely ’asset-based’ and ’request-based’ slicing, to deal
with the scenarios of both pre-processing business process scripts and on-the-fly analyzing service composi-
tions. Security analysis can be achieved focusing on each sub-context, by examining downstream consumers’
security profiles with upstream asset providers’ policies.

1 INTRODUCTION

Service-Oriented Architecture provides an environ-
ment for partners to share digital assets, including
computing capability (e.g. Web Service) and infor-
mation (e.g. data), in order to produce final artifacts
(e.g. composed service or new information generated
from data aggregation). As assets are shared beyond
ownership boundary, the risk of intellectual property
infringement (e.g. circumventing of trade secret, or
even leakage to a competitor) associated to ’loss of
governance’ is a major barrier for moving toward col-
laborative business model (Linda et al., 2010) (Ka-
gal and Abelson, 2010) (Daniele and Giles, 2009).
Therefore security requirement is brought to an end-
to-end scale, to ensure the protection of corporate pat-
rimony value during its full lifecycle in the collabora-
tive business process (covering the creation, dissem-
ination, aggregation and destruction stages), paying
particular attention to the way asset is used and pro-
tected by partners. Overcoming this barrier relies on a
comprehensive method that can make a ’pre-decision’
for selecting partners, as well as continuously regulat-
ing the partners behaviors.

In a collaborative context, such requirements in-
volve that downstream recipients must gain assets
provider’s approval for re-disseminating such assets
(or a new digital asset including it) (Park and Sandhu,

2002) (Bussard et al., 2010), .
In the Web-based collaborative scenario, the de-

cision of choosing partners (and therefore, the exact
paths of asset dissemination) is related to the busi-
ness logic. Then from the perspective of security en-
gineering for the collaborative context as a whole,
ensuring that all the providers’ security criteria are
maintained during the full lifecycle of their assets is
the essence. This involves analyzing the collabora-
tive business process to track the dissemination paths
of each asset, so that the co-effect of providers’ poli-
cies can be calculated when assets merge and the con-
sumers’ security profiles are checked when assets are
consumed.

This paper develops a method for analyzing com-
plex collaborative context and applying fine-grained
security policy to manage assets sharing activities.
The basic thoughts involve that security foundation
for a successful collaborative process is built when
each provider’s policy upon its asset is fulfilled dur-
ing the whole business process.

Our solution is based on a Service Call Graph
(SCG) extending the System Dependency Graph
(SDG), for mining partners asset sharing relations in
collaborative business processes. A data structure
’service call tuple’ corresponding to the SCG is also
proposed to capture dependencies among partners.

Then, we present both asset-based and request-

17Su Z. and Biennier F..
Service Call Graph (SCG) - Information Flow Analysis in Web Service Composition.
DOI: 10.5220/0004401900170024
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 17-24
ISBN: 978-989-8565-60-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



based context slicing methods, for mining the ’as-
sets aggregation’ and ’requests aggregation’ from the
service call tuple list that represents a business pro-
cess. Such aggregations decide the partitions of sub-
contexts, where fine-grained security policies can be
applied.

We analyze the sub-context developments, using
’pre-processing’ and ’on-the-fly processing’ strate-
gies, and describe how down-stream provider assets
security is achieved by managing sub-context devel-
opments.

Section (2) introduces the security policy model
we use as foundation for security management. The
Service Dependency Graph (SDG) is also introduced,
based on which we develop a business process slicing
method. Combined with the security policy model,
fine-grained security configuration can be achieved in
a Web Service composition scenario.

Section (3) proposes the SCG-based approach to
describe assets aggregation patterns usually involved
in a business process. Dependency between system
partners, through asset sharing, is represented by the
SCG and corresponding ’service call tuple’.

Section (4) introduces the business process analy-
sis method, illustrated by the motivating use case. We
propose two slicing strategies, namely ’asset-based’
and ’request-based’ slicing, to deal with the scenar-
ios of both pre-processing business process scripts
and on-the-fly analyzing service compositions. Se-
curity analysis can be achieved focusing on each sub-
context, by examining downstream consumers’ secu-
rity profiles with upstream asset providers’ policies.

2 BACKGROUND AND RELATED
WORK

Web Service enables the openess of corporate Infor-
mation System, the inter-operable interaction, agile
work-flow and efficient values exchange. Such fed-
erated business paradigm brings new concerns about
how to configure security among decentralized part-
ners and how to protect resource in life-long scale.
Fitting the open and collaborative Internet-based sys-
tem paradigm, more adaptive attribute-based secu-
rity policies (OASIS, 2005) (Su and Biennier, 2010)
have been brought forward to express enriched secu-
rity factors as well as consumption ’actions’ upon re-
source. When applied to service composition scenar-
ios, full lifecycle security for exchanged assets can be
achieved with analysis of business process and adap-
tion of security policies.

2.1 Attribute-based Security Policy
Model

An attribute-based security policy has the ability to
express fine-grained security factors related to system
entities, through elements as Rights, Conditions and
Obligations (see formula 1).

Assertion= (O,S,R,C,Rn,Ob,L) (1)

The semantics of the factors are as follows: ’O’ (Ob-
ject) is the resource bearing corporate asset value (ser-
vice or information). ’S’ (Subject) is the party that
requests accessing the Right to the resource. ’R’
(Right) is the Operation upon the resource that the
Subject can be allowed to exercise. ’Rn’ (Restriction)
is the constraints upon the Right. For example a re-
striction ’three times’ may be used to refine the right
’rendering a piece of multi-media file’. ’C’ (Con-
dition) is the requirements that must be satisfied for
the Subject to access Rights upon the Object, includ-
ing subject attributes (SAT), object attributes (OAT)
or context related attributes (CNAT) – attributes of
transaction context, environment, infrastructure, etc.
’Ob’ (Obligations) is the action that ’must’ be exer-
cised. For example the obligation ’to delete acquired
data in 10 days’ can be associated to rights like ’read
stock amount’ and ’read client data’. ’L’ (Logic Op-
erator)represents the logic operators as ’imply’(←),
’and’ (∧) and ’or’ (∨).

Such a policy model has the ability to accommo-
date ’point-to-point’ security factors such as the the
subjects and environment attributes. The ’due use’
factors can also be expressed to regulate consump-
tion actions. Nonetheless, such a security model is
oriented to the one-to-one cooperation scenario. In a
Web Service composition scenario, security requires
that an upstream provider’s policy should be met by
downstream consumers that directly or indirectly re-
ceive information assets from the provider, in order to
guarantee end-to-end security to assets. In such con-
texts the asset sharing pattern in the service composi-
tion should be analyzed.

2.2 System Dependency Graph

In a Web Service-based business federation, informa-
tion assets are transferred across organization bound-
aries, possibly merging with other assets. In order to
give a full lifecycle protection to an asset, it’s neces-
sary to capture the asset derivations. This is analo-
gous to program slicing (GrammaTech, ) (Zhao and
Rinard, 2003) based on System Dependency Graph
(SDG) (GrammaTech, ) (Gu et al., 2008). Program
slicing asks about which statements influence (back-
ward slicing), or are influenced by (forward slicing),

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

18



the current statement under exam, whereas collabo-
rative process analysis asks about which processes
(functionalities provided by a partner can be seen as
a process, e.g. implemented with a Web Service) in-
fluence which processes, therefore tracing asset ex-
change and derivations.

We use a similar approach to ’slice’ a collabora-
tive context into sub-contexts. Each sub-context con-
fines a scope of partners interrelated by assets ex-
changes (in other words, partners in different sub-
context don’t exchange asset, although they are in
the same collaborative process). We firstly give an
overview of the sub-context modes we may encounter
when analyzing a collaborative context, before intro-
ducing the analysis method.

In the following sections, we discuss the analysis
of a collaborative context of Web Service composi-
tion, guided by a use case, in order to introduce the
basic thoughts of our analysis method.

3 SERVICE CALL GRAPH-BASED
SERVICE COMPOSITION
REPRESENTATION

We use a simple use case (see figure 1) of Web Service
composition to facilitate our discussions.

� � �

�

� ���

�

	 
���


�

�

� ����

Figure 1: Service composition represented with SCG.

Use Case 1. An assurance enterprise ’Deirect
assure’(D) consults ’medical information’ (m) from
’Bonetat clinique’(B). Part of the information, ’car-
diac exam’ (e), is taken from a medical examination
laboratory ’Cardis health’(C). The business process
includes the following steps:

(1) D contacts B, requiringm;
(2) B contacts C, requiringe, in order to reply D;
(3) C sendse to B;
(4) B mergese with m; if success,
(5) B answers to D.
As B and C are asset (information) providers in

this use case, a full lifecycle security management
means that their policies should be respected during
the whole lifecycle of their assets. This involves an-
swering two questions:

(1) By which partners will an asset be accessed? A
question of this type for use case 1 is ”The ’Car-

diac exam info’ provided by C will be accessed by
B or D, or both of them?”

(2) Which assets will a party be given access to? In
use case 1 a question of this type is ”Will D access
the assets provided by B and C, either directly or
indirectly?”.

While both of these questions can be answered in-
tuitionally for use case 1, the pondering procedure re-
flects the goal and method of context slicing. Ques-
tion (1) is related to QoP aggregation among part-
ners. Question (2) is linked to RoP aggregation. The
goal is to enable down-stream asset security (Bussard
et al., 2010), so that consumers should comply with
the policies of the O-Assets (assets provided by part-
ners) involved in the C-Asset (the artifacts of collabo-
rative work, which aggregates several O-Assets) they
want to access. Our method is based on a Service Call
Graph resulting from the modification and extension
of System Dependency Graph (SDG) (GrammaTech,
) (Gu et al., 2008).

3.1 Service Call Graph

A participant in a collaborative contexts is analogous
to a procedure in SDG: it receives calling information
and yields results. We usePi

c
←− Pj to denote that

a partyPi depends on another partyPj with ’control
dependency’: whetherPi will be activated or not de-

pends onPj . We usePi
d
←−Pj to denote that a partyPi

depends on another partyPj with ’data dependency’:
data provided byPj are involved in data produced by
Pi . We propose a data structure ’Service Call Graph’
(SCG) based on extensions of SDG to represent part-
ners interactions in the collaboration context. These
extensions can be illustrated with use case 1 (figure 1
is a SCG of use case 1):

• The first extension in our SCG model is that data
dependency can belong to two types:
– an aggregation dependency means thatPi in-

volves data ofPj (the same as SDG);
– a non-aggregation dependency denotes that

data produced byPi do not involve data from
Pj (an extension of SDG).

For example, in the SCG presented in figure (1),
the blue edges (step 1 and 2) represent control de-
pendency. The green edges (steps 3, 4 and 5) rep-
resent data dependency. Besides, the solid green
lines (edge 4 and 5) mean that the output data (re-
sponses)include information from the input data
(aggregation dependency). The dashed green line
(edge 3) means that the output datado not include
information from the input data (non-aggregation
dependency).

Service�Call�Graph�(SCG)�-�Information�Flow�Analysis�in�Web�Service�Composition

19



• The second extension is that theassets carried by
the message exchanges are attached directly to the
edges in SCG (see edges 3, 4 and 5 in figure 1).

Furthermore, to capture assets derivation pattern,
the indirect dependency relation should be retrieved,
based on partner service calls in a business collab-
oration: ∀Pi ,Pj ,Pk,∀α ∈ {c,d} wherePi, Pj and Pk
are partners in a collaboration,c and d are control
dependencyand data dependencyrelations respec-
tively, thenPi is indirectly dependent on Pk if Pi

α
←−

Pj ∧Pj
α
←− Pk. There are two types of indirect depen-

dency.

• Indirect data dependencyis the situation where
each relation in a dependency chain isdata de-
pendency. We sum it up as an axiom:

Axiom 1 (Indirect Data Dependency).

∀Pi,Pj , Pk: Pi
d
←− Pj ∧Pj

d
←− Pk⇒ Pi

d
←− Pk

For example, in use case 1, whether D gets the
results or not depends on the response of B. B’s
response in turn depends on response from C.
• Indirectcontrol dependencyis the situation where

(one or more)control dependencyrelations exist
in the dependency chain:

Axiom 2 (Indirect Control Dependency).
∀Pi,Pj ,Pk,∀α ∈ {c,d}: (Pi

c
←− Pj ∧Pj

α
←− Pk)∨

(Pi
α
←− Pj ∧Pj

c
←− Pk)⇒ Pi

c
←− Pk

As an example for indirect control dependency, in
use case 1, whether C will be called or not de-
pends on B. In turn, whether B will be called or
not depends on D. So C is indirectly ’control de-
pendent’ on D.

We can see the slight difference between axiom 1
and axiom 2: Data dependency is transitive only when
the edges in the dependency chain are all associated to
’data dependency’, whereas when control dependency
exists in a dependency chain, it propagates ’control
dependency’ to the chain.

When analyzing complex business process, e.g.
those defined using WS-BPEL, one must consider the
impact of ’variables’, which are used to carry infor-
mation inside the process. As information carried
by variables are eventually exchanged between part-
ners, the information exchanges between variables
(e.g. through ’value assignment’) also lead to assets
derivation.

These variables can be complex data type (e.g. de-
fined by XML schema). In this case, if a part of one
variable is valued-assigned to a part of another vari-
able (see the ’sample process’ in WS-BPEL specifica-
tion (OASIS, 2007)), the later variable is ’data depen-
dent’ on the former one. Thus we have the following
axiom:

Axiom 3 (Direct Data Dependency between Vari-
ables).

∀Vi .cm,Vj .cn, cm
d
←− cn⇒Vi

d
←−Vj

wherePi andPj stand for variables.cm is a component
of (a part of)Pi. cn is a component ofPj .

This axiom describes the situation that, as in WS-
BPEL a ”variable” can have plural components, each
of them a container that can be assigned value, the
value exchange between components of two ”vari-
ables” incurs data dependency between the two ”vari-
ables”. There are only data dependency relations
between variables, as the only form of interactions
between variable is data exchange. Therefore the
conditions leading to indirect data dependency be-
tween variables can be described by axiom 1. In the
following discussion about dependency relation, we
don’t need to differentiate variables from partners (i.e.
’partnerLink’ in WS-BPEL), as we can see that de-
pendency relations for partners and for variables can
be described by the same set of axioms.

3.2 Service Call Tuple

We use a tuple< Pi
t
←→ Pj ,∆ > to denote the ser-

vice call fromPi to Pj , ∆ being the exchanged asset.
We can have the following basic types of service call
tuple:

• < Pi
c
−→ Pj > denotes thatPi callsPj with a mes-

sage carrying no asset.

• < Pi
c
←− Pj > denotes thatPi receives a message

from Pj that carries no asset.
An example scenario including these two types of
service call is when a mail agent queries a mail
service for whether a mail is sent or not, and re-
ceives confirmation from the server. In such case
the calling message and the response message are
deemed as not carrying any asset (i.e. information
needing protection). We can see that whether a
message carries asset or not depends on the strain-
ing criteria of security in a specific application
context.
• < Pi

d
−→Pj ,∆i > denotes thatPi callsPj , by send-

ing asset∆i .

• < Pi
d
←− Pj ,∆o > denotes thatPi receives a re-

sponse fromPj that carries asset∆o.

• < Pi
α
←→ Pj ,∆i ,∆o > denotes thatPi calls Pj ,

sending asset∆i , receiving response carrying as-
set∆o, where∆o includes information from∆i .
• < Pi

α
←→ Pj ,∆i ,∆o, 6⊂> denotes thatPi calls Pj ,

sending asset∆i and receives a response carrying
asset∆o, where∆o does not include information
from ∆i .

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

20



• < Pi
f
←→ Pj , 6⊂> denotes that the interaction be-

tweenPi andPj is failed, due to negative result of
policy negotiation.

These tuples represent the edges of SCG. We can
see that asset exchanges (and aggregations) occur
with service calls.

3.3 Assets Aggregation

Usually, assets derivations (basically, either ’merg-
ing’ or ’splitting’) occur with partners’ interactions.
Therefore, recognizing assets derivation relations in-
volves firstly formalizing partner interactions with
service call tuples. Then the service call tuples list
can be analyzed to track the asset merging or splitting
activities. There are three situations that may incur
such activities:

• If X sends information containing asset value to
Y, who aggregates it with its own information (ex-
pressed asY calling itself) and further sends it to
Z. In this situation, we can identify the following
service call tuple sequence:

< X
d
−→Y,∆X >

<Y
d
←→Y,∆X,∆Y >

<Y
d
−→ Z,∆Y >

(2)

• If X sends information within its request toY and
gets response(s) fromY that includesX’s informa-
tion. This situation is represented by the following
service call tuple:

< X
d
←→Y,∆X ,∆Y > (3)

Extra attentions should be paid in this case, as we
can not be sure that the response message includes
information from the request message. Whether
the output (responses) from a partner integrates
the input (request) or not depends on the business
logic of this partner’s system. An example of such
a case is whenX sends some personal informa-
tion to Y to calculate the insurance premium. If
the response fromY consists in the insurance pre-
mium and the person’s information, there is an as-
sets derivation, otherwise ifY answers with only
the insurance premium, there is no assets deriva-
tion. The decision of which information includes
’asset value’ and should be protected is closely re-
lated to the application domains. In any case, we
need to know relations between inputs and outputs
to conclude whether assets derivation exists dur-
ing a direct interaction or not. This can be done

by analyzing partner’s service functional descrip-
tion, e.g. WSDL in a Web Service context. It
can also be done at the business process level, by
adding extra indicators to a WS-BPEL script. In
the modeling level, we use the following notations
to define whether the partner response includes in-
formation from a request or not:
– Most of the time, request information (or part

of it) is included in the response, therefore we
use the default tuple to represent it:

<Y
d
←→Y,∆i ,∆o > (4)

– whereas6⊂ is used to indicate that no informa-
tion of the request is included in the response:

<Y
d
←→Y,∆i ,∆o, 6⊂> (5)

• If X fetches (expressed by ’
c
−→’, as there is no

asset value in the request) information fromY and
aggregates its own information with it. We get the
following tuples:

< X
c
−→Y >

< X
d
←−Y,∆Y >

< X
d
←→ X,∆Y,∆X >

(6)

As an example, we build the list of service call tu-
ples for use case 1 (See formula 7, where the tuples in
the list are indexed by the steps of business process):

< τ1,D
c
−→ B>

< τ2,B
c
−→C>

< τ3,B
d
←−C,(e)>

< τ4,B
d
←→ B,(e),(me)>

< τ5,D
d
←− B,(me)>

(7)

The assets derivation relations between partners
are equivalent to data dependency relations between
them. Therefore assets derivation trail, which decides
the sub-context pattern, can be mined from the list of
service call tuples.

4 SUB-CONTEXT SLICING

Like the informationreachabilityquestions in SDG,
the assets derivation trail can be tracked by scanning
the service call tuples list, paying particular atten-
tion to asset aggregation. Based on this, providers’
policies upon assets can be maintained during assets
derivations. This involves firstly allocating corelated
assets in the same sub-contexts.

Service�Call�Graph�(SCG)�-�Information�Flow�Analysis�in�Web�Service�Composition

21



We use a data structure ’context development tu-
ple’ < NC,VC,PC,LA,LP,τ > to record the informa-
tion of sub-context development, where:

• NC is the name of the sub-context,
• VC its version,
• PC its parent sub-context,
• LA a list of all the asset involved in the sub-

context,
• LP the collection of policies in the sub-context,
• τ the step of business process.

This tuple is built by the sub-context slicing pro-
cess which scans the SCG (e.g. service call tuple list)
according to two strategies: asset-based slicing and
request-based slicing.

4.1 Asset-based Slicing

The asset-based slicing method focuses on capturing
the aggregation relation among assets. Using this
method, a sub-context is created when the first O-
Asset is launched into the collaborative context by the
owner. When a new partner joins the context with a
new O-Asset, the sub-context consisting of the exist-
ing asset is updated, if the new partner’s O-Asset is
merged with the existing C-Asset. Otherwise (i.e. the
new partner’s O-Asset is not merged with existing C-
Asset), a new sub-context is created. In use case 1,
the list of sub-context tuples is as following:

< RCB,1,(φ),(e),(RoPC),τ3>

< RCB,2,(RCB.1),(e,m),(RoPC,RoPB),τ4>

< RCB,3,(RCB.2),(e,m),(RoPC,RoPB),τ5>

(8)

We can see that in step 3 (represented byτ3), the
first sub-context is created, including the assete and
its relatedRoPC. We name the context after the in-
teraction leading to the creation of it, e.g.RCB (’re-
source’ sent fromC to B). Its version is ’1’. It has
no parent context (φ). Then in step 4, as a new asset
m merges withe, the sub-contextRCB.1 is updated to
RCB.2. In step 5, it remains unchanged.

This list describes the evolution of the sub-
contexts. There is only one sub-context for use case
1, which can be represented with an assets derivation
diagram (see figure 2).

�

�
��

�
�

�
��

Figure 2: Assets derivation in the sample use case.

Using the asset-based slicing method, policy ne-
gotiation and aggregation (including conflicts detec-
tion) can not be done until the first asset is launched

into the context (step 4 of use case 1). If there is a con-
flict, stepsτ2 andτ3 are actually wastes of partners’
resources and don’t need to be proceeded. Therefore
the asset-based slicing method should be used for pre-
processing a business process script (e.g. WS-BPEL
documents) before it is executed. To analyze a col-
laborative context on-the-fly, we need a request-based
slicing method.

4.2 Request-based Slicing

The request-based slicing method creates a sub-
context when the first request is made. Then, when a
new partner joins the business process, either its QoP
can be aggregated into an existing sub-context, or it
will lead to the creation of a new sub-context. The de-
cision is also straight forward: the QoPs of two part-
ners should be aggregated, if they will access the same
asset in future steps of the collaboration context. By
this method, we get the following list of sub-context
tuples for use case 1:

< QDB,1,(φ),(QoPD),τ1>

< QDB,2,(QDB.1),(QoPD,QoPB),τ2>
(9)

This tuple list captures QoP aggregations. When
the first request is made byD in step 1, a sub-context
is created, including the QoP of D. We name the con-
text after the interaction leading to the creation of it,
e.g.QDB (’query’ sent fromD to B). In step 2, asB is
requesting assets fromC ’on behalf of’ D, QoPB and
QoPC are aggregated. Therefore sub-contextQDB.1 is
updated toQDB.2

However, deciding who will access the same asset
is more tricky than it may firstly look like, especially
when partners work asynchronously, (e.g. if after a
partnerX receiving a request from partnerY, another
partnerZ also sends request toX, beforeX responds
to Y). We provide basic protocols for dealing with
such cases:

• Protocol 1. After X receiving a request from Y,
all requests X sends to other partners are deemed
as beingon behalf of Y, until X responds to Y ,
or X receives a request from another partner Z.
This involves that a request fromY to X estab-
lishes an ’on behalf of’ relation. Consequently,
theQoPY should be aggregated intoQoPX for all
the requestsX sends after receiving the request
from Y, until thatX gets the result and responds
toY. The ’on behalf of’ relation betweenX andY
ends whenX responds toY. It also can, however,
be interrupted before thatX responds toY. The
following two protocols regulate such cases.
• Protocol 2. An ’X on behalf of Y ’ relation is in-

terrupted by another ’X on behalf of Z’ relation if

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

22



Z makes a request after that X receives a request
from Y and before that X responds to Y.
• Protocol 3. An ’X on behalf of Y ’ relation inter-

rupted by another request from Z can be resumed
after X responding to Z, if X receives a response
from a partner P, who was called by X ’on behalf
of Y ’. This means that the ’on behalf of’ relation
can benested. For example, with the following
request-response sequence (i.e. service call tuple
list in formula 10), we can say that the ’on behalf
of’ relation betweenX andY is restored afterX
responding toZ (step 5), by the interaction where
’P responds toX’, asP is a partner thatX has re-
quested on behalf ofY.

< τ1,Y
c
−→ X,∆i1 >

< τ2,X
c
−→ P,∆i2 >

< τ3,Z
c
−→ X,∆i3 >

< τ4,X
d
←→Q,∆i4,∆o4 >

< τ5,Z
d
←− X,∆o3 >

< τ6,X
d
←− P,∆o2 >

< τ7,Y
d
←− X,∆o1 >

(10)

These are basic protocols because they handle the
primary cases in service composition. When dealing
with real-world complex business federations, more
information concerning the business process and part-
ner functionalities should be taken into consideration.
Nevertheless this basic reasoning process remains in
accordance with those described in these protocols.

In the following we discuss the employment of
asset-based and request-based methods for context
slicing. For this, we firstly give an overview of sub-
context developments that can occur in a collaborative
business process.

4.3 Context Development

During each step (partner interaction) of the business
process, different types of sub-context development
are caused by the partners service calls:

• Create. The creation of a new sub-context is al-
ways based on an independent QoP or RoP from
a partner. In other words, if the partner provides
an asset which is not aggregated with other assets
in the current step, a new sub-context consisting
of this asset and the corresponding RoP is created.
Analogously, if the partner is calling otherson its
own behalf (i.e. not because it is doing so for
responding to another partner) a new sub-context
consisting of its QoP should be created.

• Update. On the contrary, updating an existing
sub-context happens if the partner’s asset has data
dependency (according to discussions in section
3.3) with the assets belonging to an existing sub-
context, or if this partners’ assets are merged with
existing assets. It also happens when the partner is
requesting assets on behalf of another ’former’ re-
questor, that is, it’s QoP and the QoP of the former
requestor should be ’transmitted’ to the requested
party. Therefore the QoPs are in the same sub-
context.
• Merge. Merging sub-contexts is a special kind of

update operation. It happens when two existing
assets in two sub-contexts merge, or when the re-
quest sent by a partner is on behalf of several for-
mer requestors from different sub-contexts. In the
later case, the different sub-contexts are corelated
by the asset value in the responding message.
• Split. While ’splitting’ a sub-context, several new

sub-contexts are created. They all ’inherit’ the as-
sets and policies of the previous context. Context
splitting can be caused by three types of interac-
tions:
– a party sends copies of the same asset to sev-

eral partners and the copies are developed dif-
ferently;

– a party sends copies of the same request to sev-
eral partners at the same time;

– the business process has a control structure
defining parallel activities.

• End. Ending a sub-context occurs when it is
merged, split or when the wholebusiness process
ends.

These sub-context developments occur as asset
sharing relations change, hence the context analysis is
proceeded according to business process logic. In the
Web Service contexts, one need to consider both sce-
narios of service orchestration guided by WS-BPEL
and on-the-fly service compositions. We propose both
a pre-processing method and an on-the-fly processing
method for these scenarios.

4.4 Pre-processing and On-the-Fly
Processing

In context slicing,pre-processingrefers to the cir-
cumstances where a pre-defined business process (e.g.
WS-BPEL script) is analyzed before the execution, to
see whether it can be carried out or not, w.r.t. part-
ners’ security profile-request satisfiability. This can
be done with the asset-based slicing method, using
the policies and attributes of partners.

On the contrary, foron-the-flyprocessing, part-

Service�Call�Graph�(SCG)�-�Information�Flow�Analysis�in�Web�Service�Composition

23



ners’ RoPs and QoPs must be aggregated as soon as
they join the collaboration context, in order to find
out security policy conflicts more timingly. This re-
quires using both asset-based and request-based slic-
ing methods.

In our use case 1, on-the-fly slicing strategy first
builds the QoP tuples (see formula 9) from the be-
ginning of the business process, using request-based
slicing. Then from step ’τ3’, RoP tuples are built (see
formula 8), using asset-based slicing.

The RoP aggregation relations and QoP aggrega-
tion relations are used to generate the security polices
and profiles of each sub-context. When a new partner
joins the collaboration context, it is allocated to a sub-
context according to whether it’s an asset provider or
consumer (or both). Its policy and profile are aggre-
gated to the security policy and profile of that sub-
context.

5 CONCLUSIONS AND FUTURE
WORK

This paper develops a method for analyzing informa-
tion assets sharing patterns in Web Service composi-
tion scenarios, therefore security configuration can be
done in a fine-grained manner and ensure the overall
security level in inter-enterprise level business feder-
ation. We introduce a ’Service Call Graph (SCG)’
and a corresponding data structure ’service call tuple’
extending the System Dependency Graph (SDG), to
capture asset aggregation (and derivation) in a col-
laborative business process. A ’context slicing’ op-
eration can be made based on the SCG, to categorize
partners that have direct and indirect assets exchange
relations to the same ’sub-contexts’. Security policy
negotiation and aggregation in the scope of each sub-
context can ensure the full lifecycle security for as-
sets. A detailed discussion has been given on the
rational of our method, facilitated by a sample use
case. Basically, ’data dependency’ between partners
incurs assets (and RoP policies) aggregation, whereas
’control dependency’ between partners leads to the
’on behalf of’ relation and QoP aggregation. Accord-
ing to data dependency, ’asset-based’ slicing is suffi-
cient for pre-processing a business process script (e.g.
WS-BPEL script). Nevertheless our on-the-fly pro-
cessing strategy applied to a business federation (e.g.
dynamic service composition) requires both ’request-
based’ (due to control dependency) and ’asset-based’
slicing. Future work involves the construction of se-
curity management paradigm with assets tagging sys-
tems and the context slicing engine for both asset-
based and request-based analysis.

ACKNOWLEDGEMENTS

This work is supported by ”the Fundamental Research
Funds for the Central Universities” under grant Num-
ber 12QNJJ025.

REFERENCES

Bussard, L., Neven, G., and Preiss, F.-S. (2010). Down-
stream usage control. InProceedings of the 11th IEEE
International Symposium on Policies for Distributed
Systems and Networks, POLICY ’10, pages 22–29,
Washington, DC, USA. IEEE Computer Society.

Daniele, C. and Giles, H. (2009). Cloud Computing: Bene-
fits, risks and recommendations for information secu-
rity. Technical report, European Network and Infor-
mation Security Agency (ENISA).

GrammaTech. Dependence graphs and program slicing-
codesurfer technology overview.Technical report,
GrammaTech, Inc.

Gu, L., Ding, X., Deng, R. H., Xie, B., and Mei, H. (2008).
Remote attestation on program execution. InSTC,
pages 11–20.

Kagal, L. and Abelson, H. (2010). Access control is an
inadequate framework for privacy protection. InW3C
Privacy Workshop. W3C.

Linda, B. B., Richard, C., Kristin, L., Ric, T., and Mark, E.
(2010). The evolving role of IT managers and CIOs–
findings from the 2010 IBM global IT risk study.
Technical report, IBM.

OASIS (2005). eXtensible Access Control Markup Lan-
guage (XACML) version 2.0. http://docs.oasis-
open.org/xacml/2.0/.

OASIS (2007). Web services Business Process Ex-
ecution Language (WS-BPEL). http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html.

Park, J. and Sandhu, R. (2002). Originator control in usage
control. InProceedings of the 3rd International Work-
shop on Policies for Distributed Systems and Net-
works (POLICY’02), POLICY ’02, pages 60–, Wash-
ington, DC, USA. IEEE Computer Society.

Su, Z. and Biennier, F. (2010). End-to-end security policy
description and management for collaborative system.
In Sixth International Conference on Information As-
surance and Security, IAS 2010, pages 137 – 142.

Zhao, J. and Rinard, M. (2003). System dependence graph
construction for aspect-oriented programs. Technical
Report MIT-LCS-TR-891, Laboratory for Computer
Science.MIT.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

24


