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Abstract: This paper studies the kinematics of a special three degree-of-freedom (3 DOF) spherical parallel robot 
manipulator, where the two pyramids are exactly the same and so it is commonly called the 3 DOF 
congruent spherical parallel platform. Due to this special structure, the movement of the mobile pyramid can 
be regarded as the rotation of a rigid body from its base posture to its current status. By use of this special 
property, the forward kinematics of the parallel robot manipulator is obtained in this paper, and the final 
solution is a univariate quartic equation, which can be solved analytically without numerical iterations. A 
numerical example is provided to illustrate the method. 

1 INTRODUCTION 

Compared with a serial robot manipulator, a parallel 
robot manipulator has its advantages of higher 
rigidity and stiffness, simpler structure, better 
accuracy, and heavier loading. However, its forward 
kinematics is very complex. A parallel robot 
manipulator may have 16, even 40 solutions to its 
forward kinematics. So very few of the parallel robot 
manipulators have analytical solutions in terms of 
forward kinematics, and one example of these was 
presented before (Bruyninckx, 1998). On the other 
hand, the general 6 DOF spherical robot manipulator 
was studied by Wohlhart, and its forward kinematics 
has 16 solutions (Wohlhart, 1994). This paper 
analyzes a general 3 DOF spherical parallel robot 
manipulator, as shown in Fig. 1. This robot 
manipulator has two pyramids, and it has been 
studied by many researchers (Innocenti and Parenti-
Castelli, 1993); (Gosselin et al., 1994a); (Gosselin et 
al., 1994b); (Huang and Yao, 1999); (Leguay-
Durand and Reboulet, 1997); (Zhang et al., 1998). 

In this parallel robot manipulator, the two 
pyramids are connected together by a spherical joint 
at the point O, which is also the origins of the two 
coordinate systems in the two pyramids. The mobile 
pyramid Oa1a2a3 can only rotate at this point O, 
consequently, the parallel robot manipulator can 

only provide a movement of 3 DOF pure rotation. 
The structure of the parallel platform is simple, 
however, the forward kinematics of this general 
platform, like others, is quite complicated, and the 
final solution is a univariate eighth polynomial 
equation (Innocenti and Parenti-Castelli, 1993); 
(Huang and Yao, 1999), and has to be solved 
numerically. This paper discusses a special structure 
of this spherical parallel robot manipulator, where 
the mobile pyramid is exactly the same with its 
counterpart, the base pyramid, in shape. So, the 
structure can be called the 3 DOF congruent 
spherical parallel platform. In this robot 
manipulator, the movement of the mobile pyramid, 
caused by the changes of link lengths, can be 
regarded as the rotation of a rigid body from its base 
pyramid to its current status (the mobile pyramid). 
This idea, from the screw theory (Mavriodis, 1997; 
Mavriodis, 1998), was used to study some other 
parallel platforms (Innocenti, 1998); (Bonev et al., 
2003); (Li and Xu, 2007); (Guo et al., 2012). By use 
of this special property, the final forward kinematics 
to the 3 DOF congruent parallel robot is a univariate 
quartic equation, which can be solved analytically, 
instead of an eighth polynomial in the general case, 
which has to be solved numerically. 
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2 FORWARD KINEMATICS 

2.1 Geometric Structure 

A general 3 DOF spherical parallel robot 
manipulator, as shown in Fig. 1, consists of the base 
pyramid with three vertices, b1, b2, b3 and the point 
O, and the mobile pyramid with three vertices, a1, 
a2, a3 and O. Here, the point O is the intersection of 
the two pyramids, and also the origins of the two 
coordinate systems in their respective pyramids. In 
the platform, vector Lk (its norm Lk), that is, a link, 
connects the couple vertices ak (its norm ak) and bk 
(its norm bk) (k = 1, 2, 3). Since the two pyramids 
are the same in this special congruent platform, and 
the two coordinate systems in the pyramids are also 
set to be the same, we have: 

 

Figure 1: A general 3 DOF spherical parallel platform. 

ak = bk (k = 1, 2, 3) (1a)

ak = bk (k = 1, 2, 3) (1b)

For the convenience, let ek be the unit vector for 
vector ak, so, 

 

ak = ak ek (k = 1, 2, 3) (2)
 

The forward kinematics of the congruent platform is 
to determine the orientation of the mobile pyramid 
while the lengths of the three links, L1, L2 and L3, are 
known. From the geometric relationship in Fig. 1, 
we have 

 

Lk = [R] ak – bk (k = 1, 2, 3) (3)
 

Due to Eq. (1a), Eq. (3) becomes 

Lk = ([R] – I)ak (k = 1, 2, 3) (4)

Here, [I] is a unit 3 × 3 matrix, and [R] is the 
transformation matrix between the two coordinate 
systems, or the pyramids. Obviously, Eq. (4) can be 
rewritten as follows: 

 

Lk
2 = 2ak

2 – 2ak
T[R]ak (k = 1, 2, 3) (5)

 

If we set ak be 1 in Eq. (5), that is, Lk stands for the 
ratio between the link length Lk and the vertex ak (k 
= 1, 2, 3), Eq. (5) becomes 

 

Lk
2 = 2 – 2ek

T[R]ek (k = 1, 2, 3) (6)

2.2 The Transformation Matrix 

By defining λ = (λ1, λ2, λ3)
T, a unit vector in space, 

then the transformation matrix [R] can be written as 
follows (Angeles, 1997): 
 

[R] = e[λ]θ 
= cos(θ)I + sin(θ)[λ] + [1 – cos(θ)]λλT 

(7)

 

where θ is the rotation angle around the unit vector 
(axis) λ, and [λ] is a skew-symmetry matrix 
generated by the unit vector λ. In fact, 
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Besides, 

ek
T[λ]ek = 0 (8b)

ek
T(λλT)ek = λT(ek ek

T)λ (8c)

λTλ = λ1
2 + λ2

2 + λ3
2 = 1 (8d)

 

Obviously, Eq. (7) can be rewritten as: 
 

[R] = (1 – Vθ)I + Sθ[λ] + Vθλλ
T (9)

 

where Vθ = 1 – cos(θ), Sθ = sin(θ), Cθ = cos(θ). 
Consequently, Eq. (6) becomes: 
 

Lk
2 = 2Vθ – 2Vθ (λ

Tek)
2 (k = 1, 2, 3) (10)

 

That is, 
 

2Vθ[λ
T(I – ekek

T)λ] = Lk
2 (k = 1, 2, 3) (11)

 

Eq. (11) is symmetrical to λ, that is, if λ is the 
solution to Eq. (11), –λ is also the solution. 
Furthermore, it is symmetrical to θ, too. 

2.3 The Solution 

In order to get the final solution of the forward 
kinematics, Vθ is firstly eliminated in Eq. (11). From 
Eq. (11), we have 
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That is, 
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Since λ is a unit vector, that is, Eq. (8d), Eqs. (14a), 
(14b) and (14c) have a homogenous form on λ, that 
is,  
 

λTWkλ = 0 (k = 1, 2, 3) (15)
 

where 
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Now Wk (k = 1, 2, 3) can be simplified as: 

W1 = e2e2
T – t2e3e3

T – (1 – t2)I (18a)

W2 = t1e3e3
T – e1e1

T – (t1 – 1)I (18b)

W3 = t2e1e1
T – t1e2e2

T – (t2 – t1)I (18c)
 

By defining 
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Eq. (15) becomes: 
 

f1(x, y) = [x, y, 1]T W1[x, y, 1] = 0 (20a)

f2(x, y) = [x, y, 1]T W2[x, y, 1] = 0 (20b)
 

f3(x, y) = [x, y, 1]T W3[x, y, 1] = 0 (20c)
 

Among f1, f2 and f3, only two of them are 
independent and the other one is dependent. Using 
any two of them, we can obtain a fourth polynomial 
in variable x (or y) as follows:  
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Eq. (21) can be solved analytically without 
numerical iterations and it has at most four real 
roots. Once x and y are found, that is, λ is obtained, 
then by Eq. (12), the rotation angle θ can be 
obtained: 
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In Eq. (22), k can be 1 or 2 or 3. However, a 
verification for a valid θ for different k (k = 1, 2, 3) 
is required since three θ values may not the same. If 
the three θ values differ from each other, the 
superfluous θ should be discarded. The reason for 
the existence of a superfluous θ is that θ is related 
with all of the three absolute link lengths Lk (k = 1, 
2, 3) directly while x, y and λ are obtained from the 
given t1, t2 (relative values of link lengths) only, as 
defined in Eq. (17). Besides, if θ is a real solution, 
either is -θ. This is obvious due to the cosine 
function in Eq. (11). Now, both λ and θ are known, 
from Eq. (7), we can obtain at most eight 
transformation matrices R. Four of them are from θ, 
and the other four are from –θ, which are actually 
the transposes of the respective R from θ. 

3 NUMERICAL EXAMPLE 

The closed-form forward kinematics (21) and (22) 
suggest that at most eight real solutions exist to the 3 
DOF congruent spherical parallel robot manipulator. 
A numerical example is presented here to show the 
above method. The geometric structure data of a 3 
DOF congruent spherical parallel robot manipulator 
are as follows: e1 = {0.707107, 0.0, 0.707107}, e2 = 
{-0.353553, 0.612372, 0.707107}, e3 = {-0.353553, 
-0.612372, 0.707107} for the vertex unit vectors of 
the two platforms in their own frames, and the link 
length ratio are L1/a1 = 1.30, L2/a2 = 1.42, and L3/a3 
= 1.44. In this case, the matrices W1 and W2 in Eqs. 
(18a) and (18b) become: 
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So, f1 and f2 are: 

f1 = -0.0137924 – 0.0137924x – 0.0241368x2 + 
1.70816y – 0.854081xy – 0.0172405y2 = 0 

f2 = 0.0924961 – 1.40750x – 0.213132x2 – 
0.705817y + 0.352909xy + 0.490620y2 = 0 

 

And Eq. (21) is: 
 

0.122476 – 2.11581x + 1.71067x2 – 0.182711x3 – 
0.0784458x4 = 0 
 

Finally, its four roots are: 
x1 = -6.40053; 
x2 = 0.060861; 
x3 = 1.890762; 
x4 = 2.119774. 

 

The following table lists all the solutions: 

Table 1: Final solutions. 

(x, y) λ θ 
(-6.4005, 0.1274) (-0.9878, 0.0196, 0.1543) 107.141 
(0.0609, 0.0088) (0.0607, 0.0088, 0.9981) 157.375 
(1.8908, 2.6451) (0.5558, 0.7775, 0.2939) 108.817 
(2.1198, -2.8442) (0.5751, -0.7717, 0.2713) 108.467 

4 CONCLUSIONS 

The forward kinematics of the 3 DOF congruent 
spherical parallel robot manipulator was first 
represented as three quadric equations of three 
parameters, then they were rewritten as an fourth 
polynomial in one variable by eliminating the other 
two variables, which provides a direct analytical 
solution without numerical iterations. A numerical 
example was presented to show the method 
developed in the paper. 
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