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Abstract: In this paper we propose a novel approach for combining information from low cost multiple sensors for peo-
ple detection on a mobile robot. Robustly detecting people is a key capability needed for robots that operate in
populated environments. Several works show the advantages of fusing data coming from complementary sen-
sors. Kinect sensor offers a rich data set at a significantly low cost, however, there are some limitations using
it in a mobile platform, mainly that Kinect relies on images captured by a static camera. To cope with these
limitations, this work is based on the fusion of Kinect and thermopile array sensor mounted on top of a mobile
platform. We propose the implementation of evolutionary selection of people detection supervised classifiers
built using several computer vision transformation. Experimental results carried out with a mobile platform
in a manufacturing shop floor show that the percentage of wrong classified using only Kinect is drastically
reduced with the classification algorithms and with the combination of the three information sources.

1 INTRODUCTION

Service robots, now and in the near future, perform-
ing tasks as assistants, guides, tutors, or social com-
panions in human populated settings such as muse-
ums, hospitals, etc. pose two main challenges: by the
one hand, robots must be able to adapt to complex,
unstructured environments and, on the other hand,
robots must interact with humans. While interacting
with the environment, the robot must navigate, de-
tect and avoid obstacles (Morales et al., 2011). A
requirement for natural Human Robot interaction is
the robot’s ability to accurately and robustly detect
and localize the persons around it in real-time. This
problem is a challenging one, quite difficult when a
low cost camera is the only available sensor (Yao and
Odobez, 2011).

This article describes the realization of a human
detection system based on low-cost sensing devices.
Recently, research on sensing components and soft-
ware lead by Microsoft provide useful results for ex-
tracting the human kinematics (Kinect motion sensor
device (Kinect, )).

Within this article, the service proposed by the
mobile robot is to approach the closer person in the
room, i.e. to approach the person to a given distance
and to verbally interact with him. This “engaging”

behaviour can be useful in potential robot services
such a tour guide, health care or information provider.
Once the target person has been chosen, the robot
plans a trajectory and navigates to the desired posi-
tion. To accomplish this the robot must be able to de-
tect human presence in its vicinity and it cannot be as-
sumed that the person faces the direction of the robot
since the robot acts proactively.

Kinect offers a rich data set at a significantly low
cost. While the Kinect is a great addition to robotics
there are some limitations. First, the depth map is
only valid for objects more than 80cm away from
the sensing device. Second, the Kinect uses an IR
projector with an IR camera which means that sun-
light could affect negatively, taking into account that
the sun emits in the IR spectrum. Third, Kinect rely
on the detection of human activities captured by a
static camera. In mobile robot applications the sen-
sors setup is assumed to be embedded in the robot that
is usually moving. As a consequence the robot is ex-
pected to evolve in environments which are highly dy-
namic, cluttered, and frequently subjected to illumi-
nation changes. To cope with this, this work is based
on the hypothesis that the combination of Kinect and
thermopile array sensor (low cost Heimann HTPA
thermal sensor, (HTPA, )) can significantly improve
the robustness of human detection. Thermal vision
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helps to overcome some of the problems related to
colour vision sensors, since humans have a distinctive
thermal profile compared to non-living objects and
there are no major differences in appearance between
different persons in a thermal image. Another advan-
tage is that the sensor data does not depend on light
conditions and people can also be detected in com-
plete darkness. Therefore it is a promising research
direction to combine the advantages of different sen-
sor sources because each sensing modality has com-
plementary benefits and drawbacks.

This article outlines the design and development
of a multimodal human detection system. The chosen
approach is:

• To combine machine learning paradigms with
computer vision techniques in order to perform
image classification: first we apply transforma-
tions using computer vision techniques and af-
terwards we perform classification using machine
learning paradigms.

• To combine the resulting classifiers obtained by
this new image classification paradigm. Appart
of using all the classifiers obtained (paradigms×
transformations), we use a new aproach in multi
classifier construction in which a previous selec-
tion of classifiers is performed.

We have experimented in a real manufacturing shop
floor where machines and humans share the space in
performing production activities. Experiments seem
promising considering that the percentage of wrong
classified using only Kinect’s detection algorithms is
drastically reduced.

2 RELATED WORK

People detection and tracking systems have been
studied extensively due to the increase of demand of
advanced robots that must integrate natural human-
robot interaction capabilities in order to perform some
specific tasks for the humans or in collaboration with
them. As a complete review on people detection is
beyond the scope of this work, an extensive work can
be found in (Schiele, 2009), we focus on most related
work.

People detection solutions that can be used on mo-
bile robots should cope with several requirements:

• Camera and other sensors are usually not static
since they are mounted on a moving platform.
As a consequence, many algorithms aim at the
surveillance applications are not applicable.

• fast (real-time). The computational load of the
usedalgorithms should be low in order to perform

real-time detection.

• non-invasive (normal human activity is unaf-
fected).

To our knowledge, two approaches are commonly
used for detecting people on a mobile robot. One,
vision based techniques, and another approach, com-
bining vision with other modalities, normally range
sensors such as laser scanners or sonars like in (Guan
et al., 2007). Methods for people detection in colour
images extract features based on skin colour, face,
clothes and motion information such as (Bellotto and
Hu, 2010). All methods for detecting and track-
ing people in colour images on a moving platform
face similar problems and their performance depends
heavily on the current light conditions, viewing angle,
distance to persons, and variability of appearance of
people in the image.

Most existing combined vision-thermal based
methods, in (St-Laurent et al., 2006; Hofmann et al.,
2011; Johnson and Bajcsy, 2008; Thi Thi Zin and
Hama, 2011), concern non-mobile applications in
video monitoring applications, and especially for
pedestrian detection where the pose of the camera is
fixed . Some works, (Gundimada et al., 2010), show
the advantages of using thermal images for face detec-
tion. They suggest that the fusion of both visible and
thermal based face recognition methodologies yields
better overall performance.

As yet, however, there is hardly any published
work on using thermal sensor information to detect
humans on mobile robots. The main reason for the
limited number of applications using thermal vision
so far is probably the relatively high price of this sen-
sor. (Treptow et al., 2005) shows the use of ther-
mal sensors and grey scale images to detect people
in a mobile robot. A drawback of most of these ap-
proaches is the sequential integration of the sensory
cues. People are detected by thermal information only
and are subsequently verified by visual or auditory
cues.

Most of the abovementioned approaches have
mostly used predefined body model features for the
detection of people. Few works consider the applica-
tion of learning techniques. (Arras et al., 2007) pro-
poses to use supervised learning (AdaBoost) to create
a people detector with the most informative features .
(Mozos et al., 2010) builds classifiers able to detect a
particular body part such as a head, an upper body or
a leg using laser data.

Combination of classifiers has been widely used
as a useful approach in several machine learning tasks
(Kuncheva, 2004). In the field of people detection
several authors have used this approach, like (Oliveira
et al., 2010),that use histograms of oriented gradients
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(HOGs) and local receptive fields (LRFs), which are
provided by a convolutional neural network, and are
classified by multilayer perceptrons (MLPs) and sup-
port vector machines (SVMs) combining classifiers
by majority vote and fuzzy integral.

3 PROPOSED APPROACH

We propose a multimodal approach, which can be
characterized by the fact that all used sensory cues are
concurrently processed. The proposed detection sys-
tem is based on a Kinect motion sensor device for the
XBOX 360 and a HTPA thermal sensor developed by
Heimann, (HTPA, ), mounted on top of a RMP Seg-
way mobile platform, which is shown in Figure 1.

Figure 1: The used robotic platform: a Segway RMP 200
provided with the Kinect and the thermal sensor.

We aim at applying a new approach to combine
machine learning paradigms with computer vision
techniques in order to perform image classification.
Our approach is divided into three phases: transfor-
mation using computer vision techniques, classifica-
tion using machine learning paradigms and optimal
combination of classifiers using a previous classifier
selection by means of EDA (Estimation of Distribu-
tion Algorithms) (Müehlenbein and Paaß, 1996).

1. Computer vision transformations. In order to have
different views of the images, different modifi-
cations over the original pictures are performed.
The main goal of this phase is to have variabil-
ity in the aspect the picture offers, so that differ-
ent values are obtained for the same pixel posi-
tions. As it has been mentioned before, we aim at
using three input images (colour, depth, tempera-
ture) to construct a classifier. To enrich the input

database, we have decided to build some variants
using the matrix obtained in the original images,
applying computer vision related transformations.
In this way, and for each of the three data sources,
a set of equivalent images is obtained, and a set
of databases are constructed, one for each of the
transformation used.
To achieve this, we combine some standard image
related algorithms (edge detection, gaussian filter,
binarization, and so on) in order to obtain differ-
ent views of the images, and afterward, we apply
some standard machine learning classifiers taking
into account the pixel values of the different mod-
ifications of the pictures. From the original train-
ing database collected, a new training database is
obtained for each of the computer vision transfor-
mation used, summing up a total of 24 databases
for each device.

2. In the classification phase, the system learns a
classifier from a hand-labeled dataset of images
(abovementioned original and transformations).
As classifiers we use of five well known ML
supervised classification algorithms with com-
pletely different approaches to learning and a long
tradition in different classification tasks: IB1,
Naive-Bayes, Bayesian Network, C4.5 and SVM.

3. Then, the goal of our fusion process is to maxi-
mize the benefits of each modality by intelligently
fusing their information, and by overcoming the
limitations of each modality alone.

• Considering the large number of possible classi-
fiers combinations (24x5 for each sensor) we at-
tempt to get an optimal solution making a selec-
tion of a subset of classifiers which obtain better
result from the accuracy point of view. An evo-
lutionary algorithm called Estimation of Distribu-
tions Algorithm (EDA) is used to perform the se-
lection.

3.1 Data Sources

s stated before, two kind of data sources are used com-
ing from the Kinect sensor and the thermopile array.

Kinect 3D Images. Kinect provides 3D images, it
uses near infrared light to illuminate the subject and
the sensor chip measures the disparity between the in-
formation received by the two IR sensors. It provides
a 640x480 distance (depth) map in real time (30 fps).
In addition to the depth sensor the Kinect also pro-
vides a traditional 640x480 RGB image.
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Figure 2: Image thermopile.

Thermal Images. The HTPA allows the measure-
ment of temperature distribution of the environment,
where very high resolutions are not necessary, such
as person detection, surveillance of temperature crit-
ical surfaces, hotspot or fire detection, energy man-
agement and security applications. The sensor only
offers a 32x31 image that allows a rough resolution
of the temperature of the environment as it is shown
in Figure 2. The benefits of this technology are low
costs, the very small power consumption, small size,
as well as the high sensitivity of the system.

3.2 Computer Vision Transformations

Three image type data taken in parallel (image, dis-
tance, temperature) are used to build a classifier
whose goal is to identify whether a person is in the
viewscope of the robot or not. Figure 3 shows an ex-
ample of the three different images obtained; each im-
age is considered as a gray scale one, and the value
of each pixel, position in the matrix, is considered
as a predictor variable within the Machine Learning
database construction, summing upn× m features,
beingm the column number andn the row number in
the image. Each image corresponds to a single case
in the generated database.

In order to have different views of the images, dif-
ferent modifications over the original pictures are per-
formed. The main goal of this phase is to have vari-
ability in the aspect the picture offers, so that different
values are obtained for the same pixel positions.

We have selected some of the most common trans-
formations offered by related software, in order to
show the benefits of the proposed approach making
use of simple algorithms. Table 1 presents the trans-
formations used, as well as a brief description of each
of them. It is worth to point out the fact that any other
CV transformation could be used apart from the se-
lected ones.

P1 P2 ... Pnxm  Category

.......

.....

12 23  ... 230         YES

32 19  ...   123        NO

98  76 ...      44      YES
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Figure 3: Image preprocessing and training database cre-
ation.

Table 1: Used image transformations.

Transform Command Effect

Transf. 1 Convolve Apply a convolution kernel to the image

Transf. 2 Despeckle Reduce the speckles within an image

Transf. 3 Edge Detect edges in the image

Transf. 4 Enhance Apply a filter to enhance a noisy image

Transf. 5 Equalize Perform histogram equalization

Transf. 6 Gamma Perform a gamma correction

Transf. 7 Gaussian Reduce image noise and levels

Transf. 8 Lat Local adaptive thresholding

Transf. 9 Linear-Str. Linear with saturation histogram stretch

Transf. 10 Median Apply a median filter to the image

Transf. 11 Modulate Vary the brightness, saturation, and hue

Transf. 12 Negate Negate the image

Transf. 13 Radial-blur Radial blur the image

Transf. 14 Raise Create a 3-D effect

Transf. 15 Selective-blur Blur pixels within a contrast threshold

Transf. 16 Shade Shade the image

Transf. 17 Sharpen Sharpen the image

Transf. 18 Shave Shave pixels from the image edges

Transf. 19 Sigmoidal Increase the contrast

Transf. 20 Transform Affine transform image

Transf. 21 Trim Trim image edges

Transf. 22 Unsharp Sharpen the image

Transf. 23 Wave Alter an image along a sine wave

3.3 Machine Learning Classifiers

As classifiers we use five well known ML supervised
classification algorithms (Mitchell, 1997) with com-
pletely different approaches to learning and a long
tradition in different classification tasks: IB1, Naive-
Bayes, Bayesian Network, C4.5 and SVM. Then, the
goal of our fusion process is to maximize the bene-
fits of each modality by intelligently fusing their in-
formation, and by overcoming the limitations of each
modality alone.
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IB1. The IB1 (Aha et al., 1991) is a case-based,
Nearest-Neighbor classifier. To classify a new test
sample, all training instances are stored and the near-
est training instance regarding the test instance is
found: its class is retrieved to predict this as the class
of the test instance.

Naive-Bayes. The Naive-Bayes (NB) rule (Cestnik,
1990) uses the Bayes theorem to predict the class for
each case, assuming that the predictive genes are in-
dependent given the category. To classify a new sam-
ple characterized byd genesX = (X1,X2, ...,Xd), the
NB classifier applies the following rule:

cN−B = argmax
cj∈C

p(c j)
d

∏
i=1

p(xi |c j)

wherecN−B denotes the class label predicted by the
Naive-Bayes classifier and the possible classes of the
problem are grouped inC= {c1, . . . ,cl}.

Bayesian Networks. A Bayesian network, belief
network or directed acyclic graphical model is a prob-
abilistic graphical model that represents a set of ran-
dom variables and their conditional independencies
via a directed acyclic graph (DAG). Probabilistic clas-
sifiers give to the new case the most likely class
for the observed data. In this paper we have used
Bayesian Networks as classification models (Sierra
et al., 2009).

C4.5. The C4.5 (Quinlan, 1993) represents a classi-
fication model by a decision tree. It is run with the de-
fault values of its parameters. The tree is constructed
in a top-down way, dividing the training set and be-
ginning with the selection of the best variable in the
root of the tree.

Support Vector Machines (SVM). SVM are a set
of related supervised learning methods used for clas-
sification and regression. Viewing input data as two
sets of vectors in an n-dimensional space, an SVM
will construct a separating hyperplane in that space,
one which maximizes the margin between the two
data sets. To calculate the margin, two parallel hyper-
planes are constructed, one on each side of the sep-
arating hyperplane, which are pushed up against the
two data sets (Meyer et al., 2003).

3.4 Combination of Classifiers

In order to finally classify the targets as human or non
human, the estimation of the Kinect based classifiers
has to be combined with the estimation of the thermal

SVM
IB1

BNC4.5

NB

Meta−classifier

New Case (to be classified)

FINAL DECISSION

Figure 4: Stacked Generalization schemata.

based classifier. After building the individual classi-
fiers (5×24 = 120 for each sensor) the aim is at com-
bining the output of the different classifiers to obtain
a more robust final people detector.
Two approaches are performed and compared:

1. Stacked generralization approach: standard mul-
ticlassifier to combine the 360 classifiers

2. Classifier Subset Selection Stacked. A selection
of some of the classifiers is done first, and then
the combination is performed among the selected
classifiers.

Stacked Generalization. The last step is to com-
bine the results of the classifiers obtained for the three
sensors (colour, distance, temperature). To achieve
this, we use a bi-layer Stacked Generalization ap-
proach (Wolpert, 1992; Sierra et al., 2001) in which
the decision of each of the 360 single classifiers is
combined by means of another method, the so called
meta-classifier. Figure 4 shows the typical approach
used to perform a classification with this multiclas-
sifier approach. It has to be noticed that the second
layer classifier could be any function, including a sim-
ple vote approach among the used classifiers.

We have used this multiclassifier to combine the
different classifiers learned in each type of image. It
is worth to notice that this is done for comparison rea-
sons only, as our proposal is to use some of those clas-
sifiers only, to reduce computational load and, at the
same time, to increase the obtained accuracy.

Classifier Subset Selection Stacking. The new
multiclassifier paradigm, which extends the Staking
Generalization approach is shown in figure 5. As it
can be seen, we added to the multiclassifier an inter-
mediate phase in which a subset of the classifiers be-
longing to the first layer are selected. The criterion to
make the selection depends on the goal of the classi-
fication task, and we have decided to use the classifi-
cation accuracy in our case.

The way the classifiers are selected (and discarted)
is not unique; due to our previous experience, we de-
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Figure 5: Classifier Subset Selection Stacking.

cided to use Estimation of Distribution Algorithms
to perform the so called Classifier Subset Selection
(CSS) which reduce the number of classifiers to be
used in the final model, decreasing in this way the
computational payload while increasing the obtained
accuracy.

3.4.1 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) have
successfully been developed for combinatorial opti-
mization (Inza et al., 2000). They combine statis-
tical learning with population-based search in order
to automatically identify and exploit certain structural
properties of optimization problems.

4 EXPERIMENTAL SETUP

The manufacturing plant is a real manufacturing shop
floor where machines and humans share the space in
performing production activities. The shop floor in
Figure 6 can be characterized as an industrial envi-
ronment, with high ceilings, fluorescent light bulbs,
high windows, etc. The lighting conditions are very
changing from one day to another and even in differ-
ent locations along the path covered by the robot.

Method. These are the steps of the experimental
phase:
1. Collect a database of images that contains three

data types that are captured by the two sensors:

Figure 6: Manufacturing plant.

640x480 depth map in real time (30 fps), 640x480
RGB image, 32x31 thermopile array.

2. Reduce the image sizes from 640×480 to 32×24,
and convert colour images to gray-scale ones.

3. For each image, apply 23 computer vision algo-
rithms, obtaining 23 new databases for each image
type. Thus, we have 24 data sets for each image
type.

4. Build 120 classifiers, applying 5 machine learning
algorithms for each image type training data sets
(5×24).

5. Apply 10 fold cross-validation using 5 different
classifiers to each of the previous databases, sum-
ming up a total of 3×24×5= 360 validations.

6. Select a combined classifier among its 360 dif-
ferent models using two approaches: (1) a mul-
ticlassifier to combine all the classifiers learned in
each type of image; (2) Classifier Subset Selection
stacking approach .

Training Data Sets. The training data set is com-
posed of 1064 samples. The input to the supervised
algorithms is composed of 301 positive and 764 neg-
ative examples. The set of positive examples contains
people at different positions and dressed with differ-
ent clothing in a typical manufacturing environment.
The set of negative examples is composed of images
without people in the image and with other objects
in the environment such as machines, tables, chairs,
walls, etc.

To obtain the positive and negative examples the
robot was operated in an unconstrained indoor envi-
ronment (the manufacturing plant). At the same time,
image data was collected with a frequency of 1Hz.
During robot motion the images were hand-labeled as
positive examples if people was visually detected in
the image, and as negative examples otherwise.
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5 EXPERIMENTAL RESULTS

Performance of the people detection system is eval-
uated in terms of detection rates and false positives
or negatives. In order to make a fast classification –
real time response is expected– we first transform the
colour images in gray-scale 32× 24, and reduce as
well the size of the infrared images to 32×24 size ma-
trix. Hence we have to deal with 768 predictor vari-
ables, instead of 307200× (3 colours) of the original
images taken by the Kinect camera.

First of all, we have used the five classifiers us-
ing the reduced original databases (32×24 for Images
and Distances, 31×31 for thermal pictures). Table 2
shows the 10 fold cross-validation accuracy obtained.
The best obtained result is 92.11% for the thermal im-
ages original database, and using SVM as classifier.
The real time Kinect’s algorithms accuracy among the
same images was quite poor (37.50%), as the robot
was moving around the environment and the Kinect
has been made to be used as a static device. As a mat-
ter of fact, that has been the origin of the presented
research.

Table 2: 10 Fold cross-validation accuracy percentage ob-
tained for each classifier using original images.

Data source BN NB C4.5 K-NN SVM

RGB 89.20 71.74 82.63 90.89 85.35

Depth 86.29 68.64 83.29 90.89 84.04

Thermal 89.67 86.10 87.79 91.74 92.11

The same accuracy validation process has been
applied to each image transformation on each im-
age format. Table 3 shows the results obtained by
each classifier on the transformed 23 image databases.
The best result is obtained by the C4.5 classifier af-
ter transforming the images using Transformation 7
(Gaussian one).

After performing the validation over the distance
images, the results shown in Table 4 are obtained. The
best result is obtained again by the C4.5 classifier af-
ter transforming the images using Transformation 7
(Gaussian one), with a 92.82 accuracy.

Finally, the classifiers are applied to the thermal
images, obtaining the results shown in Table 5. In
this case we obtain the best result (93.52) for the
SVM classifier, and for two of the used transforma-
tions (Transf. 8 –Lat– and Transf. 9 –Linear-strech–).
Moreover, the obtained results are identical for both
paradigms, so there are redundant algorithms and, if
selected, only one of them can be used in the final
combination obtaining indistinct results.

Table 3: Images: 10 fold cross-validation accuracy percent-
age obtained for each classifier using each of the proposed
transformations.

Images BN NB C4.5 K-NN SVM

Transf. 1 89.20 71.74 90.89 82.63 85.35

Transf. 2 87.89 72.30 90.99 84.41 86.29

Transf. 3 83.19 74.84 87.98 75.87 81.41

Transf. 4 88.92 71.92 90.89 82.44 86.20

Transf. 5 86.76 71.64 89.77 80.47 80.66

Transf. 6 87.98 71.36 90.89 83.29 86.29

Transf. 7 87.79 64.79 91.83 85.92 84.79

Transf. 8 76.81 78.03 85.07 71.36 76.90

Transf. 9 88.54 73.90 91.17 81.31 84.98

Transf. 10 87.98 69.48 90.70 82.82 84.69

Transf. 11 85.54 72.96 91.55 82.07 85.26

Transf. 12 88.92 71.74 90.89 82.63 85.35

Transf. 13 88.73 68.64 90.99 82.63 85.45

Transf. 14 88.83 71.74 90.89 83.76 85.54

Transf. 15 89.20 71.74 90.89 82.63 85.35

Transf. 16 83.85 75.12 86.38 77.93 81.78

Transf. 17 89.77 71.46 90.23 83.00 82.44

Transf. 18 88.73 71.55 90.61 82.35 85.35

Transf. 19 88.17 70.61 91.46 82.82 86.10

Transf. 20 89.11 70.99 90.80 82.63 84.98

Transf. 21 89.20 71.74 90.89 82.63 85.35

Transf. 22 88.83 71.36 90.33 82.35 82.72

Transf. 23 88.73 72.30 90.80 83.85 85.82

5.1 Final Combination

The last step is to combine the results of the classifiers
obtained, 120 by each sensor. To do that, we firstly
use a Stacking classifier (Wolpert, 1992) in which
the decision of each single classifier is combined by
means of another classifier (ths so called metaclassi-
fier). Table 6 shows the obtained results. As it can
be seen, the best obtained accuracy is 95.31%, using
a Bayesian Network as metaclassifier. It significantly
improves the result of the best single classifier (93.52
for the Thermal images).

It is worth to mention that the best classifier com-
bination obtained used a total of 51 single classifiers,
and that all the three sensors are used, i.e., that trans-
formations and related single classifiers to each of the
sensors have been selected. Although the number of
classifiers could be seen as high for a real time image
processing, it has to be taken into account that we use
small size images which are fast transformed, and that
the classifiers, once constructed, give the classifica-
tion result in miliseconds. A classifier parallelization
could be used also to obtain a faster answer, as all of
the single classifiers can be executed independently,
but it is not realy necessary in this case.
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Table 4: Distances: 10 fold cross-validation accuracy per-
centage obtained for each classifier using each of the pro-
posed transformations.

Distances BN NB C4.5 K-NN SVM

Transf. 1 86.29 68.64 90.89 83.29 84.04

Transf. 2 86.38 68.45 91.27 83.38 82.91

Transf. 3 83.66 78.87 87.23 78.97 81.60

Transf. 4 86.10 68.54 90.89 82.91 83.29

Transf. 5 85.35 70.80 90.89 80.38 81.97

Transf. 6 86.38 70.33 90.61 82.25 83.76

Transf. 7 85.92 66.95 92.86 85.26 84.23

Transf. 8 83.19 73.62 84.04 73.15 78.40

Transf. 9 85.26 67.70 90.33 83.00 83.19

Transf. 10 85.54 68.92 92.30 85.16 85.35

Transf. 11 84.69 68.26 90.99 81.50 82.35

Transf. 12 86.67 68.64 90.89 83.38 84.04

Transf. 13 85.35 68.08 92.21 82.54 83.29

Transf. 14 86.57 68.73 90.89 83.76 84.13

Transf. 15 86.29 68.64 90.89 83.29 84.04

Transf. 16 83.66 78.69 87.14 80.38 85.35

Transf. 17 85.63 71.27 90.52 82.25 81.50

Transf. 18 85.63 66.20 89.77 82.72 82.54

Transf. 19 86.48 70.05 90.89 83.85 83.94

Transf. 20 86.67 69.01 90.70 83.29 83.85

Transf. 21 85.45 70.33 91.36 83.29 82.82

Transf. 22 85.73 71.08 90.42 81.78 81.60

Transf. 23 85.92 68.64 91.27 80.47 83.10

6 CONCLUSIONS AND FUTURE
WORKS

This paper presented a people detection system for
mobile robots using using 3D camera and thermal vi-
sion and provided a thorough evaluation of its perfor-
mance. The system uses a combination of Computer
Vision and Machine Learning paradigms. This ap-
proach was designed to manage three kind of input
images depth, color, and temperature to detect peo-
ple. We showed that the detection of a person is im-
proved by cooperatively classifying the feature matrix
computed from the input data, where we made use
of Computer Vision transformations and supervised
learning techniques to obtain the classifiers. Our algo-
rithm performed well across a number of experiments
in a real manufacturing plant. This work serves as an
introduction to the potential of multi-sensor fusion in
the domain of people detection in mobile platforms.
In the near future we envisage:

• To extend to other scenarios. The approach will
be extended toward a museum scenario.

• To develop trackers combining/fusing visual cues
using particle filter strategies, including face
recognition, in order to track people or gestures.

• To integrate with robot’s navigation planning abil-
ity to explicitly consider human in the loop during

Table 5: Thermal sensor: 10 fold cross-validation accu-
racy percentage obtained for each classifier using each of
the proposed transformations.

Thermical images BN NB C4.5 K-NN SVM

Transf. 1 89.67 86.10 91.74 87.79 92.11

Transf. 2 90.99 84.32 92.39 91.46 92.58

Transf. 3 89.30 86.67 90.80 86.29 92.39

Transf. 4 89.11 83.85 92.49 89.39 90.33

Transf. 5 85.73 84.60 92.77 90.33 85.63

Transf. 6 89.67 85.92 91.74 87.79 91.83

Transf. 7 86.57 82.16 89.67 87.79 89.95

Transf. 8 89.11 85.92 91.64 84.04 93.52
Transf. 9 90.80 88.08 92.39 87.89 93.52
Transf. 10 84.98 81.97 86.29 80.56 85.63

Transf. 11 71.74 71.74 71.74 71.74 71.74

Transf. 12 89.77 85.63 91.74 87.79 92.11

Transf. 13 90.05 84.69 92.77 90.14 91.08

Transf. 14 89.11 86.01 91.08 87.89 91.83

Transf. 15 89.67 86.10 91.74 87.79 92.11

Transf. 16 89.48 86.85 91.17 90.33 89.95

Transf. 17 89.67 87.23 91.74 87.04 90.99

Transf. 18 89.11 85.63 91.55 85.63 89.86

Transf. 19 89.67 85.07 91.83 87.79 91.83

Transf. 20 89.77 86.01 91.74 87.79 92.68

Transf. 21 83.57 47.89 84.41 82.54 72.02

Transf. 22 89.77 85.82 91.92 87.79 91.17

Transf. 23 90.05 85.45 92.02 90.33 91.27

Table 6: Multiclassifier combination: 10 fold cross-
validation accuracy percentages obtained.

Metaclassifier BN NB C4.5 K-NN SVM

Results (360 classifiers) 95.31 94.93 94.27 94.93 94.27

Results (CSS) 98.87 96.53 96.06 98.12 97.37

robot movement.

• To use other single classifier paradigms, and other
transformations

• To use more complex computer vision approaches
(SIFT, SFOP and so forth)
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