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Abstract: In the prediction of fault-proneness in object-oriented (OO) systems, it is essential to have a good prediction 
method and a set of informative predictive factors. Although logistic regression (LR) and naïve Bayes (NB) 
have been used successfully for prediction of fault-proneness, they have some shortcomings. In this paper, 
we proposed the Bayesian network (BN) with data mining techniques as a predictive model. Based on the 
Chidamber and Kemerer’s (C-K) metric suite and the cyclomatic complexity metrics, we examine the 
difference in the performance of LR, NB and BN models for the fault-proneness prediction at the class level 
in continual releases (five versions) of Rhino, an open-source implementation of JavaScript written in Java. 
From the viewpoint of modern software development, Rhino uses a highly iterative or agile development 
methodology. Our study demonstrates that the proposed BN can achieve a better prediction than LR and NB 
for the agile software.        

1 INTRODUCTION 

In the prediction of fault-proneness (the probability a 
software component contains at least one fault) as a 
critical indicator of software quality in object-
oriented systems, it is essential to have informative 
predictive factors (D'Ambros et al., 2012) and a 
good prediction model. There are many choices for 
predictive factors, including product metrics, 
processing and external metrics, and other 
combinations of factors (Pai and Dugan, 2007). 
There are also many choices for the prediction 
model which is as important as the predictive factors 
in determining the accuracy of the fault-proneness 
prediction (Menzies et al., 2007).  

Logistic regression has been extendedly used for 
the fault-proneness prediction as a benchmark 
method. Recently other learners such as decision 
tree (Singh et al., 2009), random forest (Guo et al., 
2004), naive Bayes (NB) (Menzies et al., 2007), 
neural network (Singh et al., 2008) and support 
vector machine (Singh et al., 2009) have been 
successfully used to predict fault-proneness.  

These prediction methods have some 
shortcomings. For example, logistic regression 
(Hosmer and Lemeshow, 2000) assumes a linear and 
addictive relationship between predictors and the 

dependent variable (fault-proneness) on a logistic 
scale. This assumption is simplistic and presents a 
critical constraint on the model (Gokhale and Lyn, 
1997). Further, the form of logistic regression also 
makes it difficult to combine qualitative predictors 
such as processing or external factors with numeric 
product metrics. NB has the constraints of assuming 
the conditional independence of predictors and the 
normal distribution of continuous product metrics as 
predictors (John and Langley, 1995). Recently, Pai 
and Dugan (Pai and Dugan, 2007) used LR to 
construct and parameterize their BN model which 
did not avoid the typical constraints associated with 
LR. Other approaches such as random forest and 
neural network were black-box models and less 
interpretable although having a good prediction 
performance.        

In this paper, we present a Bayesian network as a 
learning model. In this model, we examine the 
performance of BN against the LR and NB using the 
continual versions of the open-source JavaScript tool, 
Rhino which has been developed using the agile 
software development processes. Our study shows 
that the learned BN was mostly better than the LR 
and NB from the cross-validation test and from the 
validation of the continual Rhino versions. The 
results suggest that our proposed BN is valuable as a 
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prediction model of fault-proneness.   
The agile software development strategy is an 

iterative and incremental approach to software 
development which is performed in a highly 
collaborative manner that is cost effective and meets 
the changing needs of its stakeholders (Ambler and 
R., 2002; Cohn, 2006; Herbsleb, 2001). Agile 
Alliance defined 12 principles for the agile 
development process (Cohn, 2006 ). Olague et al. 
argued that Rhino was a typical software product 
using the agile development strategy (Olague et al., 
2007). Also, their study showed that product metrics 
(e.g. C-K metrics) at the class level were useful for 
the fault-proneness prediction of the agile OO 
systems. Therefore, our case study uses the C-K 
metrics and the cyclomatic complexity metrics to 
examine the difference in performance of the 
prediction methods (LR, NB and our proposed BN) 
for fault-proneness.  
This paper makes the following contributions. First, 
we present the BN with data mining techniques for 
learning and optimization and demonstrate its 
distinguishing features and advantages (more 
flexible network topology for including quantitative 
and qualitative predictors, and wide choices of 
optimal learning algorithms) in comparison to the 
LR and NB models. Second, based on the cross-
validation and the validation of the continual 
versions of Rhino, we show the superior 
performance of the learned BN. Third, our study 
adds to the body of empirical knowledge about the 
prediction models of fault-proneness.  

The rest of this paper is organized as follows. In 
section 2, we introduce the metrics used, the system 
under study and the collection of predictors. In 
section 3, we describe the modelling techniques of 
LR, NB and BN and compare them. Section 4 
presents data analysis procedures and methods 
employed. The experimental results are reported and 
discussed in section 5. In section 6, we draw 
conclusions and suggest some future work.  

2 BACKGROUND  

2.1 Metrics used    

We use the Chidamber and Kemerer’s (C-K) metric 
suite and the cyclomatic complexity metrics at the 
class level as predictors. The C-K metric suite has 
been empirically validated to be useful for the fault-
proneness prediction in many studies (Basili et al., 
1996; Briand et al., 2000; Olague et al., 2007) and so 
are the cyclomatic complexity metrics (Cardoso, 

2006). It is assumed that the higher the metric value, 
the more fault-prone is the class.    

In the C-K metrics implemented for our research 
(Chidamber and Kemerer, 1994), LCOM represents 
a later variation of the original LCOM that has been 
shown to have a better predictability (Harrison et al., 
1998). These metrics are listed below:    
 WMC (Weighted Methods per Class): The 

number of methods implemented in a class.  
 DIT (Depth of Inheritance Tree): Maximum 

number of edges between a given class and a 
root class in an inheritance graph (0 for a 
class which has no base class).  

 NOC (Num. Children): A count of the 
number of direct children of a given class.  

 CBO (Coupling Between Objects): Counts 
other classes whose attributes or methods are 
used by the given class plus those that use the 
attributes or methods of the given class.  

 RFC (Response For a Class): A count of all  
local methods of a class plus all methods of 
other classes directly called by any of the 
methods of the class.  

 LCOM (Lack of Cohesion of Methods): 
Number of disjoint sets of local methods, no 
two sets intersect, and any two methods on 
the same set share at least one local variable 
(1998 definition).  

The cyclomatic complexity can be extracted from 
each of the methods (McCabe, 1976).  
 CCMIN: Minimum of all cyclomatic 

complexity values of the methods for a class.  
 CCMAX: Maximum of all cyclomatic 

complexity values of the methods for a class.  
 CCMEAN: Arithmetic average of all 

cyclomatic complexity values of the methods 
for a class.  

 CCSUM: Sum of all cyclomatic complexity 
values of the methods for a class. 

2.2 System under Study 

Mozilla’s Rhino (Boyd, 2007) was used in our study. 
Rhino is an open-source implementation of 
JavaScript completely written in Java. This system 
has been developed by three programmers, all in 
separate locations worldwide, following an iterative 
cycle from 2 to 16 months. The core components 
and their related bug data of versions 1.5R3, 1.5R4, 
1.5R5, 1.6R1, and 1.6R2 of Rhino were analyzed in 
our study. Fault reports of Rhino exist in the online 
Bugzilla repository (Bugzilla, 2005). We examined 
the change logs of each version of Rhino which 
listed the post-release bugs that were resolved for 
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the next version. Bug fixes were cross-referenced 
with classes affected by each bug/fix.    

2.3 Collection of Metrics 

In our study, we mainly used the open-source Java 
metric toolkits for extracting the product metrics 
from Rhino. Spinellis’s CKJM (Spinellis, 2006) has 
been integrated in our program to collect the C-K 
metrics, and CYVIS, a software complexity 
visualiser (CYVIS, 2007) has been adapted to 
extract the cyclomatic complexity metrics (CCMAX, 
CCMEAN, CCSUM and CCMIN) at the class level 
from the Java class files.  

Table 1: Descriptive Statistics of Predictive Factors Used.  

 

Note that our initial analysis shows that, among the 
complexity metrics, CCMIN has little contribution 
to the fault-proneness prediction and hence it is 
removed from the set of predictors. Also, there is a 
large correlation between CCMAX, CCMEAN and 
CCSUM. This leads to the problem of 
multicollinearity (Olague et al., 2007). After 
comparing their correlation with the C-K metrics, 
we select the complexity metric with a good 
predictability and less redundancy of information. 
Consequently, CCMAX is chosen in our case study, 
as shown in Table 1.    

 
Figure 1: Number of classes and number of faulty classes 
for core components of the chosen Rhino versions. 

As we mainly focus on the fault data of Rhino’s core 
components, the metric data were generated from 
the same core components only. Table 1 presents the 
descriptive statistics of predictive factors and Fig. 1 
shows the number of classes and the number of 
faulty classes reported for the core components of 
the chosen Rhino’s versions.  

3 MODELING TECHNIQUES    

3.1 Logistic Regression    

Logistic regression is a technique of probability 
estimation based on maximum likelihood estimation. 
In this model, let Y be the fault-proneness of a class 
as the dependent variable (Y=1 indicating “faulty” 
and Y=0 “fault-free”) and Xi (i=1, 2, …, n) be the 
predictive factors. LR assumes that Y follows a 
Bernnouli distribution and the link function relating 
Xi and Y is the logit or log-odds:  





e

Yp
1

1
),|1(  (1)

where X=(1, X1, X2, …, Xn), β=(β0, β1, β2, …, βn)
T 

and β can be estimated by the maximum likelihood 
estimator that would make the observed data most 
likely (Hosmer and Lemeshow, 2000).  

The LR curve between p and Xi  takes on an S 
shape. When Xi is not significant, the curve 
approximates a horizontal line; conversely, the curve 
presents a steep rise. This S shape is consistent with 
the assumption about the empirical relationship 
between predictors and the dependent variable 
(Briand et al., 2000).  

As shown in equation (1), LR assumes that the 
predictive factors, X, are linearly and addictively 
related to Y on a logistic scale. This may be too 
simplistic and can introduce bias (Gokhale and Lyn, 
1997). Further, LR uses only quantitative factors for 
the prediction and constrains the inclusion of other 
factors such as processing or external factors.     

3.2 Naïve Bayes   

The Bayes theorem is the theoretic foundation of the 
naïve Bayes (NB) and also the Bayesian network:   

)(

)()|(
)|(

XP

CPCXP
XCP   (2) 

here C refers to the hypothesis (for the fault-
proneness prediction of a class, it denotes the 
“faulty” or “fault-free” state of the class), X is the 
evidence, i.e. the predictive factors. P(X) and P(C) 
respectively refer to a prior probability of X and C. 

Version Items WMC DIT NOC CBO RFC LCOM CCMAX

1.5R3
Mean 14.79 0.81 0.35 6.04 37.29 228.27 20.75

STDEV 19.55 0.84 1.29 7.24 47.13 811.40 43.88

1.5R4
Mean 14.76 0.85 0.32 6.08 26.91 236.45 21.58

STDEV 20.06 0.81 1.28 7.61 48.13 851.95 47.72

1.5R5
Mean 14.85 0.86 0.34 5.96 36.86 234.21 19.24

STDEV 19.93 0.85 1.34 6.84 47.68 914.97 42.29

1.6R1
Mean 15.53 0.82 0.33 6.12 38.87 300.16 20.50

STDEV 22.84 0.82 1.56 7.54 53.70 1475.65 44.82

1.6R2
Mean 15.84 0.73 0.34 6.33 39.64 303.44 20.77

STDEV 22.82 0.65 1.58 7.64 54.24 1482.48 46.25
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P(X|C) is the likelihood of X given C, and P(C|X) is 
the posterior probability of C conditional to any 
evidence, X.  

Naïve Bayes is the simplest BN with a single 
structure of a target node and multiple evidence 
nodes (as shown in Figure 2) with the simplistic 
assumption that the predictive factors are 
conditionally independent given the class attribute 
(C=“fault-free” or “faulty”, see the modeling 
equation (3)).  

C

  1X   2X   1nX   nX... ...
 

Figure 2: Naïve Bayes: the simplest BN. 
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If a predictive factor is continuous, the naïve 
Bayes approach often assumes that within each class, 
the numeric predictors are normally distributed 
(Menzies et al., 2007). Such a distribution can be 
represented in terms of its mean (μ) and standard 
deviation (σ). Thus, we can estimate the probability 
of an observed value from such estimates: 
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Equation 5 denotes the probability density 
function (pdf) for a normal (Gaussian) distribution. 
For the parameters (μ, σ) of the distribution of the 
continuous metric predictor, we can use the 
maximum likelihood estimates of the mean and 
standard deviation (the sample average and the 
sample standard deviation of the predictor within 
each class).  

The two assumptions of naïve Bayes, namely, 
the conditional independence and the normal 
distribution of continuous predictors, may not hold 
for some domains (predictive metrics) (John and 
Langley, 1995), thus affecting its prediction 
performance.    

3.3 Learned Bayesian Network 

Different from the LR and NB models, Bayesian 
network (BN) has a flexible network topology. We 
can use techniques of data mining and optimization 
to search for an optimal network and parameters to 
generate a better model. Further, we can use optimal 
discretization techniques to convert continuous 
metrics into discrete inputs for the BN.   

3.3.1 Basic Model   

Definition 1. A Bayesian Network B over the set of 
variables, V, is an ordered pair (BS, BP) such that  
1. BS=G(V, E) is a directed acyclic graph, called the 

network structure of B ( VVE  is the set of 
directed edges, representing the probabilistically 
conditional dependence relationship between 
random variable (rv) nodes that satisfies the 
Markov property, i.e. there are no direct 
dependency in BS which are not already 
explicitly shown via edges, E) and  

2. BP= }|]1...0[:{ Vu
uuu    is a set of 

assessment functions, where the state space Ωu is 
the finite set of values for the variable u; πu is the 
set of parent nodes of variables for u, indicated 
by BS; if X is a set of variable, ΩX is the Cartesian 
product of all state spaces of the variables in X; 
γu uniquely defines the joint probability 
distribution P(u|πu) of u conditional on its parent 
set, πu.  
Let c be the “FAULT” rv of a class and its state 

space Ωc be binary, then Ωc={“faulty”, “faultless”}. 
In a specified BN, if some evidences are given, we 
can get the posterior probability or belief of 
c=“faulty” as the fault-proneness by calculating the 
marginal probability:  





cuVu

n

ii

ucuupcBel
,

21 ),...,,...,,()"faulty"(  
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where 



Vu

uin

i

i
upuup )|(),...,( 1   is the joint  

probability over V.  
In practice, we often use the efficient algorithm 

of exact inference or approximate inference rather 
than the marginalization of the joint probability to 
compute Bel.      

3.3.2 Optimal Discretization by Learning 

According to Definition 1, we need to generate the 
discrete state space Ωu of u as inputs to the BN when 
the predictor u is continuous. As the predictive 
factors used in our study are quantitative metrics, 
discretization is necessary. There are two classes of 
discretization methods: supervised and 
unsupervised. Supervised methods can often achieve 
a better result than unsupervised methods. Since we 
have training instances with fault data, we use a 
supervised method, the optimal multi-splits 
algorithm proposed by Elomaa and Rousu (Elomaa 
and Rousu, 1996), which is based on the information 
theory. This algorithm finds the optimal cut-points 
of a continuous predictor based on the 

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

8



 

discretization’s contribution to the classification 
prediction (“faulty” or “fault-free”). This algorithm 
can achieve good splits with the optimal number of 
numeric intervals adaptively adjusted, although we 
need to set the maximum number of intervals 
(Elomaa and Rousu, 1996).   

The algorithm uses the following as the goodness 
criterion: 

1
( ,1, ) min ( ( 1,1, ) (1, 1, ))

j i
Impurity k i impurity k j impurity j i

 
     (7)

where impurity(k, j, i) denotes the minimum 
impurity that results when the training instances j 
through i are partitioned into k intervals. The best k-
split is the one that minimizes impurity(k,1, N), 
where N is the cardinality of the set of values of the 
continuous predictor. The measure impurity (1, j+1, 
i) is the average class entropy of the partition (the 
conditional entropy given the partition). The 
minimization of impurity makes minimum the 
number of bits to encode the splits for the class 
prediction, thus satisfying Occam's MDL principle 
of the information theory (Elomaa and Rousu, 1996). 
The algorithm is recursively run to identify the 
optimal splits.    

3.3.3 GA Learning of the Network Structure  

There are two kinds of learning methods for a BN 
structure: the conditional independence test and the 
search of the scoring space. Since our goal is to 
obtain a BN with the best performance, we prefer 
the latter because it can generate a BN satisfying the 
Markov property and has an optimal prediction 
performance. In learning of an optimal BN, a quality 
score is required to measure the network’s quality. 
There are three kinds of score measures that bear a 
close resemblance (Bouckaert, 1995): Bayesian 
approach, information criterion approach, and 
minimum description length approach. We used the 
Bayesian approach that uses the posterior probability 
of the learned network structure given the training 
instances as a measure of the structure’s quality.   

There are different algorithms for searching the 
optimal Bayesian network. In our study, we used the 
genetic algorithm (GA) because it can better explore 
the search space and therefore has a lower chance of 
getting stuck in local optima (Kabli et al., 2007). It is 
more likely to find the globally optimal solution.  

GA is based on the mechanics of natural 
selection and genetics (“survival of the fittest”) and 
it aims to find the optimum with structured yet 
randomized information exchange among encoded 
string structures. It evolves by repeating the 
following steps: initialization or re-formation of the 

population, evaluation and selection of individuals, 
crossover and mutation for generation of offspring 
until the maximum quality score is obtained or the 
maximum evolution time is used up. To learn an 
optimal BN, a connectivity matrix C=(cij)i,j=1,…,n is 
used to encode the BN: if j is a parent node of i and 
i>j, cij=1; otherwise, cij=0. Then the BN can be 
represented by the string that consists of the 
elements of C (Larranaga et al., 1996). The 
inequality i>j ensures the assumed ancestral order 
between the variables. Using the general GA for the 
strings that encode the network structures, we can 
find the optimal BN. For details of the algorithm, see 
(Kabli et al., 2007; Larranaga et al., 1996).  

In our study, the GA parameters were set as 
follows: descendant population size=100, population 
size=20, crossover probability=1, mutation 
probability=0.1, random seed=1, and run time=50.  

3.3.4 Learning of the Network Parameters 

After the network structure is found, the conditional 
probability table (CPT), i.e. implementation of 
assessment functions in BP of the BN (Definition 1) 
needs to be estimated from the database of instances. 
We used the Bayesian estimator which assumes that 
the conditional probability of each rv node 
corresponding to its parent instantiation conforms to 
the Dirichlet distribution (Korb and Nicholson,  
2004) with local parameter independence: 

),,,,( 1   iD  with 
i  being the hyperparameter 

for state i.   
The Dirichlet-based parameter estimator assumes 

independence of local parameters which may not be 
true in practice. This can result in biased parameters. 
We can use the classification tree to improve the 
learning while avoiding this assumption (Korb and 
Nicholson, 2004).  

3.3.5 Probabilistic Inference 

The constructed BN model can be used to make an 
inference of the probability prediction of the query 
(target) variable (“faulty” or “fault-free”), given the 
nodes of predictors. There are two kinds of 
inference: exact inference and approximate 
inference. Exact inference uses all the information of 
nodes in the BN to make the probability inference. It 
has a higher prediction accuracy than the 
approximate inference, which makes the inference 
through sampling (Korb and Nicholson, 2004). For a 
large-scale connected BN, the exact inference is a 
NP problem and the approximate inference is 
preferred. But, in our study, as the learned network 
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is relatively simple (with less than 8 nodes), the 
exact inference of the BN’s polytree (Korb and 
Nicholson, 2004) is used, partly because it is more 
efficient than the marginalization of the joint 
probability.  

4 DATA ANALYSIS    

The data analysis mainly consists of four steps: 
feature selection, multicollinearity analysis, 
modeling and prediction, and evaluation.    

4.1 Feature Selection     

This step selects the correlative and informative 
features (factors) for learning and prediction. As 
Pearson’s correlation only measures the linear 
correlation and may omit nonlinear information, we 
use the information-based feature selector defined 
by Quinlan (Quinlan, 1993): Information Gain Ratio 
(GR).  GR takes into account the information that 
each feature contains and measures the gain ratio 
given the feature to be assessed.  

)(/))|()((),( fHfcHfHfcGR   (8)

where H(c|f) is the conditional entropy of the target 
class c given the feature f (MacKay, 2003).  

If a predictor is continuous, it is necessary to 
discretize the predictor. We used the algorithm 
presented in section 3.3.2  to discretize the 
continuous predictor before computing its GR 
according to equation (8). Table 2 shows the GR of 
the metrics used for each of the chosen Rhino 
versions. CCMIN with GR of 0 will be removed 
from the set of predictors.     

Table 2: GR of C-K and Cyclomatic Complexity. 

Metrics 1.5R3 1.5R4 1.5R5 1.6R1 1.6R2

WMC 0.23 0.21 0.14 0.23 0.26

DIT 0 0.09 0 0.18 0.12

CBO 0.36 0.24 0.13 0.22 0.20

RFC 0.49 0.24 0.22 0.30 0.26

LCOM 0.28 0.29 0.26 0.20 0.13

NOC 0 0.18 0 0 0

CCMIN 0 0 0 0 0

CCMAX 0.51 0.21 0.12 0.18 0.16

CCMEAN 0.29 0.18 0.12 0.17 0.12

CCSUM 0.11 0.22 0 0.16 0.13  

4.2 Multicollinearity Analysis     

For multicollinearity analysis, we can use the 
combination of predictive factors with less 
redundancy information for a better learning and 

prediction for LR and NB. The variance inflation 
factor (VIF) is often used to diagnose the 
multicollinearity and weaken it (Dirk and Bart, 
2004). If multicollinearity exists, by comparing the 
Pearson’s correlation and removing one of the 
strongly correlative independent variables, or 
removing the predictor with the maximum VIF value, 
the multicollinearity can be gradually weakened 
until VIFs of all the predictors are equal to or 
smaller than 3.  We directly used the result of 
multicollinearity analysis in (Olague et al., 2007) 
since it analyzed the same system (Rhino) and 
similar versions (1.5R3, 1.5R4 and 1.5R5) as ours. 
Thus, two combinations of C-K metrics were chosen 
as sets of predictive factors (with VIF<3):  
 C-K model 1: CBO, DIT, LCOM, NOC, and 

WMC;  
 C-K model 2: CBO, DIT, LCOM, NOC, and 

RFC.  
For the cyclomatic complexity metrics, Table 2 

shows that CCMAX has a larger GR for almost all 
the Rhino versions, which indicates its higher 
contribution to the prediction. Further, there are 
large correlations between CCMAX, CCSUM and 
CCMEAN (CCMIN is removed as its GR is 0).  
Since we only need to select the one with a better 
GR value as the predictor of complexity, we chose 
CCMAX which also had a weak correlation with the 
C-K metrics (as shown in Table 3).  Thus, CCMAX 
will be combined with those metrics in C-K model 1 
and model 2 to generate new sets of predictors.  

Table 3: CCMAX’s Correlation with CK-Metrics. 

Version WMC DIT CBO RFC LCOM NOC

1.5R3 0.45* -0.21* 0.47* 0.56* 0.25* 0.22*

1.5R4 0.46* -0.09* 0.44* 0.57* 0.25* 0.04*

1.5R5 0.50* -0.07* 0.36* 0.55* 0.29* 0.023

1.6R1 0.46* -0.05 0.37* 0.53* 0.21* 0.072

1.6R2 0.47* 0 0.38* 0.54* 0.22* 0.074

*: Correlation is significant at the 0.01 level (2-tailed).
 

4.3 Modeling and Prediction     

For LR and NB, we chose informative combinations 
(Table 4) of predictive factors with less redundancy 
information according to Table 2 and the above 
multicollinearity analysis. As BN can model the 
complex probabilistic dependent (conditional) 
relationships between predictors with its flexible 
network topology, we do not consider the 
multicollinearity issue and choose all the predictors 
with nonzero GR values.  

The procedure of modeling and predictio
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n follows the techniques described earlier in section 
3. For the LR, the continuous product metrics are 
directly used as inputs since its model (equation 1) is 
based on continuous attributes; for the NB, we use 
the pdf of a normal (Gaussian) distribution (equation 
5) for estimation (equation 3). But for the BN, the 
algorithm of section 3.3.2 is first used to discretize 
the continuous predictors and then the modeling is 
based on the discretized predictors and fault data. 

Table 4: Combinations of predictors. 

 

We evaluate the performance of these prediction 
methods in two ways. The first method applied the 
usual 10x10 cross-folder validation. In this 
validation, the dataset was randomly divided into 10 
buckets of equal size. 9 buckets were used for 
training and the last bucket was used for the test. 
The procedure was iterated 10 times and the final 
result was averaged. For the construction of model, 
we used all the instances for learning. The second 
method used the prediction model of one version to 
predict the fault-proneness of the relevant classes of 
the next version (i.e. 1.5R3 for 1.5R4, 1.5R4 for 
1.5R5, 1.5R5 for 1.6R1, and 1.6R1 for 1.6R2).  

4.4 Evaluation Methods     

We use the receiver operative characteristic (ROC) 
as the evaluation method. ROC was originated from 
the signal detection theory and statistical decision 
theory. It assumes that the binary signal is corrupted 
by Gaussian noise and the recognition accuracy 
depends on the strength of signal, noise variance, 
and desired hit rate or false alarm rate. We can set 
different discrimination thresholds (p0) to test the 
sensitivity of the recognition performance of the 
learner for lowering the effect of noise variance. 
ROC has been widely used in evaluation of binary 
classifications as a relatively objective measure.  

In a ROC graph, the horizontal axis represents 1-
specificity and the vertical axis the sensitivity. If we 
register whether an artifact is fault-prone as the 
signal (0 regarded as “fault-free” and 1 as “faulty”), 
the 1-specificity refers to the ratio of the instances 
detected as “faulty” among all the fault-free 
instances (a.k.a. probability of false alarms, pf) and 
the sensitivity refers to the ratio of the instances also 
detected as “faulty” among all the faulty instances 
(a.k.a. probability of fault detection, pd). Precision 
(p) is the proportion of the correctly predicted cases. 

Table 5: A Confusion Matrix. 

Predicted

fault-free faulty

Actual
fault-free a b

faulty c d
 

pd, pf, and precision can be calculated from the 
confusion matrix (Table 5). The confusion matrix 
contains information about actual and predicted 
classifications from a learner. Each column of this 
matrix represents the instances in a predicted class, 
while each row represents the instances in an actual 
class. From Table 5, we have:   

pd=d/(c+d),  pf= b/(a+b),  p=d/(b+d)   

As p is an unstable index for measuring the 
prediction performance (Menzies et al., 2007b), we 
regard it as a secondary reference.   

According to the definition of pd and pf, their 
range must be within the interval [0, 1]. A larger pd 
with a lower pf indicates a good prediction 
performance. When the ROC point (pf, pd) is closer 
to the upper-left corner (0, 1), called “sweet spot” 
where pf=0 and pd=1, the prediction model has a 
better performance. Often we cannot simultaneously 
achieve a high pd and low pf. The balance is based 
on the Euclidean distance from the sweet spot (0,1) 
to a pair of (pf, pd):  

2/))1()0((1 22  pdpfbalance  (9)

A higher balance indicates being closer to the 
sweet spot and a better prediction performance.  

ROC curve corresponds to a sensitivity analysis. 
We can set different values of the threshold of the 
fault-proneness, p0, from 0 to 1, to calculate the 
value pairs (pf, pd) for each threshold. Then we use 
these pairs to construct a curve with pf varying from 
0 to 1. If the curve is closer to the sweet spot and 
more convex than another curve, then its 
performance is better; if the curve is close to the 
diagonal line from (0, 0) to (1, 1), its prediction 
performance is no better than a random guess 
(Heeger, 1998).  

Version Method Combination of predictive factors

1.5R3
LR/NB

Model 1: CBO, LCOM, WMC, CCMAX
Model 2: CBO, LCOM, RFC, CCMAX

BN WMC, CBO, LCOM, RFC, CCMX

1.5R4
LR/NB

Model 1: CBO, DIT, LCOM, NOC, WMC, CCMAX
Model 2: CBO, DIT, LCOM, NOC, RFC, CCMAX

BN WMC, CBO, DIT, LCOM, NOC, RFC, CCMAX

1.5R5
LR/NB

Model 1: CBO, LCOM, WMC, CCMAX
Model 2: CBO, LCOM, RFC, CCMAX

BN WMC, CBO, LCOM, RFC, CCMX

1.6R1
LR/NB

Model 1: CBO, DIT, LCOM, WMC, CCMAX
Model 2: CBO, DIT, LCOM, RFC, CCMAX

BN WMC, CBO, DIT, LCOM, RFC, CCMAX

1.6R2
LR/NB

Model 1: CBO, DIT, LCOM, WMC, CCMAX
Model 2: CBO, DIT, LCOM, RFC, CCMAX

BN WMC, CBO, DIT, LCOM, RFC, CCMAX
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Figure 3:   Network topologies of the learned BN for the chosen Rhino versions. 

ROC area represents the area between the horizontal 
axis and the ROC curve and it reflects the precision 
of sensitivity analysis. Its value should be between 
0.5 and 1. A value close to 0.5 indicates 

completely invaluable, a value between 0.5 and 0.7 
means lowly valuable, a value between 0.7 and 0.9 
means moderately valuable, and a value above 0.9 
indicates highly precise (Heeger, 1998). 

5 RESULTS AND DISCUSSION    

5.1 Learned Models    

Table 6 lists the coefficients of model 1 and 2 
learned by the LR.  Our result shows that model 2 of 
NB had a better performance than model 1. Thus, it 
will be used for comparison against the LR and BN 
models. Table 7 presents the parameters (mean and 
standard deviation) of pdf for the “faulty” classes 
(marked with 1) and “fault-free” classes (marked 
with 0) of model 2 of the NB.  

Figure 3 shows the network topology of the 
learned BN for each of the four test versions (1.5R3, 
1.5R4, 1.5R5, 1.6R1).    

Table 6: Coefficients (β) Learned by LR. 

Version Model WMC DIT NOC CBO RFC LCOM CCMAX Intercept

1.5R3
1 0.02 - - 0.05 - 0.000 0.02 -3.08

2 - - - 0.10 -0.01 0.002 0.02 -2.93

1.5R4
1 0.02 0.08 1.45 0.26 - 0.002 0.006 -2.4

2 - 0.04 1.46 0.22 0.02 -0.000 0.004 -2.32

1.5R5
1 0.06 - - 0.10 - -0.001 -0.004 -2.63

2 - - - 0.03 0.03 -0.001 -0.005 -2.40

1.6R1
1 0.03 -0.25 - 0.24 - -0.001 0.001 -1.67

2 - -0.26 - 0.20 0.02 -0.001 0 -1.00

1.6R2
1 0.03 -1.0 - 0.17 - -0.000 0.004 -1.57

2 - -1.09 - 0.09 0.03 -0.001 -0.00 -0.91  

5.2 Comparison by Cross Validation  

Table 8 gives the comparison of the prediction 
models (LR, NB and BN) from the 10x10 cross-
folder validation. The BN achieves a better pd (0.55-
0.792) than the NB, LR-model 1 and LR-model 2 for  

Table 7: Pdf’s Parameters for NB-Model 2. 

 

the chosen Rhino versions (1.5R3, 1.5R4, 1.5R5, 
1.6R1 and 1.6R2). Further, for each version, the 
proposed BN keeps its pd above 0.5 which 
demonstrates a high stability of prediction 
performance.  

Table 8: Comparison of the Models by Cross Validation. 

 

Relatively, for the test versions, both LR and NB 
have a lower and unstable pd value (the LR’s pd 
ranges from 0.31 to 0.648 and the NB’s pd ranges 
from 0.345 to 0.519). Also, the BN’s balance is 
better and more stable than that of both LR and NB 
although its precision is slightly lower than theirs. 

Version DIT NOC CBO RFC LCOM CCMAX

1 0 1 0 1 0 1 0 1 0 1 0

1.5R3
- - - - 13.44 4.48 90.58 25.9 1032.5 61.28 69.30 10.78

- - - - 12.13 4.62 73.65 29.23 1701.0 179.9 83.52 17.74

1.5R4
0.61 1.03 0.48 0.03 10.56 2.52 65.49 14.89 519.26 14.19 36.97 9.40

0.78 0.77 1.84 0.33 9.33 3.25 58.80 15.98 1232.1 58.78 58.82 32.11

1.5R5
- - - - 11.42 4.15 78.78 23.80 751.4 69.84 35.18 13.76

- - - - 9.93 4.59 67.24 29.80 1739.2 257.9 53.93 36.94

1.6R1
0.58 1.02 - - 9.75 2.90 63.67 19.13 599.43 40.11 30.68 12.26

0.90 0.69 - - 9.53 3.08 66.43 26.95 2154.1 239.1 51.81 36.60

1.6R2
0.49 0.92 - - 9.98 3.32 65.32 18.77 601.83 49.51 32.32 11.47

0.61 0.62 - - 9.83 3.34 68.33 25.29 2176.3 250.2 54.7 35.51

     :mean;    :standard deviation

Version Model pd pf precision ROC Area balance

1.5R3

LR-model1 0.4 0.031 0.727 0.784 0.399

LR-model2 0.4 0.031 0.727 0.755 0.399

NB-model2 0.55 0.061 0.647 0.778 0.546

BN 0.55 0.061 0.647 0.867 0.546

1.5R4

LR-model1 0.63 0.157 0.756 0.834 0.598

LR-model2 0.648 0.143 0.778 0.832 0.620

NB-model2 0.519 0.071 0.848 0.803 0.514

BN 0.722 0.129 0.813 0.89 0.694

1.5R5

LR-model1 0.276 0.052 0.615 0.756 0.274

LR-model2 0.31 0.052 0.643 0.767 0.308

NB-model2 0.345 0.063 0.625 0.697 0.342

BN 0.552 0.042 0.8 0.806 0.550

1.6R1

LR-model1 0.623 0.152 0.767 0.785 0.594

LR-model2 0.642 0.182 0.739 0.79 0.598

NB-model2 0.377 0.061 0.833 0.785 0.374

BN 0.792 0.242 0.724 0.84 0.681

1.5R2

LR-model1 0.627 0.231 0.681 0.796 0.561

LR-model2 0.609 0.185 0.721 0.804 0.567

NB-model2 0.392 0.046 0.87 0.77 0.390

BN 0.784 0.323 0.656 0.824 0.611
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Figure 4:  ROC curves of the prediction models (LR, NB and BN) for the chosen Rhino versions. 

 
                               a)                                                          b)                                                                   c) 

 
                                    d)                                                           e)                                                                   f) 

Figure 5: Changes of pd, balance and precision by the cross-validation (a, b, c) and the validations of continual versions (d, 
e, f). 

Figure 4 shows ROC curves of the prediction 
models for the chosen Rhino versions. The ROC of 
the BN is mostly closer to the sweet spot and more 
convex than those of the LR or NB, which further 
indicates its better performance. 

5.3 Validation by Continual Versions  

For the fault-proneness prediction, a better method 
of validation is to use the prediction model learned 
from one version to test the next version. This 
validation by continual versions is more useful for 
testing software developed with a highly-iterative or 
agile evolutional strategy (Olague et al., 2007). We 
used the models of LR-model 1, LR-model 2, NB-
model 2 and BN learned with the class instances of 
the core components of one version to test those of 

the next version with the same predictors (1.5R3 for 
1.5R4, 1.5R4 for 1.5R5, 1.5R5 for 1.6R1 and 1.6R1 
for 1.6R2). Table 9 shows the results. 

For Rhino versions 1.5R3 and 1.5R5, all LR, NB 
and BN models present a low pd and balance. 
However, for these two versions, the BN has a 
higher pd and balance than those of LR and NB. For 
the other versions (1.5R4 and 1.6R1), the BN 
achieves a much better pd and balance. The ROC 
areas of all the models are above 0.7, indicating 
moderate to high precision.  

Figure 5 shows changes of pd, balance and 
precision of the prediction models in the cross-folder 
validation (a, b and c) and the validation of continual 
versions (d, e and f). As seen in Figure 5a vs. 5d, 5b 
vs. 5e, the pd and balance curves of the models keep 
the same shape (two linked “V”) and trend. The  
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Table 9: Validation of the Models by Continual Versions.  

Version Model pd pf precision ROC Area balance

1.5R3

LR-model1 0.204 0.014 0.917 0.842 0.204

LR-model2 0.185 0.014 0.909 0.847 0.185

NB-model2 0.333 0.029 0.9 0.779 0.332

BN 0.407 0.014 0.957 0.79 0.407

1.5R4

LR-model1 0.724 0.281 0.438 0.795 0.606

LR-model2 0.724 0.292 0.429 0.795 0.598

NB-model2 0.552 0.156 0.516 0.745 0.526

BN 0.862 0.365 0.417 0.806 0.610

1.5R5

LR-model1 0.189 0.015 0.909 0.822 0.189

LR-model2 0.208 0.015 0.917 0.825 0.208

NB-model2 0.245 0.03 0.867 0.78 0.244

BN 0.283 0.03 0.882 0.758 0.282

1.6R1

LR-model1 0.647 0.215 0.702 0.816 0.587

LR-model2 0.647 0.215 0.702 0.827 0.587

NB-model2 0.392 0.031 0.909 0.818 0.391

BN 0.843 0.338 0.662 0.832 0.627

 

difference in shape between the pd and balance 
curves is not large. Further, the core components of 
Rhino version 1.5R5 have the worst prediction 
performance either by the cross-folder validation or 
the validation of continual versions. According to 
the change log of Rhino (Bugzilla, 2005), since 
version 1.6R1, there was a major revision (to 
support ECMAScript for XML (E4X) as specified 
by ECMA 357 standard) which represents a large 
change from the earlier versions. This additional 
functionality (non-fault cause) may result in the low 
pd and balance of the models for this version 1.5R5 
when making prediction for the next version, 1.6R1 
(Figure 5d and 5e). 

As can be seen in Figure 5 (5a vs. 5d, 5b vs. 5e), 
the performance of the prediction models (LR-model 
1, LR-model 2, NB-model 2 and BN) by the cross-
folder validation is similar to that by the validation 
of continual versions. Overall, the performance by 
the cross-folder validation is slightly better than that 
by the continual validation but for the BN model, 
this is not the case for version 1.5R4 and 1.6R1. 
Further, the difference in performance of the 
prediction models between the cross-folder 
validation and the validation of continual versions is 
similar. The BN has achieved a better prediction 
performance (a larger pd and balance) for each of 
the chosen Rhino versions either by the cross-folder 
validation or by the validation of continual versions. 
The performance of the NB and LR models is 
inconsistent (for version 1.5R3 and 1.5R5, NB is 
better than LR; but for version 1.5R4 and 1.6R1, LR 
is better than NB). 
    On the other hand, the precision curves of the 
prediction models present an unstable trend either by 
the cross-folder validation (Figure 5c) or by the 
validation of continual versions (Figure 5f). There is 

no one model whose precision always keeps a better 
value across the releases of the continual versions.  
Our analysis suggests that precision is not a good 
measure for evaluation of the prediction models due 
to its large standard deviations (unstablility) 
(Menzies et al., 2007b). Although the BN’s 
precision is sometimes not as good as the LR or NB, 
it’s larger and more stable pd and balance show that 
it is valuable for fault-proneness prediction. 

6 CONCLUSIONS  

This paper presents a learned BN that is based on the 
data mining techniques (i.e. the optimal 
discretization and the genetic algorithm) for the 
prediction of fault-proneness of the agile OO 
systems. D'Ambros et al. (D'Ambros et al., 2012) 
illustrated the importance of predictors and Menzies 
et. al. (Menzies et al., 2007) showed the importance 
of learners such as naïve Bayes. We extended the 
previous work by illustrating the improvement of 
fault-proneness prediction by learning algorithms for 
feature selection and flexible network structure.  
Using the continual versions of the open-source 
system Rhino, we empirically validated the proposed 
prediction model and compare its performance with 
LR and NB.  

The BN has the advantages of a flexible network 
structure and wide choices of the learning and 
optimization algorithms. It also avoids the 
constraints of LR (logistical-scale linear and 
addictive relationships between predictors and the 
dependent variable (fault-proneness)), and the 
assumptions of NB (the conditional independence 
and the normal distributions of predictors). Based on 
the 10х10 cross-validation and the validation of 
continual versions of the test system, the prediction 
results of the BN learned by the GA are positively 
encouraging: compared with the NB and LR, the BN 
has a better and stable pd and balance. The 
comparison between the ROC curves (Figure 4) of 
the prediction models also strengthened this 
conclusion.  

In the previous studies on using BN for fault-
proneness, Liu et al. (Liu et al., 2008 ) used 
spanning tree to construct their BN, Fenton et al. 
(Fenton et al., 2008) constructed the network based 
on the domain knowledge, and Pai and Dugan (Pai 
and Dugan, 2007) used LR to construct and 
parameterize their BN model.  Compared with the 
previous studies, we adopted optimal discretization 
and genetic algorithm (GA) to improve the network 
(avoiding missing of domain knowledge for 
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construction of network and local optimization since 
GA is a globally optimal solution).    

By the validation of continual versions, the 
learned BN method is particularly valuable for the 
quality evaluation of the OO systems developed with 
the highly-iterative or agile strategy.  

There are several threats to validity. The first 
threat is that only version series of one software 
product (Rhino) were used to train and test the 
model. But the paper’s focus is on examination of 
the learners in agile process software (not 
generalization of the method to general software 
modules). We have examined our models across 
other different software products and statistically 
demonstrated our approach’s advantages in a 
previous study (Li and Leung, 2011). The second 
threat is that selection of different predictive factors 
for different models may damage the validity of the 
models. But learning was conducted to get the 
optimal prediction performance. Using the same 
methods of feature selection and optimal learning 
algorithms for different models, the prediction 
performance of the models could be comparable no 
matter what different predictors were used.    
In the future, we will explore the following aspects:  
 Using additional benchmark datasets (Basili et 

al., 1996; Menzies et al., 2007; Pai and Dugan, 
2007) from public domain, we will conduct more 
empirical validation of the BN in comparison 
with other models for the fault-proneness 
prediction. This can determine the superiority 
and stability of BN for the quality assessment of 
agile software.  

 Given the many data mining and optimization 
algorithms, we will explore the effects of 
different algorithms on the prediction.  

 We will investigate the applicability of BN for 
the prediction of other aspects (e.g. reliability) of 
software quality, using additional metrics (e.g. 
slice-based cohesion and coupling) and 
qualitative factors.  
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