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Abstract: Computational thinking (CT) draws on fundamental computer science concepts to formulate and solve prob-
lems, design systems, and understand human behavior. CT practices (e.g., problem representation, abstrac-
tion, decomposition, simulation, verification, and prediction) are also central to the development of exper-
tise in a variety of STEM disciplines. Exploiting this synergy between CT and STEM disciplines, we have 
developed CTSiM, a cross-domain, scaffolded, visual-programming and agent-based learning environment 
for middle school science. We present and justify the CTSiM architecture and its implementation. To identi-
fy challenges and scaffolding needs in learning with CTSiM, we present a case study describing the chal-
lenges that a high- and a low-achieving student faced while working on kinematics and ecology units using 
CTSiM. Decreases in the number of challenges for both students over sequences of related activities illus-
trate the combined effectiveness of our approach. Further, the specific challenges and scaffolds identified 
suggest the design of an adaptive scaffolding framework to help students develop a synergistic understand-
ing of CT and science concepts. 

1 INTRODUCTION 

Science education in K-12 classrooms has been a 
topic of growing importance. The National Research 
Council framework for K-12 science education 
(NRC, 2011) includes several core science and engi-
neering practices: asking questions and defining 
problems, developing and using models, planning 
and carrying out investigations, analyzing and inter-
preting data, using mathematics and computational 
thinking, and constructing explanations and design-
ing solutions. Several of these epistemic and repre-
sentational practices central to the development of 
expertise in STEM disciplines are also primary 
components of Computational Thinking (CT). CT 
involves formulating and solving problems, design-
ing systems, and understanding human behavior by 
drawing on the fundamental concepts of computer 
science (Wing, 2010). Specifically, CT promotes ab-
straction, problem representation, decomposition, 
simulation, and verification practices. Thus it is not 
surprising that CT is included as a key feature in 
NRC’s K-12 science education framework. In fact, 
several researchers suggest that programming and 

computational modeling can serve as effective vehi-
cles for learning challenging STEM concepts (Guz-
dial, 1995; Sherin, 2001; Hambrusch et al., 2009).  

In spite of the observed synergies between CT 
and STEM education, empirical studies have shown 
that balancing and exploiting the trade-off between 
the domain-generality of CT and the domain-
specificity of scientific representations, presents an 
important educational design challenge (Sengupta et 
al., 2012a). Thus, Sengupta et al. (2012b, 2013) and 
Basu et al. (2012) proposed CTSiM (Computational 
Thinking in Simulation and Modeling) for K-12 sci-
ence learning using a computational thinking ap-
proach. CTSiM provides an agent-based, visual pro-
gramming interface for constructing executable 
computational models and allows students to exe-
cute their models as simulations and compare their 
models’ behaviors with that of an expert model.  

In this paper, building upon our previous work, 
we present key design principles and their transla-
tion to details of the CTSiM architecture (Sengupta 
et al., 2013; Basu et al., 2012). In an initial study 
with 6th-grade students in a middle Tennessee pub-
lic school, students showed high pre-post learning 
gains and a good understanding of the basic science 
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concepts. However, students also faced a number of 
challenges while working with CTSiM. This paper 
presents a case study that discusses the challenges 
that a high and a low achieving student faced while 
working on a physics and a biology unit using 
CTSiM. We compare and contrast the challenges 
faced by the two students, and discuss how the chal-
lenges evolved over time. The set of challenges, and 
the scaffolding provided to help overcome them, 
suggest the design of an adaptive scaffolding 
framework to help students develop a synergistic 
understanding of CT and science concepts. 

2 CTSiM DESIGN PRINCIPLES 
AND ARCHITECTURE 

This section discusses a set of key principles that 
guide the design and implementation of CTSiM 
(Sengupta et al., 2012b, 2013; Basu, et al., 2012). 
The design principles and the corresponding imple-
mentation decisions are summarized in Table1. 

2.1 CTSiM Design Principles 

Wing’s notion of CT (Wing, 2010) emphasizes ab-
stractions and the automation of abstractions. In 
computer science, abstractions represent generaliza-
tions and parametric forms of code segment instanc-
es. They capture essential properties common to a 
set of objects while hiding irrelevant distinctions 
among them. According to Wing, the “nuts and 
bolts” in CT involve defining multiple layers of ab-
straction, understanding the relationships between 
the layers, and deciding what details need to be 
highlighted (and complementarily, what details can 
be ignored) in each layer. This led to our first 2 de-
sign principles (DP) -  
DP1: Engage students in defining multiple layers of 
computational abstractions to represent different 
aspects of the domain, and  
DP2: Help students understand relations between 
the abstraction layers by mechanizing the relation-
ships. 

Another important characteristic of CT is its fo-
cus on conceptualization and developing ideas on 
how to solve a problem rather than producing soft-
ware and hardware artifacts that represent the solu-
tion to a problem. This forms the basis for 
DP3: Help students conceptualize phenomena rather 
than program them using rigid syntax and seman-
tics.  

When CT  mechanisms  are  anchored  in  real-world 

problem contexts, programming and computational 
modeling become easier to learn (Hambrusch et al., 
2009). Also, reorganizing scientific and mathemati-
cal concepts around computational mechanisms 
lowers the learning threshold, especially in domains 
like physics and biology (Redish and Wilson, 1993). 
Learning environments that adopt this approach 
need to make the CT principles explicit and easy to 
apply, without limiting the range of phenomena that 
can be modeled (high-ceiling) and the types of arti-
facts that can be studied (wide-walls), to make them 
widely applicable in K-12 classrooms (Sengupta et 
al., 2012b). This leads to two additional principles: 
DP4: Make the learning environment encompass 
wide-walls and high-ceilings to provide a common 
set of principles for studying multiple STEM disci-
plines, and  
DP5: Make the CT principles in a domain and the 
computational commonalities across domains ex-
plicit and easy to use. 

The rest of our design principles draw on the model-
ing literature. Modeling – the collective action of 
developing, testing and refining models - has been 
described as the core epistemic and representational 
practice in the sciences (Lehrer and Schauble, 2006). 
Using this we establish:  
DP6: Adopt a modeling paradigm which is intuitive 
and easily understandable by K-12 students. 

We choose an agent-based modeling paradigm 
since it is believed to productively leverage students’ 
pre-instructional intuitions, and it helps in learning 
of complex systems and emergent phenomena in 
science domains (Wilensky and Reisman, 2006). 
Logo (Papert, 1980), a well-known agent-based pro-
gramming language used to support children’ learn-
ing through the creation of artifacts, facilitates sim-
ultaneous learning of concepts about the domain 
phenomena and computational concepts, such as 
procedure abstraction, iteration, and recursion.  

Also, to help students seamlessly progress 
through cycles of algorithm construction, visualiza-
tion, analysis, reflection and refinement with timely 
feedback, we have  
DP7: Incorporate multiple “liveness” factors as 
support for programming and learning by design.  

After model construction, learning is believed to 
occur by comparing the model behavior against that 
of a correct model or real world data. Thus, we have  
DP8: Enable verification and validation of computa-
tional models.  

Finally, to help students model real-world phe-
nomena and to apply their skills learnt through mod-
eling to real world problems, we have  
DP9: Draw on engineering thinking by building sys- 
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tems that model and interact with the real world.  

2.2 Implementing Design Principles: 
The CTSiM Architecture 

We base the conceptual framework for our pedagog-
ical approach on a typical learning-by-design se-
quence. Figure 1 depicts the CTSiM activity se-
quence which integrates our conceptual framework 
with the agent-based modeling paradigm. 

 
Figure 1: Sequence of activities performed by a student in 
the CTSiM learning environment. 

Initially, students conceptualize the science phe-
nomena by structuring it in terms of the types of 
agents involved, their properties, behaviors, and in-
teractions in what we call the ‘Conceptualization 
World’. They then construct computational models 
describing the behavior of each agent type in the 
Construction or C-World. Engaging students in 
modeling at two different levels of abstraction helps 
implement DP1. Students can view another layer of 
abstraction by executing their models as agent-based 
NetLogo simulations (Wilensky, 1999) in the En-
actment or E-World. Following DP2, the agent types 
and properties specified in the conceptual model de-
termine what students can model in the C-World. 
Similarly, the computational models constructed de-
termine what students see in the E-World. Students 
can also verify the correctness of their models by 
comparing the simulations generated by their models 
against ‘expert’ simulations in the Envisionment or 
V-World (this implements DP8). 

 The next design decision involved choosing a 
mode of programming for the C-World to enable 
 students to represent phenomena computationally 
without having to learn the syntax and semantics of 
a programming language (see DP3). 

We focus on visual programming (VP) as the 
mode of programming to make it easier for middle 
school students to translate their intuitive knowledge 
of scientific phenomena (whether correct or incor-

rect) into executable models (Sengupta et al., 2012b, 
2013). In such environments, students typically con-
struct programs using graphical objects in a drag-
and-drop interface (Kelleher and Pausch, 2005). 
This significantly reduces students’ challenges in 
learning the language syntax (compared to text-
based programming), and thus makes programming 
more accessible to novices. Unlike some agent-
based VP environments like AgentSheets (Repening, 
1993), StarLogo TNG (Klopfer et al., 2005), Scratch 
(Maloney et al., 2004), and Alice (Conway, 1997), 
which have often been employed with game design 
as the core programming activity, our goal is to fo-
cus on using VP to support scientific modeling and 
simulation.  

 

Figure 2: The CTSiM architecture. 

The CTSiM C-World consists of a library of vis-
ual primitives from which students can choose prim-
itives and spatially arrange them to generate their 
computational models. These primitives include 
both domain-specific and domain-general primitives 
(Sengupta et al., 2013). The set of available visual 
primitives may vary with the domain or curricular 
unit being modeled. Different curricular units of 
varying complexities can be defined by specifying 
(i) a set of available visual primitives, (ii) an expert 
computational model using these primitives, and (iii) 
a NetLogo-based domain model (implements DP4). 
Some of these visual primitives are specific to the 
domain being modeled, while others related to CT 
principles are domain-general and can be reused 
across domains (in accordance with DP5). The visu-
al primitives are internally translated to an interme-
diate   language   (a   limited   set   of  computational 
primitives), which is then compiled into NetLogo 
code to generate a simulation corresponding to the
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Table 1: Design principles and corresponding implementa-
tion decisions. 

Design Principles (DP) Implementation Decisions

DP1: Engage students in  
defining multiple layers of 
computational abstractions to 
represent different aspects of 
the domain 

Students construct conceptu-
al models (structural and be-
havioural layer) and compu-
tational models(functional 

layer), and can also execute 
their models as simulations

DP2:  Help students under-
stand relations between the 
abstraction layers by mecha-
nizing the relationships 

Conceptual model deter-
mines available primitives in 
the C-World, Computational 
model determines simulation

DP3:  Help students 
 conceptualize phenomena 
rather than program them  
using rigid syntax and 
 semantics 

Employ a drag-and-drop 
visual programming  

interface 

DP4:  Make the learning en-
vironment encompass wide-
walls and high-ceilings to 
provide a common set of 
principles for studying mul-
tiple STEM disciplines 

Ability to define any domain 
in terms of a base model in 
NetLogo, a list of available 
primitives, and an expert 

computational model using 
those primitives 

DP5: Make the CT principles 
in a domain and the compu-
tational commonalities 
across domains explicit and 
easy to use 

For each domain, define 
some visual primitives 

which are domain-specific 
and others which are do-
main-general; re-use the 

domain-general primitives 
across multiple domains 

DP6:  Adopt a modeling par-
adigm which is intuitive and 
easily understandable by K-
12 students 

Employ an agent-based 
modeling/programming 

paradigm 

DP7: Incorporate multiple 
“liveness” factors as support 
for programming and learn-
ing by design 

Include functionalities for 
code-highlighting, and 
commenting out code 

DP8: Enable verification and 
validation of computational 
models 

Implement the Enactment 
and Envisionment worlds 

DP9: Draw on engineering 
thinking by building systems 
that model and interact with 
the real world 

Make students analyze real 
world data in the conceptual-

ization phase; Then, apply 
concepts learnt to real 

 world problems 
 
user model. Figure 2 presents the architecture for the 
CTSiM learning environment. In Section 3, we de-
scribe the details of the different components of the 
architecture which we have already implemented. 
Other components like the Conceptualization World 
will be implemented in future versions of CTSiM. 

3 CTSiM IMPLEMENTATION 

3.1 The Construction or C-World 

The C-World allows students to build computational 
models using an agent-based, visual programming 
interface (see Figure 3). The students choose the 
type of agent and procedure they are modeling at the 
top of the screen. A list of visual primitives, along 
with corresponding icons, is provided on the left 
pane. These primitives are of three types: agent ac-
tions (e.g., moving, eating, reproducing), sensing 
conditions (e.g., vision, color, touch, toxicity), and 
controls for regulating the flow of execution in the 
computational model (e.g., conditionals, loops). Stu-
dents drag and drop these available primitives onto 
the right pane, arranging and parameterizing them 
spatially to construct their models. 

 

Figure 3: Construction world with a ‘breathe’ procedure 
for ‘fish’ agents in a fish-tank unit. 

3.2 The Enactment or E-World 

The E-World allows students to define a scenario 
(by assigning initial values to a set of parameters) 
and visualize the multi-agent-based simulation driv-
en by their computational model, as seen in Figure 4. 
CTSiM, written in Java, includes an embedded 
NetLogo instance to implement the simulation. Stu-
dents’ models are represented in the system as code 
graphs of parameterized computational primitives. 
These code graphs remain hidden from the end-user 
(the learner), and are translated into NetLogo com-
mands to generate the simulations. NetLogo visuali-
zations and plotting functionalities provide the stu-
dents with a dynamic, real-time display of how their 
agents operate in the microworld, thus making ex-
plicit the emergence of aggregate system behaviours.  
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Figure 4: The Enactment world for a fish-tank unit. 

Furthermore, CTSiM supports model tracing, 
meaning that the system can highlight each primitive 
in the C-World as it is being executed in the E-
World (implements DP7).  In order to achieve nor-
mal speed of execution, the ‘model trace runner’ is 
treated as an alternate model execution path availa-
ble in the E-World (see Figure 2) where each visual 
primitive is translated separately via the Model In-
terpreter, instead of the entire user model being 
translated to NetLogo code. Such supports for mak-
ing algorithms “live”, helps students better under-
stand the correspondence between their models and 
simulations, as well as identify and correct model er-
rors. CTSiM also supports execution of subsets of 
the code in the C-World through the standard pro-
gramming practice of “commenting out” parts of the 
computational model, allowing students to test their 
models in parts. These functionalities can be lever-
aged to provide important scaffolding that supports 
model refinement and debugging activities. 

3.3 The Envisionment or V-World 

The V-World allows students to systematically de-
sign experiments to test their constructed models and 
compare their model behaviours against that of an 
“expert” model, as seen in Figure 5.  Although the 
expert model itself is hidden, students observe its 
behaviour, comparing it with their own models, 
through side-by-side plots and microworld visualiza-
tions. Additional scaffolding will help students de-
cide what components of their models they need to 
investigate, develop further, or check for errors, and 
propose corrective actions.  

3.4 The Computational Language 

At the high level, our computational language com-
prises the visual primitives available to the end user 
in the C-World,  as  described  in  Section  3.1.  Each 

 

Figure 5: The Envisionment world for a fish-tank unit. 

visual primitive, in turn, is defined in terms of one or 
more underlying computational primitives with ap-
propriate constraints and parameters, to form what 
we call ‘code graphs’. The computational primitives 
provide a domain-independent set of computational 
constructs in a limited set of categories. Since the 
expert model in CTSiM is described using the same 
set of visual primitives available to the students, 
both student-built and pre-defined expert models can 
be executed, analyzed, and compared using the same 
computational language. Finally, this intermediate 
language of computational primitives is translated to 
NetLogo code to produce the E and V world simula-
tions. 

For example, Figure 4 shows a visual primitive 
‘Increase’ with the argument (another visual primi-
tive) ‘Carbon Dioxide (CO2)’.  The CO2 block is 
simply defined by a single computational primitive 
corresponding to the environment (global) variable 
for CO2. However, because of the goals and target 
grade-level of this unit, the student does not specify 
any other (e.g., quantitative) arguments for the ‘In-
crease’ block. Instead, the appropriate quantities for 
the simulation are part of the computational defini-
tion of the ‘Increase’ visual primitive, which is actu-
ally a series of checks corresponding to the possible 
visual primitives that could be provided as argu-
ments to ‘Increase’. For each possible visual primi-
tive (e.g., the CO2 block used in the example), the 
computational definition specifies the quantity by 
which the primitive’s value should be increased. 
Since the computational primitives are constant for 
all units, the same model translator can analyse or 
execute students’ models with different unit-specific 
visual primitives. 

3.5 The Model Executor 

In CTSiM, the model executor (see Figure 2), trans-
lates a (student-built or expert) model into corre-
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sponding NetLogo code, which is then combined 
with the domain base model. The base model pro-
vides NetLogo code for visualization and other 
housekeeping aspects of the simulation that are not 
directly relevant to the learning goals of the unit. 
The combined model forms a complete, executable 
NetLogo simulation, to run in the E or V Worlds. 

As seen in Section 3.2, the executor provides an 
alternate path through the ‘Model Tracer’. Using the 
Model Tracer, instead of translating the entire stu-
dent-generated model into NetLogo code, each visu-
al primitive is translated separately, and highlighted 
in the C-World as it is executed. 

3.6 Defining New Curricular Units 

Defining a new unit using the CTSiM architecture is 
fairly straightforward and involves defining the fol-
lowing components: (i) an xml file defining visual 
primitives for the unit (in terms of computational 
primitives), (ii) an xml file describing how the visual 
primitive blocks are to be depicted graphically in the 
C-World, including name, positions for arguments, 
color, etc., (iii) an xml file describing the expert 
computational model using the visual primitives de-
fined for the unit, and (iv) a domain base model 
which is responsible for the NetLogo visualization 
and other housekeeping aspects of the simulation. 

4 METHOD 

We describe a study conducted with 6th-grade mid-
dle Tennessee students who worked on two units in 
Kinematics and Ecology using CTSiM. 

4.1 CTSiM Curricular Units 

Kinematics Unit 

Kinematics unit activities were divided into three 
phases (Basu et al., 2012; Sengupta et al., 2013): 
Phase 1: Turtle Graphics for Constant Speed and 
Acceleration - Students generated algorithms to 
draw simple shapes (squares, triangles and circles) 
to familiarize them with programming primitives 
such as “forward”, “right turn”, “left turn”, “pen 
down”, “pen up” and “repeat”. Students then modi-
fied their algorithms to generate spirals where each 
line segment was longer (or shorter) than the previ-
ous one. This exercise introduced students to the 
“speed-up” and “slow-down” commands, and al-
lowed them to explore the relationship between 
speed, acceleration, and distance.  

Phase II: Conceptualizing and Re-representing a 
Speed-time Graph - Students generated shapes 
where the length of segments was proportional to the 
speed in a given speed-time graph. For example, the 
initial spurt of acceleration in the graph was repre-
sented by a small growing spiral, the gradual decel-
eration by a large shrinking spiral, and constant 
speed by a shape like a triangle, square, and so on. 
The focus was on developing mathematical 
measures from meaningful estimation and mechanis-
tic interpretations of the graph, and thereby gaining a 
deeper understanding of concepts like speed and ac-
celeration. 
Phase III: Modeling Motion of an Agent to match 
Expert behavior - Students modeled a roller coast-
er’s behavior as it moved on different segments of a 
track: up (pulled by a motor),  down, flat , and then 
up again. Students were first shown a simulation 
corresponding to an ‘expert’ roller coaster model in 
the V world. Then, they conceptualized and built 
their own agent model to match the observed expert 
roller coaster behavior for all of the segments. 

Ecology Unit 

In the Ecology unit students modeled a closed fish 
tank system in two steps: (1) a macro-level semi-
stable model for fish and duckweed; and (2) a micro-
level model of the waste cycle with bacteria. The 
macro model required modeling the food chain, the 
respiration and reproductive processes of the fish 
and duckweed, and the macro-level elements of the 
waste cycle. The non-sustainability of the macro-
model (the fish and the duckweed gradually died 
off), encouraged students to reflect on what might be 
missing from the model, prompting the transition to 
the micro model. They identified the continuously 
increasing fish waste as the culprit, and this trig-
gered the introduction of bacteria in the system. 

At the micro level, students modeled the waste 
cycle with bacteria converting the toxic ammonia in 
the fish waste to nitrites, and then nitrates, which 
sustained the duckweed. The graphs generated from 
the expert simulation helped students understand the 
producer-consumer relations between the bacteria 
and the chemicals. 

4.2 Setting and Study Design 

15 6th graders worked on CTSiM outside the class-
room with one-on-one verbal guidance from one of 
5 members of our research team (Scaffolded or S-
Group), while the remaining 9 students worked in 
the classroom (Classroom or C-Group) with some 
instruction from the researchers and the classroom 
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teacher. The C group also received individual help 
from the researchers if they raised their hand. The 
students were assigned to the groups by their class-
room teacher. 

All students worked on the three phases of the 
kinematics unit before the ecology macro and micro 
units. After completing the ecology micro unit, the S 
group received an additional scaffold: they discussed 
the combined micro-macro model with their as-
signed researcher and how the two models were 
causally linked to support sustainability. 

Students worked on the two science units in 
hour-long sessions for three days each. The units 
provided a natural sequencing in which students first 
learned to model and reason with a single agent in 
kinematics and then went on to model multiple 
agents and their interactions in ecology. 

4.3 Assessments 

The Kinematics pre/post-test assessed whether 
agent-based modeling improved students’ abilities to 
generate mathematical representations of motion and 
reason causally about them. Specifically, the test re-
quired interpretation of speed versus time graphs and 
generating diagrammatic representations to explain 
motion in a constant acceleration field. For the Ecol-
ogy unit, the pre/post-test focused on students’ un-
derstanding of the role of species in the ecosystem, 
interdependence among the species, the waste and 
respiration cycles, and how a change in one species 
affected the others.  

 
Figure 6: Comparison of gains between groups using 
TCAP scores as a covariate. 

5 RESULTS 

5.1 Learning Gains with CTSiM 

The intervention produced statistically significant 
gains for the Ecology unit, but not for the Kinemat-
ics unit (Basu et al., 2012), as seen in Table 2. How-

ever, as expected, for both units, the S group, which 
received direct one-on-one scaffolding, showed 
higher learning gains than the C group. 

The lack of statistical significance in the kine-
matics unit may be attributed to a ceiling effect (stu-
dents in both groups had high pre-test scores). In the 
ecology unit, significant gains were observed for 
both groups, which can be attributed to an increased 
awareness of the entities in the fish tank and their re-
lations with other species. However, the supplemen-
tary causal-reasoning activity helped the S-group 
students gain a better understanding of the interde-
pendence among the species, compared to the C-
Group, which received minimal scaffolding and 
none targeted towards causal reasoning. 

To account for prior knowledge differences be-
tween groups, we computed a repeated measures 
ANCOVA with TCAP (Tennessee Comprehensive 
Assessment Program) science scores as a covariate 
to study the interaction between time and condition. 
There was still a significant effect of condition on 
learning gains in ecology (F(1,21)=37.012, 
p<0.001), and a similar trend was seen in kinematics 
(F(1,21)=4.101,p<0.06) (Figure 6 shows adjusted 
gains). 

5.2 Analyzing Students’ Experiences 

Along with demonstrating the effectiveness of our 
overall approach, we also studied students’ interac-
tions with CTSiM in more depth – the challenges 
they faced and the scaffolds they required – in order 
to identify areas for improvement and embedded, 
adaptive scaffolding in the system. To investigate 
students’ conceptual development, we adopted an 
explanatory case study approach (Gomm et al., 
2000). In this analysis, we consider two representa-
tive cases from the S-group: Jim and Sara (names 
changed to maintain student anonymity). 

Based on pre-test responses and TCAP scores, 
we chose Jim and Sara because they were repre-
sentative of the high- and low-performing students, 
respectively. We contrast their experiences with the 
CTSiM units in terms of the number and types of 
challenges they encountered. Activities 1-7 in the 
analysis refer to: A1 - Kinematics constant speed 
shape drawing, A2 - Variable speed shape drawing, 
A3 - Re-representing a speed-time graph, A4 - Roll-
er-coaster activity, A5 - Ecology fish-tank macro-
unit, A6 - Fish-tank micro-unit, A7 - Combined fish-
tank macro- and micro-unit. 

Number of Challenges 

For both Jim and Sara and for both  curricular  units, 
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Table 2: Paired t-test results for Kinematics and Ecology pre and post test scores. 

 Kinematics Ecology 

 PRE (S.D.) 
(max=24) 

POST (S.D.) 
(max=24) 

t-value 
P-value 

(2-tailed) 
PRE (S.D.) 
(max=35.5) 

POST (S.D.) 
(max=35.5) 

t-value 
P-value 

(2-tailed) 

S-Group 
(n=15) 

18.07 (2.05) 19.6 (2.29) .699 0.017 13.03(5.35) 29.4(4.99) 8.664 <0.001 

C-Group 
(n=9) 

15.56 (4.1) 15.78 (4.41) 0.512 0.622 9.61(3.14) 13.78(4.37) 3.402 <0.01 

Table 3: Types of programming challenges and scaffolds. 

Programming 
Challenges 

Description of challenges Scaffolds 

Syntax and Seman-
tics of Primitives 

Difficulty understanding the usage, functionality, 
and enactment of certain visual primitives 

Step through the code and explain the functionality 
of primitives by showing their behaviour in the E-
World; Explain correct syntax for primitives 

Procedurality 
Difficulty in specifying a task in terms of a finite 
set of steps, and ordering the steps correctly to 
reach a desired goal 

Prompt the student to describe the phenomena and 
break it into subparts and the steps within each 
subpart. 

Modularity 

Difficulty in separating the functionality of the 
agents into independent modules such that each 
module executes only one aspect of the desired 
functionality 

Prompt student to think about which procedure 
they are currently modeling and whether their code 
pertains to only that procedure 

Code Reuse 
Difficulty in identifying already written similar 
code to reuse, what parts of similar code to modify

Prompt for analogous reasoning; Making students 
think about what similar procedures they have al-
ready written 

Conditionals, Loops, 
Nesting, Variables 

Difficultly in understanding role of variables, re-
peat-structures, conditionals and how to nest pro-
cedures within other conditional statements 

Explain concept of a variable using examples; Ex-
plain syntax and semantics of loops and nested 
conditions using code snippets and their enactment

Debugging 
Difficulty in methodically finding and reducing 
the number of ‘bugs’, or unexpected outcomes, in 
the program 

Prompts to think about which part of the code 
might be causing the bug; help break down the 
task by trying to get one code segment to work be-
fore moving onto another. 

 
the number of challenges faced generally decreased 
with time for similar units, but went back up when 
new computational constructs or modeling complex-
ities were introduced through new activities (see 
Figure 7a). In case of Jim, the number of challenges 
he faced in the Kinematics unit decreased from A1 
to A3, but rose again when he worked on A4.  This 
was expected as the roller coaster activity introduced 
many new computational constructs like variables, 
conditionals, and nesting of blocks. Also, A4 re-
quired students to generate abstractions of a real-
world phenomenon – a more complex modeling task 
compared to shape-drawing.  Similarly, in the ecolo-
gy unit students had the more complex task of mod-
eling multiple agent types and procedures defining 
the behaviour of each agent type. 

Expectedly, Jim’s number of challenges is initially 
high  in  the  macro  model  and  decreases as he pro- 

Figure 7a: Number of 
challenges over time. 

Figure 7b: Number 
(normalized) of similar 
challenges over time. 

gresses through the micro and combined models.  In 
the case of Sara, the number of challenges she faced 
in the A1-A3, did not decrease like they did for Jim. 
The challenges, though scaffolded, persisted through 
A1-A3. A potential explanation for this difference is   
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Table 4: Types of modeling challenges and scaffolds. 

Modeling  
Challenges 

Description of challenges Scaffolds 

Identifying 
Entities and 
Interactions 

Difficulty in identifying  agents to model and 
their properties and how they interact with 

each other 

Point out the appropriate aspects of the phenome-
na that need to be modeled and prompt student to 

think about the interactions 

Choosing Correct 
Initial Conditions 

Difficulty in identifying and setting appropri-
ate initial conditions to produce measurable 

and observable outcomes 

Prompt student to think about the preconditions 
necessary for certain functions, Encourage stu-

dents to vary initial conditions 

Systematicity 
Difficulty in methodical exploration; guessing; 

not using sim to inform changes 
Encourage student to think about their goal, the 

starting point, and their plan of action 

Specifying Model 
Parameters 

Difficulty in determining parameters for the 
visual primitive blocks in the C-World 

Prompt student to make a parameter change for 
more visible output; Encourage testing outcomes 

by varying parameter values 

Model Validation 
Difficulty in verifying and validating model by 
comparing and identifying differences with an 

expert model 

Ask student to slow down the simulation to make 
agent actions more visible; Point out the differ-

ences between the user and export model 
 
Jim’s higher initial knowledge of mathematics and 
physics, confirmed by the differences in their TCAP 
and pre-test scores. However, by the time Sara start-
ed working on A4, the number of challenges she 
faced was about the same as Jim’s, indicating that 
the CTSiM intervention helped both students in spite 
of their initial differences. Moreover, the low per-
forming students seemed to improve their under-
standing of domain and computational constructs, 
and, the type of challenges encountered by all stu-
dents gradually became similar, as shown in Figure 
7b. The only exception is A3 owing to a floor effect 
caused by Jim’s negligible number of challenges in 
the activity. 

Types of Challenges Faced by Jim and Sara 

In order to better understand Jim and Sara’s experi-
ences with CTSiM, we further classified the chal-
lenges and analyzed the scaffolds provided to over-
come them. Most challenges were related to model-
ing and programming, while some were based on the 
domain and agent-based-reasoning. A few common 
modeling challenges involved guessing turn angles 
for shape drawing instead of systematically using a 
compass and the E-World to help discover them, 
failing to recognize the relationships between ramp 
steepness and gravity in changing the speed of the 
roller coaster, and choosing forward lengths too 
small to produce observable outcomes. Some com-
mon programming challenges included problems 
with nesting conditions with and without a motor for 
the roller coaster, understanding that ‘swim’ and ‘eat 
functionalities had to be separated into different pro-
cedures for a fish, realizing that a fish had to be 
hungry as well as have food in order to be able to 
eat, etc. Tables 3 and 4 classify the programming 

and modeling challenges faced, and the scaffolds 
provided by the experimenters to help the students 
overcome these challenges. 

Figures 8 and 9 depict how the different types of 
programming and modeling challenges vary over 
time for both Jim and Sara. We see that the trends 
are very similar to those seen in Figure 7a for the to-
tal number of challenges over time, especially for 
the programming challenges. 

 

Figure 8: Comparison of Programming Challenges per ac-
tivity for Jim (J) and Sara (S). 

 
Figure 9: Comparison of Modeling Challenges per activity 
for Jim (J) and Sara (S). 
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6 CONCLUSIONS 

In this paper, we have provided an overview of the 
core design principles and architecture of CTSiM – a 
learning environment which seamlessly integrates 
domain-general CT concepts with domain-specific 
representational practices of a variety of STEM dis-
ciplines. Using a kinematics and  and an ecology 
unit, we show how CTSiM is effective in producing 
learning gains for both science topics. We also ex-
plained and classified a variety of challenges (and 
corresponding scaffolds) faced by a high- and a low-
performing student while they worked with CTSiM. 

Our results indicate that the challenges faced by 
these students generally decreased with time for se-
quences of related units, but, as expected, again in-
creased when new computational constructs or mod-
eling complexities were introduced. The decrease in 
the number of challenges illustrates the combined ef-
fectiveness of our architecture, curricular unit de-
sign, and scaffolds. Further, the specific challenges 
and scaffolds identified lay the groundwork for inte-
grating adaptive scaffolding in CTSiM to help stu-
dents develop a synergistic understanding of CT and 
science concepts.  
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