
Towards a Decentralized Middleware for Composition of
Resource-limited Components to Realize Distributed Applications

Christian Bartelt, Benjamin Fischer and Andreas Rausch
Department of Computer Science, University of Clausthal, Clausthal-Zellerfeld, Germany

Keywords: Component Composition, Self Adaptation.

Abstract: Dynamic adaptive middleware solutions for component-based development have become very important for
creating complex applications in recent years. Many different middleware systems have been developed. In
addition, decentralized middleware systems have been developed for special areas such as ambient
intelligence or generic middleware systems for a wide range of areas. However no decentralized middleware
system based on composition of limited components has been constructed. No component can be connected
to an unlimited set of other components, because every connection uses a small amount of resources like
network traffic or processor time. Specifically in mobile system resources is very restricted. Therefore, we
need a middleware to solve the competition for the needed components to get a good composition. This
paper demonstrates an approach towards a procedure to compose components under the aspect of limited
components. It also gives users the opportunity to prioritize an application to prefer it while creating a
composition.

1 INTRODUCTION

In recent years, the application areas of complex
software systems which can react to a changing
environment have distinctly increased. Component-
based software and systems development is the main
foundation through which complexity and dynamic
adaptability is handled.

To support the development of dynamic
adaptable systems, several middlewares are provided
(Klus et al., 2007); (Clarke et al., 2001). These
middlewares can compose components at run time.
Hence, developers of components can concentrate
on the correctness of their components, rather than
how to connect them. There are many different
middlewares for different environments. For
example, in the field of ambient intelligence (Issarny
et al., 2004) and in the field of ubiquitous computing
(Kon et al., 2002).

However none of these middlewares deal with
the fact that a service of a component can only be
used for a restricted number of components.

Most middlewares allow an optimal composition
of components for example DAiSI (Klus et al.,
2007) or OpenCOM (Clarke et al., 2001). Therefore,
an optimal composition is typically determined by
one central unit with global knowledge about all

potentially connectable components.
On the one hand, algorithms often need a long

time to determine the best composition for a large
set of components. On the other hand, in many cases
a central unit cannot be used. This is because there is
not enough calculation power to realize a central
unit or, in other cases, every component or unit can
be missing in the system. For this reason, some
middleware systems use a decentralized approach to
compose (Baresi et al., 2008). Of course there are
middleware systems which consider restricted
resources. However their solution for that problem is
a small middleware which uses only a small amount
of the resources such as calculation power
(Janakiram et al., 2005). What should be done, if this
isn’t enough, to realize the necessary set of
components?

The goal of our work is to construct a dynamic
adaptive middleware which connects components
without a central unit which takes note of the
restriction of the services of individual components.
The next chapter deals with an issue, where such a
middleware is needed and the challenges that the
middleware must deal with. Chapter 3 clarifies an
abstract example and creates a formal description in
order to get a general comprehension of components
and to describe what exactly qualifies a good

245Bartelt C., Fischer B. and Rausch A..
Towards a Decentralized Middleware for Composition of Resource-limited Components to Realize Distributed Applications.
DOI: 10.5220/0004386402450251
In Proceedings of the 3rd International Conference on Pervasive Embedded Computing and Communication Systems (SANES-2013), pages 245-251
ISBN: 978-989-8565-43-3
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

connection between components. In Chapter 4, the
formal description introduced in Chapter 3 is
extended and our approach is clarified. Chapter 5
contains the overall summary and further work.

2 PROBLEM

The following example demonstrates the necessity
of such a decentralized middleware in the field of
disaster management. In case of emergency aid,
many groups are involved to provide help. Every
group has its own specific function. There are
coordinators for the other groups; auxiliaries, for
example, specialists, who search whether a place is
safe or there is an area where an explosion could
occur; etc. In order to maximize the efficiency, a
communication infrastructure must be built. The
easiest way to do is as follows: Headquarters builds
the communication infrastructure and coordinates all
information. The coordination belongs to the
coordinators, who are often near headquarters.
However headquarters is not always the first to
reach a place of an emergency. Hence, the other
groups should communicate without headquarters in
addition. In large-scale disasters, the information
headquarters has to handle is too much. It is
therefore useful to use more headquarters to collect
and filter the information before it is forwarded. In
order to assist these groups, a communication
system should be built. Although there is no central
group which is always the first to reach a disaster,
the communication system must function well. The

 communication system must also realize that the
number of information a single group can receive is
restricted, for example in using multiple
headquarters (see Figure 1).

A good communication system allows all
auxiliaries to send their information to at least one
coordinator.

Figure 1: A communication system for disaster
management containing auxiliaries (A), headquarters (H)
and a coordinator (C).

The following example shows the approach of such
a system. This example contains 3 types of units:
coordinators, who coordinate the information,
auxiliaries, who collect the information and fulfil
orders, and headquarters, which filters and forwards
information. For technical support, each of the
auxiliaries and coordinators uses a PDA.

Figure 2: Examples of a communication infrastructure.

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

246

In this example, an auxiliary and a coordinator can
communicate to only one other unit. A headquarters
can establish a communication between one
coordinator or one other headquarters and every
combination of two units, which can be headquarters
or auxiliaries, is described in Figure 2. As described
before, to realize a good composition of a
communication infrastructure, all auxiliaries have to
be connected.

2.1 Challenge

The goal of such a communication system is that
every auxiliary can send his information to at least
one coordinator. Hence, all auxiliaries must have an
implicit connection to a coordinator. This system
must consist of the two aspects described above.
Firstly it must be built without a central unit.
Therefore, a central algorithm cannot be used. The
other problem to deal with is that every unit can only
communicate to a restricted number of other units.

3 ABSTRACTION

In order to define a formal description, an
abstraction of the example introduced in Chapter 2
has been made (see Figure 3). All groups will be
declared as components and all units as instances of
components. A group of connected instances called
configuration defines an application.

There is no fixed description of components. The
description widely accepted and used is that of
Clemens Szyperski:

“A software component is a unit of composition
with contractually specified interfaces and explicit
context dependencies only. A software component
can be deployed independently and is subject to
composition by third parties. “(Szyperski et al.,
2002).

In this abstract example, there are 4 components
which use or implement the two Interfaces “A” and
“B”. Five instances of the four components have
been created and two possible configurations of
these instances have been made. The quality of a
configuration depends on a set of components,
which do not implement an Interface and the whole
chain of instances, which they are connected to,
have all required interface connectors connected.
The configuration at the top of the diagram is the
best configuration, because the two important
instances “a” and “b” are connected and the chain
has no required connectors, which are free. The
configuration at the bottom of the diagram is less
effective, because the chain containing the instance
“a” has one required connector, which is free.
Therefore, this chain cannot run smoothly. Instances
such as “a” and “b” will be called initial Instances.
In the following part of this chapter, a formal
description of these units is made.
 First some basic units must be defined:

T: set of all interface instances (1)

Figure 3: It illustrate components, instances of components and two possible compositions of these instances.

Towards�a�Decentralized�Middleware�for�Composition�of�Resource-limited�Components�to�Realize�Distributed
Applications

247

I=P(T) P=Partition (2)

C= (I) x (I): (r, p)  C: r  p = 
and r, p are finite (3)

A component (C) contains a set of interfaces (I)
which it implements (p) and knows a set of
interfaces other components implement and this
component can use to communicate to the other
components (r).
To every component you can create instances (J).

J = (T) x (T): (r, p)  J: r  p =  (4)

An instance contains a set of providing interface
instances (p) and a set of requiring interface
instances (r). In order to connect these instances, for
a complete communication system, the connection
(S) was declared as the following.

S = (T) s  S: |s|=2  i  I: s = {t1,
t2}  t1  t2  t1, t2  i  !j1=(p1, r1),
!j2=(p2, r2)  J: t1  p1  t2  r2

(5)

Every connection connects exactly two instances of
components over the same interface. The one
component implements that interface and the other
component uses that interface.

The instances and connections together
demonstrate that every instance can only be used by
a limited set of other instances. This is necessary to
describe the limitation in using instances of
components, which is the main argument of this
paper.

The next declaration describes an example
communication system. Every possible composition
will be called configuration (K):

K = (J) x (S): (j, s)  K: {t1, t2} 
s: ! (r1, p1), !(r2, p2) j: t1 r1  t2 p2

(6)

A configuration contains a set of instances and a set
of connections between these instances. We are not
considering cyclic dependencies within
configurations. This will be done in further works.
Therefore, a configuration has a hierarchic structure.

A function is needed to know the type of an
instance.

type: J  C

type(j) = c: j = (r1, p1)  c = (r2, p2) 

(t  r1:  I  r2: t  I) ( I  r2:  t  I: t
 r1)  (t  p1:  I  p2: t  I) ( I  p2:

 t  I: t  p1)

(7)

Every instance belongs to just one component,
according to the providing and requiring interfaces.

4 APPROACH

In order to facilitate the description of the approach
further definitions are necessary:

free: J x K  (T)

free(j, k)={t | j = (r, p)  k = (j2,s)  t  r 
{t1, t2}  s  t  t1  t  t2 }

(8)

bound: J x K  (J)

bound(j, k)={j2 | k = (j1, s)  j =(r1, p1) 
j2 = (r2,p2)  j1   t1  p2,  t2  r1:

{t1, t2}s }

(9)

These two functions show whether the instance has
requiring connectors which are not connected to
another instance and the instances which are
connected to the requested instance.

active: J x K  BOOL

active(j, k)={ 1 if |free(j, k)|=0   j2 
bound(j, k): active(j2, k)

 0 else }

(10)

An instance will be active if two criteria are
successful. All requiring connectors of the requested
instance are connected to other instances and all
those instances are themselves active. Although this
function is recursive, it will terminate every time,
because of not having cycles in configurations.
The function to describe the assessment of a
communication system is given below.

assess: K  IN

assess(k)=|{i2 | k = (i1, s)  i2  i1  (r,
p)=type(i2)  |p|=0  active(i2, k)}|

(11)

component
Interface Instance:

component

a:Interface

b:Interface

instance2:

b:Interface1

instance1:

a:Interface1

b:1
A

a:1

A

e:2
B

d:3
A

c:4

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

248

It simply counts all active instances whose
components have no providing interfaces. In other
words, it counts all active initial instances.

For the composition of instances we need two
more functions.

bind: J x J x K  K

bind(j1, j2, k1) =k2: k1=(j3, s1)  k2=(j4, s2) 

j3= j4  s1  s2  t  s2: t = {j1, j2}

(12)

release: J x J x K  K
release(j1, j2, k1)=k2: k1 = (j3, s1)  k2=(j4, s2)
 j3= j4  s2  s1  (s  s2: s{j1, j2})  

s  s1: s2  {s} = s1
(13)

With these functions we could create a random
configuration. However, our abstract example
demonstrates that some configurations are better
than other. The best configuration is one, where as
many initial instances as possible are active.

Our approach extends the definition of instance (J):

J = (T) x (T) x IN: (r , p, n)  J : r 
p =  (14)

Now, the instance contains a number, which belongs
to the priority of the initial instance. The user can set
a priority to the initial instance and therefore to the
application which it starts. An application with a
higher priority has a higher chance of running all
needed instances than an application with a lower
priority. In the following text, the algorithm creating
a good configuration by using this system of priority
will be shown.

4.1 Composition Procedure

In this subsection an algorithm is described, which
should compose the instances into a good
configuration. A decentralized system has to be
built. Therefore all instances use the algorithm on
their own to create a good configuration for all
initial instances.
The algorithm is structured in steps, as follows:
1. All initial instances and instances which have a

request for implemented interfaces and need
other instances themselves broadcast a request.
The request contains the interfaces it is
searching for and a priority of the searching
instances. Only the initial instances get a
priority from the user. Hence, the other
instances can calculate their own priority (see
step 2).

2. Every instance which can respond to a request
notices the request. It will now calculate its
priority.

a. For every connector the instance has
providing it, it will search in the list of
calls the one who matches to the
connector and notice the priority if a
matched request exists.

b. This request will be ignored for the other
connectors, because every request has to
be used for just one connector at a time.

c. Finally, all noticed priorities are added
together and create the new priority for
the instance.

If the set of all instances does not change
between two calculation steps, every priority
will be const.

3. If an instance which can respond to a request
doesn’t need instances itself or if it has all
needed connectors connected, it will respond to
the request with the highest priority. If the
response is denied, the instance responds to the
next matched request with a lower priority. If it
already has this connector connected and the
new request has a higher priority than the
connected instance, it will free the connector
and will respond to the new request.

4. If an instance responds to its request, it accepts
only the amount of response it needs and denies
the others. Then it connects to the instances
which have responded the request.

5. If every required connector is connected, the
initial instance can start running.

The following subsection shows the algorithm for
the abstract example. Note that all components run
parallel. In this example, all initial instances which
can run are running.

4.2 Example

This subsection illustrates the algorithm defined in
the example described in Chapter 3.

In Step 1 both initial instances “a” and “b” broadcast
a request. In this case, the interface “A” is searched.

Towards�a�Decentralized�Middleware�for�Composition�of�Resource-limited�Components�to�Realize�Distributed
Applications

249

In Step 2 instances “c” and “e” calculate their own
priority and instance “e” broadcasts a request itself.

Now instance “c” can respond to the calls of
instances “a” and “b”. As they had the same priority
he chose one of them at random. Instance “d”
calculates its priority and broadcasts a request.

Instance “c” notices an instance requested for
interface “A” with a higher priority than it is
connected, so it disconnects from instance “b” and
connects to instance “d”.

In Step 5, instance “d” has all required connectors
connected and can respond to the request of instance
“e” and can connect to “e”.

Finally instance “e” has all required connectors
connected and connects to “a” and “b”. Because no
instance can respond to a request with a higher
priority the system reaches a stable state.

4.3 Result

As illustrated above, the algorithm creates the best
configuration for this example as described in
Chapter 3. Therefore, it could be a good approach to
solve problems such as this.
 The algorithm uses a broadcast to let every
instance know the requests. It is similar to an
algorithm using a central unit for composing, but
there are also differences. To composite components
a central unit needs more information about the
components, than information broadcasted in the
requests. For example the central unit need to know

which component provides which interface. Another
difference is, that every instance can only remember
those requests, it can provide. Therefore, every
instance has less information, than a central unit.

In order to project the abstract example onto the
example described in Chapter 2, an auxiliary should
be defined as an initial instance. Therefore, the
algorithm tries to connect all auxiliaries to at least
one coordinator. This implies that all information of
the auxiliaries could be sent to at least one
coordinator.

5 SUMMARY AND FURTHER
WORK

In this paper, an approach which can connect a
number of instances together without a central unit
by having regard to the restriction of the services
one instance can serve has been demonstrated. A
real-life example has been shown where middleware
could be used, for example, to build a
communication infrastructure. In further work, this
approach will be evaluated and extended with
further properties. One property of components in
most systems is that not every required Interface is
necessary to run the instance of the component.
Hence, the approach needs to take this into account.

REFERENCES

Kon, F., Costa, F., Blair, G, Campbell, R. H., 2002. The
Case for Reflective Middleware. CACM June
2002/Vol. 46, No. 6.

Issarny, V., Sacchetti, D., Tartanoglu, F., 2004.
Developing ambient intelligence systems: A solution
based on web services. Journal of Automated Software
Engineering.

Szyperski, C., Gruntz, D., Murer, S., 2002. The book,
Component Software: Beyond Object-Oriented
Programming. New York, 2nd Edition, Addison-
Wesley.

Currion, P., Silva, C., Van de Walle, B., 2007. Open
source software for disaster management.
Communications of The ACM, Vol. 50, Issue 3, pp.61-65.

Klus, H., Niebuhr, D., Rausch. A., 2007. A component
model for dynamic adaptive systems. In Alexander L.
Wolf, editor, Proceedings of the International
Workshop on Engineering of software services for
pervasive environments, pages 21–28, Dubrovnik,
Croatia.

Janakiram, D., Venkateswarlu, R., Nitin, S., 2005,
COMiS: Component Oriented Middleware for Sensor
Networks. To appear in the proceedings of 14th IEEE
Workshop on Local Area and Metropolitan Networks

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

250

 (LANMAN), Chania, Crete, Greece.
Clarke, M., Blair, G. S., Coulson, G., Parlavantzas, N.,

2001. An efficient component model for the
construction of adaptive middleware. In Middleware,
Springer-Verlag, pp. 160–178.

 Baresi, L., Guinea, S., Tamburrelli, G., 2008. Towards
decentralized self-adaptive component-based systems.
In Proceedings of the International Workshop on
Software Engineering for Adaptive and Self-Managing
Systems, pages 57.

Towards�a�Decentralized�Middleware�for�Composition�of�Resource-limited�Components�to�Realize�Distributed
Applications

251

