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Abstract: Cloud computing recently emerged as a paradigm providing computer power and storage as a utility that is
consumed on demand (following the footsteps of other utilities, like electricity). Recently, a new service de-
livery mode emerged: Business Process as a Service (BPaaS). As a consequence, process models repositories
will be developed allowing this new type of services to be published by process providers and discovered by
enterprises wanting to outsource some of, or parts of, their processes. In this paper we present the S-Discovery
framework allowing to find in such repositories processes that could satisfy user functional and no-functional
requirements.

1 INTRODUCTION

Cloud computing emerged recently as a paradigm
providing computer power and storage as a utility
that is consumed on demand (following the footsteps
of other utilities, like electricity). It allows typi-
cally three delivery modes: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as
a Service (SaaS).

The development of cloud computing offers new
opportunities for enterprises to outsource their pro-
cesses and thus a new service delivery mode emerged:
Business Process as a Service (BPaaS) (Anstett et al.,
2009; Pathirage et al., 2011). As a consequence, pro-
cess models repositories will be developed allowing
this new type of services to be published by pro-
cess providers and discovered by enterprises want-
ing to outsource some of, or parts of, their processes.
Similar to service registries, process repositories will
contain process model descriptions, but also business
specifications (non-functional descriptions like cost,
quality of service, etc). We argue that process model
discovery techniques taking into account functional
and non-functional requirements will be required.

Besides business processes outsourcing, other ap-
plication scenario for BPaaS can be found in the area
of scientific workflows (Pathirage et al., 2011). Many
large scale collaborative science projects use work-
flows to automate computation steps. However, defin-

ing and running such workflow systems are often a
challenge. Workflow engines in the cloud would fa-
cilitate scientist’s work and reduce overhead on their
projects. In the context of web-based scientific work-
flow repositories, scientists expressed the need to
have workflow similarity search capabilities (Goderis
et al., 2006). Moreover, in the new context of BPaaS
repositories, they may be interested in finding, among
the retrieved workflows the one satisfying some busi-
ness criteria (e.g., cost) and some global or local qual-
ity requirements, e.g., the workflow that takes the
shorter time or which guarantees a given correctness
for the results of a specific activity.

These scenarios show the need for a discovery ap-
proach taking into account both process model and
non-functional requirements. The contribution of this
paper is a framework able to efficiently query a repos-
itory to find processes that could best fulfill user struc-
tural and non-functional requirements. We suppose
that users express their query as a process model ac-
companied by non-functional requirements. Thus, the
technical challenges in the discovery approach are
at two levels. At the description level, (i) provide
a formal model that allows one to specify, at differ-
ent granularity levels, non-functional attributes as an-
notations of the functional specification; and (ii) al-
low the user to enrich his query with non-functional
requirements. At the discovery level, (i) filter the
repository to efficiently find matching candidates (ii)
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combine the structure-based matching algorithms and
non-functional factors matching and (iii) define a sim-
ilarity measure that aggregates both functional and
non-functional similarities.

The remainder of the paper is structured as fol-
lows. Section 2 presents our model to annotate ser-
vice process models. Section 3 describes an overview
of our approach, which is composed of (i) a filtering
task, described in Section 4; (ii) a structural similarity
evaluation task (Section 5); (iii) a preference satisfac-
tion evaluation and ranking tasks (Section 6). Related
work are discussed in Section 7. Finally, the conclu-
sions are presented in Section 8.

2 BACKGROUND AND
NOTATIONS

Our S-Discoveryframework is based on matching
techniques that operate on process models. The pro-
cess model consists of a set of related activities that
are organized using control flow structures to con-
struct complex behavior models. To abstract as much
as possible from any existing notation formalism, we
represent a process model as a directed graphp =
(A,C,E,Q), calledprocess graph(p-graphfor short),
whereA is a set of activity nodes,C is a set of con-
nector nodes,E is a set of directed edges andQ is
a set of quality annotations. An activity node repre-
sents an atomic task which is described by its name
(N), a set of inputs (In), a set of outputs (Out) and a
set of quality annotations (Q). Notice that activity in-
puts and outputs are annotated unsing a domain ontol-
ogy. Connector nodes describe control flows between
activities, and represent Split and Join operators of
typesXOR or AND. Split connectors have multiple
outgoing edges, while Join connectors have multiple
incoming edges. Quality annotations are of the form
(m, r), wherer is a value for a QoS attributem. They
can characterize the process as a whole or specific ac-
tivities.

A user query is a p-graphq= (A,C,E,P), where
A, C, E are as defined before andP is a set of QoS
preferences, which are specified as expressions us-
ing the following constructors:around, between, max,
min, like anddislike.

A preferred order between preferences can be de-
fined using the complex constructorspareto(⊗) and
prioritized (&). The semantics of the terms of this
vocabulary were taken from thePreferenceSQLap-
proach (Kießling, ), however the user may personalize
these semantics by means of a membership function
µ. User can label a preference ashard or soft, the
difference being that a target p-graph must satisfy all

hard preferences, while the satisfaction of soft prefer-
ences is optional.

Figures 1(a) and 1(b) show, respectively, a process
model and a sample user query annotated with hard
and soft preferences.

3 OVERVIEW OF THE
S-DISCOVERY FRAMEWORK

Given an extensive repository of published p-graphs,
the goal of our framework is to retrieve a ranked list of
p-graphs that best fulfill a p-graph query. Our frame-
work is a multi-stepped approach, as illustrated by
Figure 2.

Given a query p-graphq, theFilter module selects
the p-graphs that can most likely answer the query
(p-graphsT1, . . . ,Tn); it avoids scanning the whole
repository to compare each target p-graph against the
query. This module retrieves all the p-graphs sharing
at least one activity with the query p-graph, and this
is done by relying on an index built on an offline step.

This set is subsequently passed to theStructural
Similarity Evaluatorthat measures the structural sim-
ilarity λstruc−i between each selected p-graph (target)
and the query. Furthermore, a set of activity map-
pings between query and target p-graphs is estab-
lished (mappingsMi , 1≤ i ≤ n).

Next, thePreference Satisfaction Evaluatorcom-
putes the degree of satisfactionλpre f−i of the QoS
preferences at the basis of the mappings computed in
the previous stage. At the end, the retrieved p-graphs
are ranked according to their structural similarity and
the preference satisfaction degrees using a set of ag-
gregation metrics. The following sections present our
contributions to each stage of theS-Discoveryframe-
work.

4 REPOSITORY FILTERING

As mentioned previously, a target p-graph is a poten-
tial match of a query p-graph when they have simi-
lar activities. To avoid comparing each query activity
against all the activities stored in the repository, we
defined an index structure over the activities of the
repository p-graphs.

This index is built by assuming that activities hav-
ing similar inputs/outputs are similar (Gater et al.,
2011a). The structure we defined indexes the activ-
ities stored in the repository by attaching to each con-
ceptC of the ontology two setsCIn andCOut record-
ing the identifiers of the activities where it appears,
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Figure 1: Mapping between a (a) sample target p-graphT1 and a (b) sample query p-graphQ1.
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Figure 2: S-Discovery framework architecture.

respectively, as an input or an output. Furthermore,
since we are not only interested in retrieving inexact
matches, the technique should be able to retrieve the
activities that don’t match exactly the query activity
but also those having similar inputs/outputs, i.e. the
activities having inputs/outputs that are semantically

related to those of the query activity. To avoid mak-
ing this computation in real time, the setCIn (resp.
COut) of a conceptC record also the activities having
as input (resp. output) a concept which is semanti-
cally related (its descendants, ascendant, ...) toC.

Thus given a query activityAq, the set of its poten-
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tial activity matches is composed of all the activities
belonging to the set of annotations attached to the in-
puts and outputs ofAq. Straightforwardly, the set of
process-match candidates of a query is the set of tar-
get p-graphs with whom it shares at least one activity.

5 STRUCTURAL SIMILARITY
EVALUATION

The problem of process matching is reduced to a
graph matching problem and an error-correcting sub-
graph isomorphism (ECSI for short) detection algo-
rithm (Messmer, 1995) was adapted to this purpose.
The principle behind ECSI algorithm is to apply edit
operations (node/edge insertions, deletions and sub-
stitutions) over the target graph until there exists a
subgraph isomorphism to the query graph. Each edit
operation is assigned a cost function, on the basis of
which the quality of an ECSI is estimated. The goal
is then to find the sequence of edit operations leading
to the ECSI between the query and target graphs that
has the minimal cost. To find this sequence, the ECSI
detection algorithm relies on an exhaustive A* search
space algorithm.

The adaptation of this algorithm in order to handle
the p-graphs concerns the definition of: (i) measures
for evaluating the similarity of two activities that inte-
grate the similarity of their names, inputs and outputs;
(ii) measures for evaluating the behavioral/structural
similarities; (iii) heuristics for detecting the granular-
ity level differences.

This algorithm allows evaluating the similarity of
two p-graphs as well as finding a set of correspon-
dences between their activities. Experimental results
showed the effectiveness of this approach in terms of
precision/recall of the found matches. However, the
time complexity induced by the combinatorial search
space limits their application in practice to p-graphs
of relatively small sizes (55 activities). To make this
algorithm tractable, we defined two heuristics that
aim to find matches having acceptable qualities in rea-
sonable execution times. More details are given in
(Gater et al., 2010; Gater et al., 2011b).

6 PREFERENCE SATISFACTION
EVALUATION

After the calculation of the structural similarity be-
tween query and each candidate p-graph, the most
similar ones are subjected to the preference satisfac-
tion evaluation, which calculates the degree to which

the QoS annotations of the p-graphs satisfy the QoS
preferences of the query. The procedure first calcu-
lates the satisfaction degrees of atomic preferences
and, then, it recalculates these degrees based on the
complex preferences. At the end, a global satisfac-
tion degree is obtained from the aggregation of the
preference degrees. The mapping between query and
target p-graphs is used in the evaluation procedure to
recalculate the QoS attributes of target p-graphs and
to evaluate the satisfaction degree of atomic prefer-
ences.

6.1 Atomic and Complex Preference
Evaluation

For each activity correspondence(w,v), the degree
to which each atomic preference ofv is satisfied by
its corresponding annotation inw is calculated. The
same is similarly done for the profile preferences.

For a preferencep of the typearound, between,
min or max, given its corresponding annotationa, the
satisfaction degreeδ(p,a) between them is given by
the normalizedsatisfaction distance d(p,a), which
measures how far is the valuer in annotationa from
those favored by preferencep. For a preference of the
type likesor dislikes, the satisfaction degree is based
on the semantic similarity between concepts given by
the classic edge counting technique proposed in (Wu
and Palmer, 1994). When a membership functionµ
defines the semantics of the preference, the satisfac-
tion degree is a simple application of the function over
the corresponding quality attribute.

When a hard preference is not satisfied, the target
p-graph is eliminated from the discovery result. As a
consequence, the verification of the hard preferences
at activity level may be interwoven with the structural
matching when the latter checks weather two activi-
ties match. This may eliminate the mappings express-
ing structural match but not expressing preference sat-
isfaction and, thus, pruning the search space.

The satisfaction degrees of the atomic preferences
are reevaluated according to the order of importance
defined by the complex preferences (paretoandprior-
itized ). The goal is to assign weights to the satisfac-
tion degrees of atomic preferences to capture the order
of importance defined by complex preferences. This
is done with the help of apreference graph, which is
a rooted directed graph whose nodes represent atomic
preferences, edges represent aprioritized preference
from source to destiny, and each node of the graph
has weightωp = 1/i, wherei is the edge distance from
the node to the graph root. Then, the reevaluation of
a preferencep is done byδ′ (p,a) = δ(p,a)×ωp.
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6.2 Preference Satisfaction Degree
Calculation

Theglobal preference satisfaction degreeλpre f indi-
cates the degree to which the QoS annotations of a
target satisfy the QoS preferences of a query. This
degree is calculated with the help of apreference sat-
isfaction metric, which receives as input the prefer-
ence satisfaction degrees{δ1, ...,δk} of the target and
aggregates them to provide the global preference sat-
isfaction degreeλpre f. Our framework provides three
different metrics.

The average-based metriccalculates the prefer-
ence satisfaction degreeλpre f as the average of the
preference satisfaction degrees{δ1, ...,δk}.

The linguistic quantifier-based metriccalculates
the degreeλpre f by measuring the truth degree of
the sentenceγ : “almost all preferences are satisfied”.
This sentence is a fuzzy quantified proposition de-
fined using a relative quantifier (e.g.,almost all, at
least, around half, etc.) (Glöckner, 2004).

The bipolar-based metriccalculates the degree
λpre f by evaluating the bipolar condition (Dubois and
Prade, 2008) “all hard preferences are satisfied and
if possible at least one soft preference is satisfied”.
This method returns a bipolar degree of the form
λpre f =

(

δhp,δsp
)

meaning that “all hard preferences
are satisfied to at least a degree ofδhp and at least one
soft preference is satisfied to at least a degree ofδsp”.
More details are given in (Lemos et al., 2012).

Once the structural similarity and quality satisfac-
tion degrees are computed, the retrieved p-graphs are
subsequently ranked according to the structural and
quality satisfaction degrees using aggregation tech-
niques. Our framework proposes a set of aggregation
techniques (lexicographic order, weighted average,
fuzzy-based techniques) that are detailed in (Lemos
et al., 2012).

7 RELATED WORK

Our work addresses an important topic in the area of
service oriented architecture, which is the discovery
of services based on their process models. Several
work have been proposed similarity measures (Wom-
bacher et al., ; de Medeiros et al., 2008; Dijkman
et al., ) for the evaluation of the similarity of two
service process models. These approaches proposed
similarity measures that consider either the struc-
tural or behavioral perspectives of the process mod-
els. While structure-based approaches consider the
process topologies, behavior-based approaches con-
sider the execution semantics of the process models.

In this case, the service process discovery is done
by comparing the query against each target service,
and subsequently ranking target processes according
to their closeness to the query. To avoid browsing
the whole process repository, some approaches rely
on indexing structures (Gater et al., 2011a; Awad and
Sakr, 2010; Yan et al., 2010) to quickly retrieve the
processes that are the most likely similar to a (part of)
process query.

With regard to the quality-based service discovery,
current approaches (Mokhtar et al., ; Agarwal et al.,
2009) consider services as black boxes, so quality re-
quirements are defined over the service profile. Gen-
erally, they specify quality preferences as relational
expressions, fuzzy sets, linguistic variables, or utility
functions. These approaches do not propose prefer-
ence constructors to help user better define and com-
pose his preferences and they are not abstract enough
to be adapted to different non-functional contexts.

While process similarity search is an active field in
the domain of business process management research
area, little attention was given until now to the dis-
covery of the services hosted in the cloud (Goscin-
ski and Brock, 2010); the existing techniques are lim-
ited in what information can be used when publish-
ing and discovering services (Microsoft Azure (Mi-
crosoft, Inc., )). To the best of our knowledge there
are no process discovery framework allowing to com-
bine functional and non-functional requirements.

8 CONCLUSIONS

In this paper we presented a framework for process
discovery taking into account both functional and
non-functional criteria. User query is expressed as a
process model adorned with quality annotations ex-
pressing user preferences and requirements. Our ap-
proach will allow searching process repositories of-
fered by BPaaS providers.

In our past work, we implemented basic match-
ing operators and evaluated them in terms of effi-
ciency and effectiveness. Our future work consists
in building a prototype implementing the framework
presented in this paper by reusing and adapting our
matching operators.
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