
A Semantic Model to Support Security Matching in Cloud Environments

Giuseppe Di Modica and Orazio Tomarchio
Dipartimento di Ingegneria Elettrica, Elettronica e Informatica, Università di Catania,

Viale Andrea Doria 6, 95125 Catania, Italy

Keywords: Cloud Computing, Security Policies, Semantic, Ontology.

Abstract: Despite its technological advances, cloud computing’s adoption is not as wide as expected. Security is still
a big concern that prevents many to “cloudify” their applications and put their data in the hands of a cloud
provider. Also, interoperable scenarios fostered by SOA technologies exacerbate the security question, as cus-
tomers have to deal with multiple providers who, in their turn, must establish mutual trust relationships in order
to interoperate. In the last few years, policies are being used as a means to build networks of trustiness among
cloud providers. Standards and specifications on security management through policies have also appeared.
We argue that the main problem with this approach is that policies are expressed through syntactic languages
which, if processed by computers, show well-known limitations. We then propose an approach that leverages
on the semantic technologies to enrich security policies with semantic contents enabling machine reasoning.
The framework we developed caters for the security needs of both customers and providers, and aims at mak-
ing a smart match between what is requested and what is offered in terms of security. On the customer side,
no extra effort is required other than specifying their security policies according to well-established security
notations; an automatic procedure is charged of adding semantic content to the policies.

1 INTRODUCTION

Cloud computing has emerged as a flexible, cost-
effective and proven delivery platform for providing
business services over the Internet, giving organiza-
tions the opportunity to increase their service deliv-
ery efficiencies, coping with dynamic business re-
quirements. However, when adopting a cloud com-
puting paradigm, an organization has to shift much
of the control over the data and operations from its
IT department to an external cloud provider. As a
result, cloud customers must establish trust relation-
ships with their providers, also being aware of how
these providers implement, deploy and manage secu-
rity on their side. The wide acceptance and adop-
tion of the SOA paradigm (Papazoglou and van den
Heuvel, 2007) has posed the basis for the realiza-
tion of world-wide and cross-domain scenarios of in-
teroperability among services. In a complex sce-
nario where the final service delivered to the end-
user is realized by composing services run by differ-
ent providers in different administrative domains, the
end-user security is also affected by trust relationships
established among providers.

According to (Phan et al., 2008) policies will be
increasingly important to effectively support the “In-

ternet of Service” vision. Though policies have been
traditionally adopted to automate network administra-
tion tasks, in the last few years policy management
has extended its original scope. We are strongly con-
vinced they may serve very well the purpose of grant-
ing security. Multiple approaches for policy specifica-
tion have been proposed that range from formal policy
languages, which can be directly processed by a com-
puter, to rule-based policy notation. Some have pro-
posed to represent policies as entries in a table con-
sisting of multiple attributes. The main approach fol-
lowed today is based on the usage of metadata and
languages for the specification of security policies: it
permits to abstract from the low-level security mech-
anisms of the specific provider’s infrastructure. The
use of languages for the specification of security poli-
cies also enables, on the one hand, the providers to
expose the security capabilities implemented within
their administrative domain and, on the other one, the
customers to express their security requirements.

The approach we propose calls on well-known
policy and security specifications. We define cus-
tomers’ and providers’ security requirements/capa-
bilities within policies which are compliant to well-
established specifications. What characterizes our ap-
proach is that security requirements and capabilities

427Di Modica G. and Tomarchio O..
A Semantic Model to Support Security Matching in Cloud Environments.
DOI: 10.5220/0004375704270436
In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 427-436
ISBN: 978-989-8565-52-5
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

are semantically enriched, thus enabling the employ-
ment of smarter mechanisms to make the match be-
tween what is required and offered in terms of secu-
rity, respectively on the customer and on the provider
side. The contribution of this work consists in the de-
sign of an ontology defining main security concepts,
a procedure which automatically maps syntactic se-
curity requirements into semantically-enriched con-
cepts, and a matchmaker engine which is capable of
reasoning on the customer’s and the provider’s secu-
rity requirements/capabilities to derive a match level.

The rest of the paper is structured as follows. Sec-
tion 2 presents background and related work. Then in
Section 3 the overall architecture of our framework is
presented. Section 4 presents the semantic model we
designed. In particular, we thoroughly discuss the de-
veloped security ontology, provide details on the map-
ping procedure and briefly recall the policy matching
algorithm. In Section 5 an example is reported to val-
idate our approach. Finally we conclude the work in
Section 6.

2 RELATED WORK

The adoption of a policy based-approach for man-
aging a system requires an appropriate language for
policy representation and modeling and the design
and development of a policy management frame-
work for policy matching and enforcement. Several
policy languages and framework have been devel-
oped following different approaches, and sometimes
have been proposed in different application domains
(Tonti et al., 2003). Among the most notably efforts
in this domain, worth citing are Ponder (Damianou
et al., 2001), a declarative object-oriented language
that supports the specification of several types of man-
agement policies for distributed object systems, Kaos
(Uszok et al., 2003), a policy management frame-
work where concepts and policies themselves are rep-
resented using OWL, and Rei (Kagal et al., 2003), a
policy framework where OWL is extended with the
expression of relations like role-value maps, making
the language more expressive than the original OWL.
Kaos and Rei are ontology based policy languages
that, although not specifically focused on the security
domain, are able to express complex security policies:
policy matching is also supported by the advanced
reasoning capabilities these languages offer. How-
ever, when dealing with enterprises and cloud sys-
tems that adopt a service oriented paradigm, we be-
lieve that an approach compatible with existing stan-
dard for policy specification should be followed as far
as possible.

WS-Policy (W3C, 2007) is the specification used
in service oriented architectures to express policies.
A policy is defined as a collection of alternatives and
each alternative is a collection of assertions. Asser-
tions specify characteristics that can be used for ser-
vice selection such as requirements, capabilities or
behaviors of a Web service. Policy assertions can
represent both requirements on service requestors and
capabilities of the service itself. Requirements repre-
sent a demand from service requestors to the esrvice
provider to behave in a particular way; capabilities are
the service providers promise of behaviour. Within
the WS-Policy framework, the WS-SecurityPolicy
(OASIS, 2012) specification can be used to express
security requirements and security capabilities in the
form of policies. For example, the use of a specific
protocol to protect message integrity is a requirement
that a service can impose on requestors. On the other
hand, the adoption of a particular privacy policy when
manipulating data of a requestor is a service capabil-
ity.

Policy matching in WS-Policy works at a syntac-
tic level: it offers a domain independent mechanism
to find alternatives that are compatible to two poli-
cies. Two alternatives are compatible if, for each as-
sertion in one alternative, there is a compatible asser-
tion in the other one. Compatibility of assertions is
defined exclusively according to the equivalence of
their qnames, without any further mechanism involv-
ing either their structure or their content.

For this reason, several works in the literature (Sri-
haree et al., 2004; Verma et al., 2005; Speiser, 2010;
Zheng-qiu et al., 2009) have been trying to enhance
WS-Policy with semantic annotations. In (Sriharee
et al., 2004), WS-Policy assertions refer to policies
expressed in OWL: however that work is not focused
on policy matching, but on modeling policies as a
set of rules, which have to be evaluated using an ex-
ternal rule-based system, requiring reasoning beyond
OWL. In (Verma et al., 2005) policies represented in
WS-Policy are enhanced with semantics by using a
combination of OWL and SWRL based rules to cap-
ture domain concepts and rules. In (Speiser, 2010) a
lightweight approach to specify semantic annotations
in WS-Policy is presented: it combines the syntactic
matching with the semantic matching capability pro-
vided by OWL.

Our work, as described in next sections, carefully
extends WS-Policy by referencing concepts from a
security ontology directly in the policy assertions,
thus maintaining backward compatibility with exist-
ing tools.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

428

Service
Provider

Service
Requestor

Matchmaker

Reasoner

Requestor
Policy

Service
Registry

Service
Policy

Security
Ontology

Service
description

Service
Policy

1. Publish

2. Find 3. Find response

4. Match request

7. Match result

5. Query 6. Query result

8. Bind

9. Interaction

Policy
Ontology

Figure 1: Overall architecture.

3 SYSTEM ARCHITECTURE

In this section we discuss the overall architecture
of the semantic security policy matching framework.
The basic architecture of the system, depicted in Fig-
ure 1, mainly follows that of classic SOA: the re-
questor, the provider and the registry keep playing
their original role in the publish-find-bind cycle. The
novelty is the presence of the Matchmaker and the
Reasoner entities, and that of the policy-related in-
formation flows.

When a service provider advertises a service, be-
sides providing the service “functional” information
in the WSDL document, it also attaches the policy as-
sociated with that service. The WS-PolicyAttachment
specification defines how to integrate the policy infor-
mation. This information can be integrated either as
an attachment to WSDL description, or by adding it
to the UDDI registry as an extra document. When
a requestor queries the UDDI registry for a service
with given functional features, the registry also replies
with the service’s attached policy. When selecting
the service(s) that match the functional requirements,
the requestor may decide to evaluate how well the
providers’ security capabilities specified within the
retrieved services’ policies match those specified by
its own policy.

The Matchmaker is the component that the re-
questor can rely on to perform such an evaluation. It
is modelled as a web service, and receives requests
with two inputs, i.e., the policies specifying the re-
quirements and the capabilities of, respectively, the
service requestor and the service provider. The spec-
ification of both policies is done by extending WS-

Policy. Since the specification does not impose lim-
its on the kind of allowed assertions, as already said,
for the definition of the policies we have decided to
adopt semantically enriched terms. This, of course,
will enable semantic-based procedures of policy com-
parisons.

In order to cope with existing policy specifica-
tions, we developed a module able to transform a stan-
dard WS-Policy containing WS-SecurityPolicy asser-
tions into a policy expressed by using semantic con-
cepts belonging to our ontology. This way, we are
able to integrate in our framework existing systems.

The requestor’s and the provider’s policies are
compared by overlapping the requirements defined in
one policy on the capabilities expressed in the other,
and vice versa. This way every possible requirement-
capability pair is assigned a match level and, in the
end, the overall match level between the requestor
and the provider is obtained. Since requirements and
capabilities are expressed in a semantic form, the
Matchmaker will invoke the Reasoner component to
perform the semantic match. To accomplish its task,
the Reasoner makes use of the Security Ontology,
which is an ontology that describes concepts from the
security domain, expressly created to let the Reasoner
evaluate the relationships among the semantic con-
cepts that populate the policies.

4 SEMANTIC MODEL

In this section the semantic model proposed by our
approach is described. An ontology was developed
to represent main concepts from the security domain.

A�Semantic�Model�to�Support�Security�Matching�in�Cloud�Environments

429

Such ontology will be used to define concepts of se-
curity within the policies. Also, we developed a pro-
cedure which is able to automatically map security
concepts expressed in the WS-SecurityPolicy specifi-
cation onto concepts of our security ontology. This
procedure enables providers and customers adopt-
ing the WS-SecurityPolicy specification to seamlessly
use our framework. Finally, to help customers find-
ing the providers that best suite their security require-
ments, a semantic discovery engine was developed
which is capable of reasoning on customers’ requests
and suggesting highly matching providers.

4.1 Security and Policy Ontology

To support the semantic description of security re-
quirements and capabilities two ontologies have been
defined: a security ontology, that describes security
related concepts like protocol, algorithm, credential,
and a policy ontology that defines the concept of the
policy and its characterization in term of requirements
and capabilities. In the following more details about
the ontologies are provided. We point out that it is
not among the objectives of this work to provide an
exhaustive view of all concepts that populate the do-
main of security.

The policy ontology is a very short ontology that
defines the concept of policy in the context of our ar-
chitecture. A policy is nothing but a list of require-
ments and capabilities. In the OWL formalization, the
Policy Class and the related properties hasRequire-
ment and hasCapabilities have been created.

For what concerns the security ontology we takes
inspiration from the solutions proposed in literature.
As an example, the ontology proposed in (Garcia and
Felgar de Toledo, 2008), that makes explicit refer-
ences to the WS-Security’s nomenclature, addresses
the problem of security when messages are exchanged
among web services. In (Kim et al., 2005) the pro-
posed ontology covers most of the concepts of the se-
curity domain: despite it was defined to address se-
curity aspects at a very high levels, there are some
constructs expressly designed to semantically anno-
tate web services. In this work we extended and re-
fined a preliminary ontology (Di Modica and Tomar-
chio, 2011a), in order to adequately represent security
concepts from the WS-SecurityPolicy specification.

A graphic overview of our proposed security on-
tology is depicted in Figure 2: the main concepts are
Objective, Protocol, Algorithm, Credential, Security
scope and Target.

A security Objective is a high level abstraction
by which we mean a particular security service of-
fered by the system. The following services can be

Figure 2: Security ontology: top level classes.

offered: authentication, authorization, confidentiality,
integrity and non-repudiation.

A Protocol is a set of rules agreed by parties that
need to communicate to each other. In the context
of security a protocol makes use of tools, like algo-
rithms and credentials, in order to accomplish an ob-
jective. In Figure 3, the different protocol categories
are represented: we may distinguish encryption, sig-
nature, transport, authentication, access control and
key management protocols. Each of these categories
may contain several individuals, reflecting different
security protocols such as, for example, XML-Enc,
XML-Dsig, SAML, XACML, and so on.

Figure 3: The Protocol class.

An Algorithm is a procedure for solving problems
that employs a finite number of steps. In the litera-
ture several security algorithms have been proposed.
We can cite, for instance, the category of encryption
and that of authentication algorithms. For the for-
mer, another categorization can be proposed accord-
ing to the type of key used for the encryption: sym-
metric (e.g. DES, 3DES, AES) and asymmetric (e.g.
RSA). Among the authentication algorithms, instead,
we identify those that employ hash functions (e.g.
SHA, MD5) and those using MAC functions (e.g.
HMAC, CBC-MAC). We also included the categories
of Key derivation and Key wrapping algorithms. The
resulting security algorithm branch is depicted in Fig-
ure 4.

Credentials play an important role in information
systems that require authentication. Again, there are
several categories of credentials, among which we can
cite the biometric (fingerprint, voice), electronic (lo-
gin, password, encrypted keys, certificates), and phys-
ical (smartcard, passport, identity card).

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

430

Figure 4: The Algorithm class.

The Security scope class allows to differentiate be-
tween security concepts related to a single host and
security in communication (like message, transport or
network level security).

Finally, the Target class allows to model the tar-
get to which the specific security mechanism is to be
applied: currently the only subclass is message parts
which models all of the elements that can be found
in a message according to the WS-Security specifica-
tion.

The concepts are related to each other within the
ontology, and some properties (not shown in figures
for the sake of clarity) have been also defined:

� a protocol supports one or more security objective
(hasObjective property).

� a protocol makes use of one or more security al-
gorithms (hasAlgorithm property);

� a protocol requires one or more credentials (req-
Credential property);

� a protocol may be applied to a security scope (has-
SecurityScope property);

� a protocol may protect a specific target (pro-
tectsPart property).

A policy written according to our ontology has
a standard WS-Policy structure: the wsp:Policy,
wsp:ExactlyOne and wsp:All tags are present and
have the same meaning than the standard specifica-
tion. The only constraint in order to allow a correct
working of our matching algorithm is that the pol-
icy should be normalized: it has to contain only one
wsp:ExactlyOne element which, in turn, may con-
tain any number of wsp:All elements. Each element
contained in an assertion is semantically annotated
with concepts of our security ontology: in addition
it should be specified if the element represents a re-
quirement or a capability. In the following we give an
example of a policy containing only one alternative:
<wsp:Policy

...namespace definition...

<wsp:ExactlyOne>

<wsp:All>

<security:LoginProtocol rdf:ID="requirement0" >

<security:requiresCredential

rdf:resource="http://www.semanticweb.org/

ontologies/security.owl#OneTimePassword"

security:isMainCredential="false"/>

</security:LoginProtocol>

<security:Https rdf:ID="requirement1" >

<security:hasSecurityScope

rdf:resource="http://www.semanticweb.org/

ontologies/security.owl#

TransportLevelSecurity"/>

<security:requiresCredential

rdf:resource="http://www.semanticweb.org/

ontologies/security.owl#Timestamp"/>

<security:hasEncryptionAlgorithm

rdf:resource="http://www.semanticweb.org/

ontologies/security.owl#AES-256"/>

<security:hasSignatureAlgorithm

rdf:resource="http://www.semanticweb.org/

ontologies/security.owl#SHA-1"/>

</security:Https>

</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

The policy file starts with the wsp:Policy ele-
ment. The next element is wsp:ExactlyOne, which
contains just one wsp:All element. The policy is al-
ready normalized and contains one assertion. Two
requirements are contained in this assertion: secu-
rity:LoginProtocol, which specifies a login protocol,
and security:Https, which specifies a protocol for the
communication. The latter is better described by
specifying some of the used algorithms, the provided
security level and the need for a timestamp. All these
properties are specified using concepts defined in the
previously described security ontology.

4.2 Policy Mapping

We developed a framework module, called Trans-
former, which is capable of transforming a policy,
written in WS-Policy and containing assertions spec-
ified through the WS-SecurityPolicy, into an equiv-
alent policy whose assertions are semantic concepts

A�Semantic�Model�to�Support�Security�Matching�in�Cloud�Environments

431

defined through the above discussed security ontol-
ogy.

Let PWSSP be a WS-Policy compliant policy
also containing WS-SecurityPolicy assertions. The
Transformer implements a procedure that iterates on
PWSSP’s alternatives. For each iterated alternative, its
semantic equivalent is returned in the case that the
alternative is expressed in WS-SecurityPolicy; oth-
erwise, the alternative is returned unchanged. The
Transformer is fed with a Map whose keys are the ba-
sic WS-SecurityPolicy keywords and values are their
equivalent semantic concepts: the Map will be used
to semantically enrich the policy document.

In a preliminary step the Transformer parses
PWSSP and creates a tree of nodes representing the
WS-SecurityPolicy alternatives. Secondly, the tree
is visited to map combinations of alternatives onto
new “equivalent” alternatives. Finally, the original
WS-SecurityPolicy terms contained in the just cre-
ated alternatives are replaced by semantic concepts
according to the instructions provided by the previ-
ously mentioned Map. In the following, an excerpt of
that Map is reported in Table 1.

4.2.1 Mapping Examples

The Transformer’s main task, then, is to find the cor-
respondence between WS-SecurityPolicy assertions
and security ontology’s concepts. At the current
stage, not all elements contained in an alternative
have a corresponding semantic concept. The reason
is twofold. First, the developed ontology focuses just
on main security concepts (integration of other con-
cepts is planned in the near future); second, some WS-
SecurityPolicy elements deal with technical aspects
which are not specifically bound to security (e.g., the
layout order). WS-SecurityPolicy terms that have no
correspondence in the ontology are simply ignored by
the Transformer.

Starting point for the mapping procedure is the
binding assertions. Depending on the token found
on those assertions, it is possible to derive the
protocols to be used. For instance, if the token is
one of wsp:ProtectionToken, wsp:InitiatorToken or
wsp:RecipientToken then both cipher and digital sign
protocols will have to be used. According to the key-
value map introduced earlier, semantic individuals
such as XML-Dsig and XML-Enc will be chosen to
semantically represent this option. Tokens such as
wsp:EncryptionToken, wsp:InitiatorEncryptionToken
or wsp:RecipientEncryptionToken only express the
need for a cipher protocol, and will be mapped
onto XML-Encryption, while for tokens like
wsp:SignatureToken, wsp:InitiatorSignatureToken
and wsp:RecipientSignatureToken the XML-

DigitalSignature protocol will correspond. Finally,
wsp:TransportToken will be mapped onto the Https
protocol.

The symmetric and asymmetric bindings guar-
antee protection at the message level, and will be
mapped on the hasSecurityScope property set to the
MessageLevelSecurity value. The transport binding
provides protection at the transport level: in that case,
that assertion will be mapped on the hasSecurityScope
property whose value will be set to TransportLevelSe-
curity.

In the case of wsp:ProtectionToken or
wsp:InitiatorToken, the specific type of token
used to guarantee protection is also specified. Among
all possible types, the mapping process supports
the following: “X509”, “SAML”, “Username” and
“Https”. The latter, in particular, is the only one
allowed as a transport token. The first three tokens
specify that authentication credentials must be
provided. While “SAML” and “Username” have a
direct correspondence with protocols described by
the ontology (SAML and login protocol respectively),
“X509” does not have a direct correspondence; so in-
stead of mapping it onto a protocol it is mapped onto
the authentication security Objective. Furthermore,
in the case of “X509” the property indicating that an
X509 certificate credential is required must be added
to the used protocols. In the case of “Username”,
instead, a password may be required in the assertion:
if so, the OneTimePassword credential will be used.
Finally, for a “SAML” token we must add to the
protocols set a credentials to require the use of
SAML as a guarantee on the identity. An important
assertion is the AlgorithmSuite, which specifies the
algorithms adopted in the security environments.
Depending on the assertion’s settings, those algo-
rithms must be added to the corresponding protocols.
For instance, if the assertion is set to “Basic256”,
1) the hasEncryptionAlgorithm property must be
added to the XML-Enc protocol, with its value set to
AES-256, and 2) the hasSignatureAlgorithm property
must be added to the XML-Dig protocol, with the
value set to SHA-1. Likewise, if there are assertions
specifying the use of key derivation within the token,
the corresponding algorithm will be added.

4.3 Semantic Discovery

We implemented a semantic discovery engine capable
of searching for correspondences between security re-
quirements and capabilities. Suppose that both the
customer (requestor) and the provider (service) have
expressed their requirements and capabilities in their
own policies. The engine operates this way: a) the

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

432

Table 1: Mapping between WS-SecurityPolcy terms and Semantic Concepts.

WS-SecurityPolicy term Semantic Concept
Https http://www.semanticweb.org/ontologies/security.owl#Https rdf:ID requirement/capability

XML-Enc http://www.semanticweb.org/ontologies/security.owl#XML-Enc rdf:ID requirement/capability
........ ...
Login http://www.semanticweb.org/ontologies/security.owl#LoginProtocol rdf:ID requirement/capability

Authentication http://www.semanticweb.org/ontologies/security.owl#Authentication rdf:ID requirement/capability
........ ...

TransportLevel http://www.semanticweb.org/ontologies/security.owl#hasSecurityScope rdf:resource
http://www.semanticweb.org/ontologies/security.owl#TransportLevelSecurity

AES256 http://www.semanticweb.org/ontologies/security.owl#hasEncryptionAlgorithm rdf:resource
http://www.semanticweb.org/ontologies/security.owl#AES-256

AES192 http://www.semanticweb.org/ontologies/security.owl#hasEncryptionAlgorithm rdf:resource
http://www.semanticweb.org/ontologies/security.owl#AES-192

AES128 http://www.semanticweb.org/ontologies/security.owl#hasEncryptionAlgorithm rdf:resource
http://www.semanticweb.org/ontologies/security.owl#AES-128

........ ...
EncryptedBody http://www.semanticweb.org/ontologies/security.owl#encryptsPart rdf:resource

http://www.semanticweb.org/ontologies/security.owl#Body
SignedBody http://www.semanticweb.org/ontologies/security.owl#signsPart rdf:resource

http://www.semanticweb.org/ontologies/security.owl#Body
RequiredBody http://www.semanticweb.org/ontologies/security.owl#requiresPart rdf:resource

http://www.semanticweb.org/ontologies/security.owl#Body
........ ...

SignSignature http://www.semanticweb.org/ontologies/security.owl#signsPart rdf:resource
http://www.semanticweb.org/ontologies/security.owl#Signature

SignSignatureToken http://www.semanticweb.org/ontologies/security.owl#signsPart rdf:resource
http://www.semanticweb.org/ontologies/security.owl#SigningToken

SignSupportingToken http://www.semanticweb.org/ontologies/security.owl#signsPart rdf:resource
http://www.semanticweb.org/ontologies/security.owl#SupportingToken

requirements of the service are compared to the ca-
pabilities of the requestor; b) the capabilities of the
service are compared to the requirements of the re-
questor. In order for the comparison process to have a
positive outcome, the two following conditions must
hold:
� the capabilities expressed in the service’s policy

must meet the requirements expressed in the re-
questor’s policy;

� the requirements expressed in the service’s policy
must be met by the capabilities expressed in the
requestor’s policy.
The first step of the matchmaking process has to

assign a match level to each requirement-capability
pair. The comparison will leverage on the well-known
concepts of exact, subsume, plugin, and no match
(Paolucci et al., 2002), and has been carried out by
means of techniques that have already been explored
by authors in the context of supply-demand match-
making in cloud markets (Di Modica and Tomarchio,
2012).

In the second step the overall match between the
two policies is evaluated: the objective is to find the
capability that matches at best for each requirement.
The overall match is then defined to be the minimum
among the individual match levels evaluated in the
first step for each requirement-capability pair. Fur-
ther details on the policy matching can be found in

a previous work (Di Modica and Tomarchio, 2011b),
even though in that work a preliminary version of the
ontology is employed.

5 CASE STUDY

In this section, an simple case study of the over-
all behaviour of the semantic security framework is
presented. The overall scenario is the classic sce-
nario (see also Figure 1) where a client (service
requestor) is looking for a service that provides a
specific functionality (expressed through the WSDL
specification), with a specific security policy which
has been expressed using WS-SecurityPolicy asser-
tions; in addition, the client expresses also security
requirements (within its own security policy) that the
service provider must meet. The client searches the
UDDI registry in order to retrieve service informa-
tion. The registry, besides providing the information
necessary to invoke the service (the WSDL descrip-
tor), also returns the provider’s associated security
policy. The Transformer transforms this policy into
a semantically annotated policy.

At this point, the Matchmaker and the Reasoner
come into play, allowing the client to verify the fulfill-
ment of its security requirements. The Matchmaker is
fed with the client’s and the provider’s policies. It

A�Semantic�Model�to�Support�Security�Matching�in�Cloud�Environments

433

then runs the matching algorithm and, with the help
of the Reasoner, evaluates the match level between
the policies. Finally the client, based on the obtained
value, decides whether to invoke the service or not.

5.1 Security Policies Definition

The service provider expresses its security policy
by using the standard WS-Policy framework, adopt-
ing WS-SecurityPolicy terms. The specific policy
has been taken by the example policies of WS-
SecurityPolicy specification (OASIS, 2012). The sce-
nario provides for a requestor that wants to access
a service anonymously, and a service provider that
presents its credentials. In order to guarantee message
confidentiality and authentication, the security proto-
col will use symmetric ephemeral keys, generated by
the provider and exchanged through asymmetric en-
cryption.

Provider Policy. The provider policy is composed
by multiple items: one at the endpoint level, and two
for input and output messages respectively. At the
upper level the the WS-SecurityPolicy elements are:
SymmetricBinding, EncryptedParts, SignedParts and
Wss11. Each element, in its turn, is characterized by
several properties (not described here for space rea-
son) better detailing the requirements and the capa-
bilities of the provider.

The Transformer module takes as input this
policy and provides a corresponding policy anno-
tated with semantic concepts. The resulting pol-
icy, which is shown in Listing 1, contains two re-
quirements and three capabilities. In order to im-
prove the readability of the listing, the namespace
htt p : ==www:semanticweb:org=ontologies=security
was removed from each rdf:resource term.

Listing 1: Semantically enriched Policy.
<wsp:Policy>

<wsp:ExactlyOne>

<wsp:All>

<security:Authentication rdf:ID="capability0

"/>

<security:XML -Enc rdf:ID="capability1">

<security:hasKeyDerivationAlgorithm

rdf:resource="#PSha1L192"/>

<security:requiresCredential rdf:resource="

#X_509Certificate"/>

<security:hasSecurityScope rdf:resource="#

MessageLevelSecurity"/>

<security:requiresCredential rdf:resource="

#Timestamp"/>

<security:hasEncryptionAlgorithm

rdf:resource="#AES -256"/>

<security:encryptsPart rdf:resource="#Body"

/>

</security:XML -Enc>

<security:XML -Enc rdf:ID="requirement0">

<security:hasSecurityScope rdf:resource="#

MessageLevelSecurity"/>

<security:requiresCredential rdf:resource="

#Timestamp"/>

<security:hasEncryptionAlgorithm

rdf:resource="#AES -256"/>

<security:encryptsPart rdf:resource="#Body"

/>

</security:XML -Enc>

<security:XML -Dsig rdf:ID="capability2">

<security:hasKeyDerivationAlgorithm

rdf:resource="#PSha1L256"/>

<security:requiresCredential rdf:resource="

#X_509Certificate"/>

<security:hasSecurityScope rdf:resource="#

MessageLevelSecurity"/>

<security:requiresCredential rdf:resource="

#Timestamp"/>

<security:hasSignatureAlgorithm

rdf:resource="#SHA -1"/>

<security:signsPart rdf:resource="#Body"/>

</security:XML -Dsig>

<security:XML -Dsig rdf:ID="requirement1">

<security:hasSecurityScope rdf:resource="#

MessageLevelSecurity"/>

<security:requiresCredential rdf:resource="

#Timestamp"/>

<security:hasSignatureAlgorithm

rdf:resource="#SHA -1"/>

<security:signsPart rdf:resource="#Body"/>

</security:XML -Dsig>

</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

The requirements are the XML-Encryption and
the XML-DigitalSignature protocols, which are also
described with some properties imposing the specific
encryption algorithm to be used and the need to en-
crypt and sign the Body of the message.

The capabilities are the XML-Enc, XML-Dsig
and the Authentication assertions. The first two are
similar to what already expressed into the require-
ments, except for some specific algorithms (the latter
represents a security objective ensured by the X.509
certificate).

Requestor Policy. The service requestor expresses
its policy in terms of requirements and security capa-
bilities too. In order to show the effectiveness of the
semantic matching algorithm, it was manually created
from the service provider policy, by inverting require-
ments with capabilities. Then, some elements and
properties have been modified in order to show the
reasoning capabilities of the framework. In particu-
lar:

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

434

� the first requirement was changed into the SAML
protocol, that is, into a more specific requirement;

� in the second requirement, the hasSecurityScope
property was changed into CommunicationSecu-
rity;

� third requirement and first capability were left un-
changed;

� in the second capability, the hasSignatureAlgo-
rithm property was changed into hasAlgorithm,
that is, into a less specific property.

5.2 Matching Results

The matching algorithm tries to combine the client
requirements with the server capabilities (and vice
versa) for each couple of policy alternatives. Since
in this example there is only one alternative, there
are no iterations among alternatives. The match level
found by the reasoner are the following:

Service Requirements versus Requestor Capabilities

� Possible Match: it derives from the compari-
son between the Authentication and SAML asser-
tions, since the requirement is more specific than
the capability

� Close Match: it derives from the comparison be-
tween the XML-Enc assertions which are iden-
tical in both policies, but have different proper-
ties. In particular the requirement property Com-
municationSecurity is more general than the Mes-
sageLevelSecurity property of the capability.

� Perfect Match: it derives from the comparison be-
tween the XML-Dsig assertions which are identi-
cal in both policies, and also have identical prop-
erties.

Service Capabilities versus Requestor Requirements

� Perfect Match: it derives from the comparison be-
tween the XML-Enc assertions which are identi-
cal in both policies, and also have identical prop-
erties.

� Possible Match: it derives from the comparison
between the XML-Dsig assertions which are iden-
tical in both policies, but have different properties.
In particular, the requirement property hasSigna-
tureAlgorithm is more specific than the capability
property hasAlgorithm.

The policies’ overall match level is given by the
lowest among the found levels: in this case it is a Pos-
sible match. The Matchmaker communicates to the
client that the selected service may satisfy its secu-
rity requirements. Since the match is not Perfect, the

client is required to provide additional information or
negotiate with the service provider before actually in-
voking the service. Further details on the negotiation
phase that may carried out at this step can be found in
(Liccardo et al., 2012).

It should be noticed that, if a traditional (syntac-
tic) approach had been used for the policy compari-
son, the result would have led us to consider the two
policies as incompatible.

6 CONCLUSIONS

Security has been acknowledged to be one of the pri-
mary concerns preventing a wide adoption of cloud
computing among enterprises. In interoperable con-
texts like those fostered by SOA, where networks of
trustiness must be set up among service providers,
defining, modeling and matching service security
policies is a crucial problem that needs to be faced.
Existing proposals leveraging on a syntactic approach
like the WS-Policy are not very well suited for these
heterogeneous and dynamic scenarios. In this paper
we proposed to integrate the WS-Policy model with
semantic annotations, thus enabling semantic match-
ing capabilities, allowing to go beyond the strict syn-
tactic intersection of policy assertions.

We then developed a security ontology which al-
lows the relationships among main security concepts
to be modeled. Leveraging on this ontology, we de-
signed and implemented a framework for the match-
making of what is requested on the customer side and
what can be provided on the provider side in terms
of security features. The framework is also compat-
ible with syntactic policies defined through the WS-
SecurityPolicy specification. A procedure was de-
vised to transform the policy’s syntactic terms into
semantic concepts of our security ontology. A sim-
ple use case example was also proposed to show the
viability of the approach and the actual limits of the
pure syntactic-based approaches.

Future works will be aimed to test the framework
with interoperable scenarios (B2B scenarios) and to
interact with even more complex policies.

ACKNOWLEDGEMENTS

The work described in this paper has been partially
supported by the “Cloud4Business” project funded
by the PO FESR 2007/2013 programme of Sicily re-
gion.

A�Semantic�Model�to�Support�Security�Matching�in�Cloud�Environments

435

REFERENCES
Damianou, N., Dulay, N., Lupu, E., and Sloman, M. (2001).

The ponder policy specification language. In Proceed-
ings of the International Workshop on Policies for Dis-
tributed Systems and Networks, POLICY ’01, pages
18–38, London, UK. Springer-Verlag.

Di Modica, G. and Tomarchio, O. (2011a). Seman-
tic annotations for security policy matching in WS-
Policy. In SECRYPT 2011 - Proceedings of the Inter-
national Conference on Security and Cryptography,
pages 443–449, Seville (Spain).

Di Modica, G. and Tomarchio, O. (2011b). Semantic Secu-
rity Policy Matching in service oriented architectures.
In Proceedings - 2011 IEEE World Congress on Ser-
vices, SERVICES 2011, pages 399–405, Washington
DC (USA).

Di Modica, G. and Tomarchio, O. (2012). A semantic dis-
covery frame work to support supply-demand match-
making in cloud service markets. In CLOSER 2012
- Proceedings of the 2nd International Conference on
Cloud Computing and Services Science, pages 533–
541, Porto (Portugal).

Garcia, D. Z. G. a. and Felgar de Toledo, M. B. (2008).
Ontology-Based Security Policies for Supporting the
Management of Web Service Business Processes. In
2008 IEEE International Conference on Semantic
Computing, pages 331–338. Ieee.

Kagal, L., Finin, T., and Joshi, A. (2003). A policy language
for a pervasive computing environment. In Proceed-
ings of the 4th IEEE International Workshop on Poli-
cies for Distributed Systems and Networks, POLICY
’03, pages 63–, Washington, DC, USA. IEEE Com-
puter Society.

Kim, A., Luo, J., and Kang, M. (2005). Security ontol-
ogy for annotating resources. In On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA,
and ODBASE, pages 1483–1499. Springer.

Liccardo, L., Rak, M., Di Modica, G., and Tomarchio, O.
(2012). Ontology-based Negotiation of Security Re-
quirements in Cloud. In Computational Aspects of
Social Networks (CASoN), 2012 Fourth International
Conference on, pages 192 –197, Sao Carlos (Brasil).

OASIS (2012). WS-SecurityPolicy 1.3. OASIS Standard.
Available at http://www.oasis-open.org/specs/.

Paolucci, M., Kawamura, T., Payne, T. R., and Sycara, K. P.
(2002). Semantic matching of web services capabil-
ities. In ISWC ’02: Proceedings of the First Inter-
national Semantic Web Conference on The Semantic
Web, pages 333–347, London, UK. Springer-Verlag.

Papazoglou, M. P. and van den Heuvel, W.-J. (2007). Ser-
vice Oriented Architectures: approaches, technolo-
gies and research issues. VLDB Journal, 16(3):389–
415.

Phan, T., Han, J., Schneider, J., Ebringer, T., and Rogers,
T. (2008). A survey of policy-based management ap-
proaches for Service Oriented Systems. In Software
Engineering, 2008. ASWEC 2008. 19th Australian
Conference on, pages 392–401. IEEE.

Speiser, S. (2010). Semantic Annotations for WS-Policy.
In IEEE International Conference on Web Services
(ICWS 2010), pages 449–456. IEEE.

Sriharee, N., Senivongse, T., Verma, K., and Sheth, A.
(2004). On using ws-policy, ontology, and rule rea-
soning to discover web services. In Intelligence in
Communication Systems, number May 2004, pages
246–255. Springer.

Tonti, G., Bradshaw, J., Jeffers, R., Montanari, R., Suri, N.,
and Uszok, A. (2003). Semantic Web languages for
policy representation and reasoning: A comparison of
KAoS, Rei, and Ponder. In International Semantic
Web Conference (ISWC2003), pages 419–437, Florida
(USA). Springer.

Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P.,
Breedy, M., Bunch, L., Johnson, M., Kulkarni, S., and
Lott, J. (2003). Kaos policy and domain services: To-
ward a description-logic approach to policy represen-
tation, deconfliction, and enforcement. In Proceed-
ings of the 4th IEEE International Workshop on Poli-
cies for Distributed Systems and Networks, POLICY
’03, pages 93–, Washington, DC, USA. IEEE Com-
puter Society.

Verma, K., Akkiraju, R., and Goodwin, R. (2005). Semantic
matching of Web service policies. In Semantic Web
Policy Workshop (SDWP 2005).

W3C (2007). Web services policy 1.5 - framework. W3C
Recommendation. Available at http://www.w3.org/
TR/ws-policy/.

Zheng-qiu, H., Li-fa, W., Zheng, H., and Hai-guang, L.
(2009). Semantic Security Policy for Web Service. In
2009 IEEE International Symposium on Parallel and
Distributed Processing with Applications, pages 258–
262. Ieee.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

436

