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Abstract: The cost of electricity is a major concern to public providers of cloud computing services. On-demand 
pricing, common amongst cloud providers, does not aid the provider in planning future demand and 
therefore purchasing energy at discounted rates. In this paper, we describe a number of advance pricing 
schemes for cloud computing resources based on provision-point contracts, commonly used by deal-of-the-
day websites such as Groupon. We propose three models – Group Provision Points, Contributory Provision 
Points, and Variable Reward Forwards – that each reward consumers with reduced prices for advance 
reservations, while allowing providers to make accurate forecasts of energy usage. Furthermore, we show 
how the schemes are risk-free for the provider, guaranteeing to be at least as profitable as on-demand 
schemes. We present results from a simulation of the schemes, and compare the results to our analytically 
derived predictions. 

1 INTRODUCTION 

Consumers of cloud computing resources typically 
pay a single price to access a virtual machine for a 
specified period of time. This single price covers the 
virtual machine’s fraction of the cost of the physical 
server itself, maintenance and repairs, the physical 
datacentre space, the electricity needed to power it, 
and the cost of air conditioning to cool the 
datacentre. 

In on-demand pricing, consumers gain access to 
the resource immediately and are charged for the 
amount of time they use the resource. 

In forward pricing, consumers gain access to the 
resource at a specified time in the future, and have 
access for a pre-agreed duration. 

Air conditioning and datacentre space are 
generally fixed costs. Regardless of how many 
servers are placed in the datacentre, these costs will 
essentially be the same. 

Electricity costs for powering servers are 
variable costs. The total electricity required by the 
provider is proportional to the amount of virtual 
machines demanded by the provider’s customers. 

Energy costs are a significant cost for providers 
of public cloud computing resources. 

Estimates for the contribution of server 
electricity to the total cost of ownership (TCO) of a 
physical server vary between 3% and 15% (Barroso 

and Hölzle 2009; Berl et al., 2009). Volume servers 
account for 34% of datacentre electricity usage 
(Brown, 2008). A full review of datacentre costs can 
be found in (Patel and Shah, 2005). 

This cost therefore impacts the price paid by 
consumers to access virtual machines, and the profit 
achieved by the provider. In a competitive 
marketplace, keeping prices as low as possible is 
critical for commercial success. 

Currently, research is being focussed on reducing 
the power consumption of computing technology 
(Barroso and Holzle 2007; Lee and Zomaya, 2010). 
The primary focus of this research is reducing 
carbon footprint, but reducing expenditure is an 
important factor too. 

Typically, a cloud provider would purchase 
electricity on-demand for a fixed price to power its 
datacentre. This could be directly from an energy 
supplier, or from a broker who hedges market-traded 
instruments to offer fixed prices to its clients.  

Larger cloud providers might purchase electricity 
directly from the spot-market, where prices vary 
over time to match supply with demand. These 
larger providers may also generate their own 
electricity and be able to contribute energy to the 
grid as well as consuming it through bilateral 
agreements. 

Some research has been directed at moving 
virtual machines between datacentres with the aim
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 of finding the cheapest spot-price. 
Qureshi et al. were the first to propose 

dynamically assigning computational workloads in 
distributed systems to locations where electricity 
may be cheaper. They found savings of millions of 
dollars could be achieved through a simulation 
(Qureshi et al., 2009). 

A similar method was suggested by Rao et al., 
but the dynamic allocation also takes into account 
the latency between different locations, so that QoS 
metrics would be met while electricity cost reduced 
(Rao et al., 2010). 

Buchbinder et al. extended these methods so that 
only batch applications would be migrated to 
cheaper markets (Buchbinder et al., 2011). In this 
way, applications that could tolerate a delay would 
use the cheapest electricity, and interactive 
applications would not cause poor user-experience 
as a result of the overhead involved in migrating the 
application 

Ding et al. also proposed that virtual machines 
could be moved between datacentres based on 
electricity prices (Guo et al., 2011). 

However, little research has been conducted on if 
providers can use derivative contracts to purchase 
electricity in advance for a discount. 

The cloud provider could potentially decrease its 
costs by purchasing electricity futures directly (Hull, 
2008). Futures contracts are a type of derivative that 
give buyers guaranteed access to the resource in 
advance of when it is delivered: the user is obliged 
to take ownership of the resource on the delivery 
date that the contract specified. The provider could 
then engage a broker to provide fixed-price 
electricity to top up its pre-bought electricity 
capacity 

A futures contract typically details the size of the 
commodity being purchased. In electricity futures, 
the commodity is a quantity of electricity delivered 
for a fixed period of time, typically a month or a 
quarter. 

However, the use of electricity futures can have 
significant associated risks. If the provider invests in 
a future which is subsequently not fully utilised by 
customers, then it is possible it will not cover the 
investment. Electricity delivered to the cloud 
provider cannot be stored; if it is not used as it is 
delivered, then it is wasted. 

Considering an electricity future for one months 
delivery of 1MW costs over $35,000, this risk can be 
sizeable1. 

 
1 ICE UK Base Electricity Futures, November 2012 

In this paper, we propose three pricing schemes that 
allow the provider to purchase electricity futures 
with no-risk that they will subsequently fail to utilise 
their investment effectively. The provider is 
guaranteed to be at least as profitable as using a 
traditional on-demand pricing scheme. 

Our schemes are based on provision-point 
contracts (also known as assurance contracts). In a 
provision-point mechanism, members of a group 
pledge to contribute to an action if a threshold of 
some order is met. If this threshold is met, the action 
is taken and the public goods are provided; 
otherwise no party is bound to carry out the action 
and money paid is refunded (Bagnolli and Lipman 
1989). 

Such a mechanism is used by deal-of-the-day 
website Groupon2. Users make requests for special 
offers by purchasing a coupon. When a threshold is 
reached, the deal is profitable to the provider and the 
offer is confirmed. 

In previous work, we showed how provision-
point contracts can be used to schedule virtual 
machines more effectively on a large-scale cloud 
infrastructure (Rogers and Cliff, 2012; Rogers and 
Cliff, 2012). 

In this paper, we amend traditional provision 
points by changing the beneficiaries of the contract 
and the value of the offer to create a number of new 
pricing schemes. 

Consumers of cloud computing resources can 
purchase these in advance for discount, while 
retaining the ability to purchase additional resources 
on-demand. The cloud provider subsequently uses 
this information to purchase electricity futures.  

We show how Group Provision Points, 
Contributory Provision Points, and Variable Reward 
Forwards allow providers to make accurate forecasts 
of energy usage and therefore reduce their costs 
through the purchase of electricity.  

We present results from a simulation of the 
schemes, and show that our schemes have benefits 
for both provider and consumer compared to 
traditional on-demand and forward pricing. 

2 PRICING SCHEMES 

2.1 On-demand Pricing 

In standard on-demand pricing there is a period of 
duration N intervals, where resources are purchased 
and then immediately available.  

 
2 www.groupon.com 

Hedging�Cloud�Energy�Costs�via�Risk-free�Provision�Point�Contracts

245



 

The provider charges customers a cost Co to use the 
computing resource for an interval i. The total 
demand experienced for resources in time interval i 
is ti. In this case, the total revenue (REV) achieved 
by the provider over the period is the total demand 
experienced at the on-demand price: 

ܸܧܴ ൌ ݐܥ

ே

ୀ

 

The provider will be required to pay for 
electricity for the duration of the interval that the 
virtual machine is running at a cost Eo from the 
energy supplier or broker. The electricity required 
per virtual machine for the interval is β. In this case, 
the cost of electricity (COE) to the provider is the 
total demand experienced, at the cost of on-demand 
electricity per virtual machine:  

ܧܱܥ ൌ ݐܧߚ

ே

ୀ

 

Therefore, the provider’s profit using an on-
demand model is: 

ܲௗ ൌ ሺܥ െ ݐሻܧߚ

ே

ୀ

 

2.2 Forward Contracts 

Consider a pricing model for cloud computing which 
uses two periods, each period consisting of N time 
intervals. 

In the first period, ‘the reservation period’, 
consumers purchase advance reservations (or 
forwards) at a cost Cr, which allows them to use a 
resource at a specific interval i during the next 
period. The total number of resources reserved in a 
time interval i is ri.  

In the second period, “the execution period”, 
consumers gain access to their reservations at the 
specified time interval. Consumers may also 
purchase access to a resource for the duration of an 
interval at a cost Co. The total demand experienced 
for resources in time interval i is ti 

In this case, the revenue achieved over the period 
is the sum of reserved resources bought at the 
reserve price, plus the additional resources bought 
on-demand at the on-demand cost: 

ܸܧܴ ൌሾݎܥ  ሺݐ െ ሿܥሻݎ
ே

ୀ

 

As the provider has committed to deliver a number 
of resources through the sale of forward contracts on 
computing resources, she can use this information to 
purchase forward contracts on electricity to obtain a 
saving on consumption. The provider can choose to 
buy θ forward electricity contracts, where each 
contract entitles them to use I units of electricity for 
a period of N time intervals at a cost Er per time 
interval. 

The cost over the period is the cost of purchasing 
reserved electricity across the entire period, plus the 
sum of the cost of purchasing on-demand electricity 
required in addition to the reserved electricity. 

ܧܱܥ ൌ ܧܰߠ  ܧߚሺݐሻ െ ܫܧܰߠ

ே

ୀ

൩ 

Therefore the profit obtained via hedging 
electricity consumption through the use of forward 
contracts on electricity is: 

ܲ௦ ൌ ሺܥ െ ݎሻܥ

ே

ୀ

 ሺܥ െ ݐሻߚܧ

ே

ୀ

 ܧܫሺߠܰ െ  		,ሻܧ

For the model to be worth implementing for the 
provider, it must offer a greater profit than using an 
on-demand model: 

ܲ௦  ܲௗ 

ܥ ൏ ܥ 
ܧܫሺܰߠ െ ሻܧ

∑ ேݎ


 

However, for the model to be beneficial to the 
user, the user must be incentivised to provide a 
forecast. Therefore, the cost of reserving a resource 
must be less than the cost of buying a resource on-
demand:  

ܥ   ܥ

So our conditions for the model to be beneficial to 
all parties are: 

ܥ   ሺ1ሻ																																							ܥ

ܥ  ܥ െ
ܧܫሺܰߠ െ ሻܧ

∑ ேݎ


																				ሺ2ሻ 

With forward pricing on computing resources, the 
provider might choose to fix Co and Cr so that 
customers are fully aware of the pricing they will be 
charged. In this case condition (1) is satisfied, and 
consumers will use the service. 
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However, as condition (2) is dependent on ∑ ேݎ
 , 

the provider is not aware of if the scheme will be 
more profitable than on-demand pricing until all 
users have purchased forward contracts and the 
provider must deliver the resource.  

The provider must provide users with access to 
their reserved instances for smaller cost (and 
therefore less revenue), but may not benefit from 
cheaper electricity costs in all cases. 

2.3 Group Provision Points (GPP) 

This issue can be circumvented with a provision 
point contract. We now introduce an additional, 
intermediate phase – the ‘confirmation phase’: 

1. Reservation Phase: Users request resources to 
be consumed in the execution phase 

2. Confirmation Phase: If the provider finds that 
they will benefit as a result of the model by 
conditions (1) and (2) being met, they will 
confirm user’s requests and the contracts are 
confirmed. If either condition is not met, all 
contracts are cancelled. 

3. Execution Phase: Users gain access to their 
confirmed resources, and may also buy 
additional on-demand resources. 

If the requirements of the user population are 
found not to produce an increase in profit, the 
provider cancels all contracts and no revenue is lost 
as a result. If the scheme is profitable, all contracts 
are confirmed. This is equivalent to a traditional 
provision-point contract used by deal-of-the-day 
websites such as Groupon. 

2.4 Contributor Provision Points (CPP) 

The forward and GPP schemes are extremes. In the 
forward scheme, all users who submit a reservation 
benefit from reduced prices, in spite of it sometimes 
not benefitting the provider. In the GPP scheme 
either all, or no, users benefit from reduced prices 
depending on whether an advantage is gained by the 
provider or not. 

A compromise might be to only confirm contract 
requests to the consumers that contribute to the 
purchase of advanced electricity during the 
confirmation phase. This could be based on the 
earliest consumers who request a reservation. 
Customers who submitted a late reservation would 
have their contract cancelled, as their discount 
would not contribute to cheaper electricity. 

The provider would typically determine how 
much advance electricity θ to purchase based on 

some function of the profile of the reserved 
resources over the month. 

ߠ ൌ ݂ሺሾݎ  ேሿሻݎ⋯

If the provider chooses to purchase ߠ forward 
contracts on electricity, this will provide the 
provider with ߠܫ units of electricity each interval for 
N intervals. Therefore, the total electricity available 
to the provider over the period is	ܰߠܫ. This will 
support q contracts: 

ݍ ൌ
1
ߚ
 ܰߠܫ

If we confirm only q contracts, and cancel all 
others: 

ݍ ൌݎ

ே



 

Substituting into (2): 

ܥ 
ܧܫሺܰߠ െ ሻܧ

1
ߚ ܰߠܫ

  ܥ

ܥ 
ܧܫሺߚ െ ሻܧ

ܫ
  ሺ3ሻ																											ܥ

The vulnerability of the forwards has now been 
removed, as the conditions for profitability no longer 
depend on the uncontrollable number of 
reservations. 

As long as prior to implementing the scheme 
conditions (1) and (3) are met and Er is set to be the 
maximum likely cost of an electricity future, the 
scheme will generate a profit over on-demand 
pricing. 

This scheme also protects the provider against 
changes in the cost of electricity forwards. If the cost 
of a forward does not satisfy the following, the 
provider should cancel all contracts: 

ܧ ൏ ܧܫ െ
ܫ
ߚ
ሺܥ െ  ሻܥ

2.5 Variable Reward Forwards (VR) 

In the variable reward model, consumers are given 
the guarantee that when purchasing a forward in the 
reservation period, the price payable for the forward 
will be the same, or less, than the cost of an on-
demand resource. The exact value of Cr is not known 
until the execution period and is determined on a 
profit-sharing basis, where μ is the share desired by 
the provider. 
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ߜ ൌ
ܧܫሺܰߠ െ ሻܧ

∑ ேݎ


 

ܥ ൌ ሺܥ െ  ሻߜ

Users pay the minimum Cr to be profitable, plus 
a share of the saving achieved: 

ܥ ൌ ܥ  ܥሺߤ െ  ሻܥ

ܥ ൌ ܥ  ߤሺߜ െ 1ሻ 

If Cr > Co then on-demand instances are cheaper 
than reserved and the model will fail. In this case, no 
discount is to be offered and Cr = Co. The condition 
for this is: 

ሺܥ െ ሻߜ   ܥ

ߜ ൏ 0 

ܥ ൌ ൜
,ܥ ߜ ൏ 0

ܥ  ߤሺߜ െ 1ሻ, ߜ  0 

This will always be as least as profitable as on-
demand instances as users pay the on-demand price 
if no saving can be made. 

3 SIMULATION 

3.1 Setup 

A simulation was written in Python, the primary 
aims being to verify that the models outperform 
conventional on-demand and forward pricing 
schemes when applied to practical applications, and 
that users can make savings using a rational 
approach to forecasting. Furthermore, a simulation 
will aid comparing models where the cost of 
electricity futures varies over time. 
In our first simulation, we wish to determine which 
contract model generates most profit in a monopoly 
market where the broker is the only (or at least the 
preferred) provider of cloud resources. Our objective 
is to understand the profitability implications for the 
provider of such schemes, and the cost implications 
for the consumer. 

For electricity, we assume that the broker may 
purchase electricity futures for a period of a calendar 
month, which supplies 1MWh of electricity per 
hour. We obtain prices of ICE UK Base Electricity 
Futures over a 39 month period from March 2012 
(Figure 1). The cost of electricity on-demand from 
the grid is £0.01/kWh, based on (Barroso and Hölzle 
2009) which is the most reliable source of this 
information in current academic research. 

 

Figure 1: Cost over electricity futures over time. 

Group provision points (GPP), contributory 
provision points (CPP) and standard forwards all 
have the same prices for reservations and on-demand 
instances. An on-demand instance is set at 
£0.01/Computational-Unit/hour, which is a 
reasonable figure in the current market. 

The contributory provision point provider 
believes that the maximum she will need to pay for 
electricity in the foreseeable future is £55, 
Therefore, 

ܥ  ܥ െ
ܧܫሺߚ െ ሻܧ

ܫ
 

0.007863 ൏ ܥ ൏  ܥ

The CPP provider sets Cr = £0.007864. This will 
guarantee her a benefit over on-demand pricing as 
long as electricity does not go higher than £55. 

The forward and GPP providers set Cr to be the 
same. The variable reward forward (VR) provider 
sets Co = 0.01, but has no basis for determining a 
reserved price. She decides that she requires 50% of 
any saving used by the scheme to be retained as 
profit, and the other 50% to be split to consumers 
who reserved. 

We simulated a demand curve varying over time 
using a combination of 5 types of users: 

 Flat profile represents where demand is 
constant, and hence trivially easy to predict; 

 Random profile represents stochastically 
unpredictable demand, chosen randomly from a 
normal distribution; 

 Sine profiles (with period of 24 hours) are an 
approximation to daily rhythms, where demand 
varies sinusoidally, peaking in the middle of 
the day and at a minimum in the middle of the 
night. More precisely, in our simulations this 
sinusoidal demand pattern peaks around mid-
day, and demand can never be negative, so a 
function of the form 1+cos(2πh/24) is used, 
where h is the hour-number in the day. We 
have explored three variations of these sinusoid 
patterns: 
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a. Flat Sine represents constant a constant 
baseline of demand with periodic 
variations across each day; 

b. Growing Sine represents daily periodic 
demand, with the baseline increasing 
steadily across the month; 

c. Shrinking Sine represents daily periodic 
demand, shrinking through the month. 

We create a demand curve by combining 
different quantities of these users such that demand 
is generally growing over time so that the benefit of 
purchasing additional electricity futures can be seen 
in our results. There are 2000 users in total using the 
simulation. 

The aim of the demand curve is to determine if 
the scheme can be profitable in a heterogeneous 
market of different users with different demands, 
which follows an increasing trend. We are not aware 
of any real-world data on public cloud demand 
which we could use over such timescales, so this is a 
suitable approximation in this preliminary study. 

We assume the provider has servers that can 
support 8 virtual machines, and each server uses 
380W. 

3.2 Results  

3.2.1 Provider Cost Reduction 

For clarity, figures 3-8 show data points averaged 
over the last 2 months with the corresponding 
standard deviation shown in error bars. 

 
Figure 2: Profit achieved using pricing models. 

Figure 2 shows that the CPP model does generate 
more profit for the provider than on-demand pricing 
alone. Initially this is around a 10% increase, but this 
decreases as forward electricity prices increases. In 
month 17 (hour 11424), electricity futures rise above 
the point where our reserved pricing is profitable, 

and so all contracts are cancelled. This can be seen 
in Figure 3 where no energy resources are reserved 
as the cost of electricity forwards goes higher than 
our reserved pricing threshold.  

 
Figure 3: Power used by CPP model. 

In this case, the profit achieved is the same as 
on-demand pricing. In Figure 4 it can be seen at this 
point that no contracts are confirmed, and all users 
must purchase on-demand resources. 

 
Figure 4: Resource allocation in CPP model. 

The VR model is the most profitable for the 
provider, being up to 16% more profitable than on-
demand pricing. This is because the provider is not 
committed to giving a specific discount to the 
consumer. The fact that any benefit obtained through 
advance reservations is shared means that the 
provider gains when big savings are achieved, and 
doesn’t lose out when a loss is likely. The VR model 
is also not negatively impacted as a result of changes 
in the price of electricity futures and, unlike the CPP 
model, generates more profit than on-demand during 
these price hikes. Figure 5 shows the purchase of 
electricity by the provider. Figure 6 shows the 
purchase of resources by consumers. 
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Figure 5: Power used by forwards and VR model. 

 
Figure 6: Resource allocation using forwards and VR. 

Forwards are generally less profitable than on-
demand resources, by quite a large margin. Clearly, 
the pricing is too low for purchasing advance 
reservations to be profitable, but determining this 
price is not easy as the number of reservations is not 
known until they have all been requested.  

 

Figure 7: Power used by GPP model. 

 
Figure 8: Resource allocation using GPP model. 

The GPP model also fails to deliver significant 
gains in profit. The model protects losses as a result 
of not giving discounts when forwards are less 
profitable than on-demand, but it doesn’t achieve 
high profits when forwards are more profitable as 
everyone receives the discount (figures 7 and 8). 

3.2.2 Provider Cost Reduction 

Forwards are generally the most beneficial to the 
consumer achieving a mean saving of around 20% 
the cost of an on-demand instance, and reducing 
costs for all market demand profiles (Figure 9). This 
is because the consumer always gains access to the 
resource, and thus their net costs are reduced. The 
mean price does not equal the cost of the reserved 
resource in all situations because sometimes a user 
purchases a resource that subsequently she does not 
require, but which she has already agreed to pay for. 

 
Figure 9: Mean price per computational unit using 
forwards. 

The CPP model rewards consumers with around 
a 15-10% saving when a cost saving is achieved, 
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with this rising to no discount when electricity prices 
increase (Figure 10). All consumers make a saving 
using the CPP model. 

 
Figure 10: Mean price per computational unit using CPP. 

 

Figure 11: Mean price per computational unit using VR. 

 

Figure 12: Mean price per computational unit using GPP. 

The VR model provides a discount of around 5% 
on average (Figure 11). However, users with random 

demand profiles spend more using the scheme than 
if using just on-demand resources. This is as a result 
of poor predictability, which results in the purchase 
of advance resources which are subsequently not 
used. 

The GPP model is generally unattractive to 
consumers (Figure 12). Only occasionally is a 
discount awarded, and it is unlikely this would not 
occur enough to be of interest.  

4 CONCLUSIONS 

In this paper, we have introduced and analysed a 
number of novel pricing schemes for cloud 
computing which we have shown to offer 
opportunities for increasing profits by reducing the 
cost of purchasing electricity. 

Group Provision Points are unlikely to be 
implemented in a commercial offering, as the 
scheme does not take full advantage of information 
acquired through the sale from consumers. 
Consumers do not receive regular enough discounts 
to make forecasting worthwhile, nor does the 
provider benefit from reduced electricity costs. 

We believe Contributory Provision Points and 
Variable Reward Forwards are the most attractive of 
the schemes discussed. Contributory Provision 
Points will favour those who can predict their future 
demands earlier. Variable Reward Forwards gives 
everyone who contributed to a reduced cost with a 
share of the saving. It is likely Variable Reward 
Forwards would be seen as fairer by the user-base as 
everyone is rewarded; not just those who contribute 
to the discount, which cannot be established 
beforehand. 

Both of these schemes can be configured to 
outperform on-demand pricing by setting reserved 
pricing appropriately. 

However, because of the size of the electricity 
futures involved, only larger providers would be 
able to take advantage of the schemes. 

Further investigation should be conducted on 
how these schemes can be used in bilateral 
arrangements, where datacentres may produce their 
own electricity which may be ploughed back into the 
electricity grid. Furthermore, can these schemes be 
enhanced through the use of cloud spot-markets, or 
reserved instances? 

In this work, we assumed air conditioning was a 
fixed cost which doesn’t change with increasing 
number of servers. However, a gradual increase in 
air conditioning energy is likely to be seen as a 
result of the increased heat generated by servers. In 
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future work, including air conditioning costs in the 
model could further reduce expenditure. 

A significant amount of work is still required to 
determine if these schemes can be implemented 
commercially. In future work, we plan to create a 
simulation of a competitive market of providers 
utilising the scheme. Our objective is to see if one 
scheme becomes dominant in the marketplace. We 
also wish to investigate if the providers can change 
pricing with a view to acquire more business. This 
could eventually lead to a market for provision point 
contracts in cloud computing. 

ACKNOWLEDGEMENTS 

We thank the Large-Scale Complex IT Systems 
Initiative (www.lscits.org) as well as HP Labs 
Adaptive Infrastructure Lab for providing additional 
financial support.  

REFERENCES 

Bagnolli, M, and B Lipman. 1989. “Provision of Public 
Goods: Fully Implementing the Core Through Private 
Contributions.” Review of Economics Studies 56: 583–
601. 

Barroso, L. A., and U. Holzle. 2007. “The case for energy-
proportional computing.” Computer 40(12): 33–37. 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4
404806 (November 30, 2011). 

Barroso, Luiz André, and Urs Hölzle. 2009. “The 
Datacenter as a Computer: An Introduction to the 
Design of Warehouse-Scale Machines.” Synthesis 
Lectures on Computer Architecture 4(1): 1–108. 
http://www.morganclaypool.com/doi/abs/10.2200/S00
193ED1V01Y200905CAC006. 

Berl, a., E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De 
Meer, M. Q. Dang, and K. Pentikousis. 2009. 
“Energy-Efficient Cloud Computing.” The Computer 
Journal 53(7): 1045–1051. http:// 
comjnl.oxfordjournals.org/cgi/doi/10.1093/comjnl/bxp
080 (November 7, 2012). 

Brown, R. 2008. “Report to congress on server and data 
center energy efficiency: Public law 109-431.” 
http://escholarship.org/uc/item/74g2r0vg.pdf (January 
21, 2013). 

Buchbinder, N., N. Jain, and I Menache. 2011. “Online 
job-migration for reducing the electricity bill in the 
cloud.” NETWORKING 2011. http:// 
www.springerlink.com/ 
index/86060362741H6X88.pdf (January 23, 2013). 

Guo, Yuanxiong, Zongrui Ding, Yuguang Fang, and 
Dapeng Wu. 2011. “Cutting Down Electricity Cost in 
Internet Data Centers by Using Energy Storage.” In 
2011 IEEE Global Telecommunications Conference - 

GLOBECOM 2011, IEEE, p. 1–5. http:// 
ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=61
34209 (January 23, 2013). 

Hull, John C. 2008. Fundamentals of Futures and Options 
Markets. 6th ed. Prentice Hall. 

Lee, Young Choon, and Albert Y. Zomaya. 2010. “Energy 
efficient utilization of resources in cloud computing 
systems.” The Journal of Supercomputing. http:// 
www.springerlink.com/index/10.1007/s11227-010-
0421-3 (July 18, 2011). 

Patel, C. D., and A. J. Shah. 2005. “Cost model for 
planning, development and operation of a data center.” 
Development 107: 1–36. http://www.hpl.hp.com/ 
techreports/2005/HPL-2005-107R1.pdf (November 
30, 2011). 

Qureshi, Asfandyar, Rick Weber, Hari Balakrishnan, John 
V. Guttag, and Bruce Maggs. 2009. “Cutting the 
Electric Bill for Internet-Scale Systems.” 
http://dspace.mit.edu/handle/1721.1/62585 (January 
21, 2013). 

Rao, Lei, Xue Liu, Le Xie, and Wenyu Liu. 2010. 
“Minimizing Electricity Cost: Optimization of 
Distributed Internet Data Centers in a Multi-
Electricity-Market Environment.” In 2010 
Proceedings IEEE INFOCOM, IEEE, p. 1–9. 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5
461933’ escapeXml='false'/> (January 7, 2013). 

Rogers, O., and D. Cliff. 2012. “Options, forwards and 
provision-point contracts in improving cloud 
infrastructure utilisation.” Journal of Cloud 
Computing: Advances, Systems and Applications 
1(21). 

Rogers, Owen, and Dave Cliff. 2012. “The Use of 
Provision Point Contracts for Improving Cloud 
Infrastructure Utilisation.” In Grid Economics and 
Business Models,. 

 
 

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

252


