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Abstract: Energy efficiency is often identified as one of the key reasons for migrating to Cloud environments. It is
often stated that a data centre hosting the Cloud environment is likely to achieve greater energy efficiency (at
a reduced cost) compared to a local deployment. With increasing energy prices, it is also estimated that a
large percentage of operational costs within a Cloud environment can be attributed to energy. In this work, we
investigate and measure energy consumption of a number of virtual machines running the Hadoop system, over
an OpenNebula Cloud. Our workload is based on sentiment analysis undertaken over Twitter messages. Our
objective is to understand the tradeoff between energy efficiency and performance for such a workload. From
our results we generalise and speculate on how such an analysis could be used as a basis to establish a Service
Level Agreement with a Cloud provider – especially where there is likely to be a high level of variability (both
in performance and energy use) over multiple runs of the same application (at different times).

1 INTRODUCTION

Various companies (ranging in size and computing
maturity) are adopting Cloud computing technology
to perform their business processes, mainly driven by
the fact that it reduces the cost of computing infras-
tructure deployment and management. At the same
time, environmental concerns of many large scale
computing infrastructure operators – primarily large
data centres – have prompted the need for consider-
ing more energy efficient operation of computational
infrastructure. This coupled with the need to con-
sider new sources of energy, such as solar/wind en-
ergy, leads to important challenges in understanding
how more energy efficient Cloud computing could
be provided to end users. It is also useful to note
that the business case for migrating to Cloud com-
puting systems has often centered on the cost sav-
ings that would arise due to reduced use of energy
at a client site. Currently, energy costs account for a
large percentage of operational expenditure for com-
putational infrastructure. It is often stated that due
to the economies of scale, the ability to negotiate
cheaper energy tariffs and the use of renewable en-

ergy sources, data centre operators are able to offer
both cost and energy efficient operational systems.
With increasing outsourcing of computational capa-
bility comes the need to specify Service Level Agree-
ments (SLAs) with infrastructure providers. Such
SLAs may also include support for pay-per-use scal-
ability of backend servers, enabling a company to dy-
namically grow its computational usage based on de-
mand (using an incremental charging model for the
excess capacity used). Determining how such SLAs
should be specified and subsequently monitored for
conformance remains a challenge with many com-
mercial Cloud providers – where repeatable perfor-
mance is difficult to guarantee in many instances (due
to the use of virtualisation and a variable mapping be-
tween virtual and physical resources). Increasingly,
there is also the demand to include “green” metrics
into an SLA, to enable a company using a data cen-
tre to display its environmentally friendly credentials
to customers. Consequently, there is increasing inter-
est in making Cloud computing environmentally sus-
tainable (Garg and Buyya, 2012) – thereby requiring
techniques to improve power efficiency at all levels
of the data centre (from resource scheduling of work-
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loads to the operation of Computing Room Air Condi-
tioning (CRAC) units). Hence, understanding the be-
haviour of the various systems that make up a Cloud
environment becomes the key in order to design a
green datacenter, from the hardware deployed to the
usage policies used to exploit each resource. Due to
increasing flexibility of Cloud systems and the variety
of configuration options now being made available,
this becomes a difficult and challenging task. There is
also currently significant interest in performing var-
ious types of analysis over “big–data” with Cloud-
based infrastructures using Hadoop (commercial ex-
amples include Radian 6 and Palantir). Hadoop (Lam,
2010; White, 2009) is a framework for data intensive
(analysis) applications on large computing clusters by
the use of the Map/Reduce paradigm (Dean and Ghe-
mawat, 2008). It has become very popular within so-
cial media data analysis projects in order to tackle
the scalability of analysis required across large data
volumes that could not be performed with traditional
paradigms or technologies. Furthermore, MapReduce
has also become a useful benchmarking tool (Cloud-
Suite 1.0, 2012) due to its high storage, computing
power and network requirements – for comparing the
performance of various computing architectures.

Understanding how Hadoop could be efficiently
deployed across a Cloud environment remains an im-
portant challenge, as Cloud infrastructure parame-
ters and virtual cluster configurations can influence
Hadoop performance and have an impact on resource
usage. The lack of any behaviour models for achiev-
ing such resource management provides an opportu-
nity to consider various optimization techniques for
Cloud computing resource usage. The objective of
this work is to address this challenge, by determining
how data intensive computation could be carried out
over a Cloud computing environment and how its sub-
sequent energy footprint could be monitored and opti-
mised. We make use of the Cardiff Online Social Me-
dia Observatory (COSMOS) platform (Cardiff On-
line Social Media Observatory (COSMOS), 2013),
which aims to provide mechanisms to capture, anal-
yse and visualize data harvested from online reposito-
ries and feeds, in particular interactive and openly ac-
cessible social networking sites such as Twitter. COS-
MOS provides a research framework for social media
data analysis, in particular supportingwhat-if inves-
tigations from the social sciences community (Pang
and Lee, 2008) – which are often difficult to realise
in other similar commercial systems. COSMOS en-
ables sentiment analysis (by using the SentiStrength
tool (SentiStrength: The sentiment strength detection
in short texts, 2012)) to be carried out, that can involve
several gigabyte sized data files by using the Hadoop

Map/Reduce paradigm.
The main motivation of this article is to under-

stand the impact of high throughput computing (such
as Hadoop) on Cloud computing power consumption,
validated through an example of “big–data” process-
ing using COSMOS. Our focus in this work is to high-
light how the power consumption: (i) can be moni-
tored and understood (in particular, focusing on the
variability of consumption across multiple execution
runs of the application) – and subsequently exposed
to the user; (ii) can be related to the number of virtual
machines and the associated workload generated on a
physical server. We also investigate how power-usage
metrics can be included within an SLA and how vari-
ability in power use can impact what can/cannot be
included.

The rest of this article is organized as follows.
Section 2 presents related work. In Section 3 the
Cloud infrastructure, the workload base, the exper-
iments carried out for the study and the instrumen-
tation used to record power usage data is presented.
The system behaviour is described in Section 4. Con-
clusions and future work are subsequently outlined in
Section 6.

2 RELATED WORK

Power consumption (synonymously referred to as
‘Green IT’), is being considered within a number
of areas in Computer Science – for example CPU
(their development is heavily conditioned by power
dissipation (and consequently consumption) require-
ments), network and disk power management. Sim-
ilarly, in the context of Cloud computing, signifi-
cant efforts have already been documented to support
power-consumption aware Green Clouds (Sood and
Kumar, 2010).

Companies like APC (by Schneider elec-
tric) (UPS Selector Sizing Application, 2012) and
VMware (Green IT Calculator, 2012) have designed
static power consumption models and provide in-
terfaces (for Uninterrupted Power Supply (UPS)
sizing and Virtualization impact, for instance), in
order to help users determine the power consumption
of a specific computer (depending on its internal
components). The approaches identified by these
companies can be helpful in the general design of
a datacenter’s power and UPS requirements; but
they are not workload aware nor take into account
how such infrastructure is subsequently used. Such
models often focus on developing a database of
motherboards, their associated components and the
recorded power consumption. Given a particular
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system configuration and motherboard, it is therefore
possible to search through such a database to estimate
the likely power consumption one is likely to see
when using the same (or similar) motherboard. Such
a database also contains information about idle and
full workload power consumption on such hardware,
but does not record any usage for particular types of
workloads.

There are also various proposals that suggest
the development of a Cloud architecture (Garg and
Buyya, 2012; Liu et al., 2009) to provide and use
power saving mechanisms while guaranteeing the
performance from a user’s perspective. In (Garg and
Buyya, 2012) a survey of Cloud computing systems is
provided, in order to support environmental sustain-
ability and a generic Green Cloud computing archi-
tecture introducing the concept of a “Green Broker” is
proposed; while (Liu et al., 2009) base their proposal
on live virtual machine migration while monitoring
the power consumption of resources using dedicated
hardware – an expensive option to support in most
cases.

Other proposals go further and try to distribute the
Cloud workload amongst geographically dispersed
datacenters (Ghamkhari and Mohsenian-Rad, 2012)
such that they exploit different renewable energy
sources depending on the time of day and the ob-
served workloads. This enables a more effective use
of green power sources depending on computing de-
mand at particular times in the day.

Hadoop has also been extensively researched
focusing on its power efficiency within clusters.
In (Leverich and Kozyrakis, 2010) the authors out-
line the main problems and inefficiencies inherent
within the Hadoop Map/Reduce paradigm, while
(Goiri et al., 2012) and (Kaushik and Bhandarkar,
2010) propose developing energy saving mechanisms
for the file system used in Hadoop (HDFS) and the as-
sociated job scheduling in Hadoop, known as Green-
HDFS and GreenHadoop respectively. In Green-
HDFS an energy-conserving, hybrid, logical multi-
zoned variant of HDFS is presented, whose main ob-
jective is to reduce energy consumption costs by using
low-power, high-energy-saving inactive power modes
during idle periods of utilization. GreenHadoop is a
framework for datacenters powered by photovoltaic
solar arrays of an electrical grids, which schedules the
Map/Reduce jobs depending on the solar prediction
(that this framework performs) in order to maximize
the green energy consumption. Both proposals try to
make more effective use of computational resources
and relate these to the availability of renewable en-
ergy at particular times of day.

In (Shi and Srivastava, 2010) the authors explore

the impact of Hadoop based storage clusters, based on
the HDFS file system, in thermal terms. It proposes a
thermal and power-aware task scheduler for Hadoop
that is focused on the minimisation of the total power
consumption in the air conditioning (A/C) system,
by balancing the load between cluster nodes in or-
der to keep them under a definite thermal threshold.
Identifying a suitable operating threshold remains a
challenge in many such systems – with an ambient
temperature of between 25 to 30 degrees celsius sug-
gested by many authors.

There is also current work focusing on specifying
SLA using power consumption metrics. For exam-
ple (Laszewski and Wang, 2010) identifies several pa-
rameters that could be used within an SLA, such as:
amount ofCO2 correlated with environmental mea-
surements that are easier to measure and understand
for a user. This work also introduces a framework
where such metrics could be integrated to support
decision making and resource management. Finally,
there are additional efforts that aim to monitor power
consumption such as PowerTop – although it is not
always possible to effectively measure these (such as
basic I/O operations) and associate a value with such
metrics.

A key metric used in data centres to measure the
effectiveness of power usage and efficiency is Power
Usage Effectiveness (PUE), developed by the Green
Grid Association (Green Grid Association, 2013) (a
multi-industry association focusing on power effi-
ciency of data centres). It is used as a ratio of the
amount of power entering a data center divided by
the power used to run the computational infrastruc-
ture within it – with an ideal value being 1.0. As such,
it is much broader in scope and takes account all the
various infrastructure available within a data centre
(such as building, computing room air conditioning
systems, etc). It is useful to note that most data cen-
tres use almost the same amount of energy to support
the “non-computing” capabilities they provide (such
as cooling and air conditioning) as the energy used
to run their servers and networks. Our focus in this
work is much more finer grained than calculating the
PUE – as we attempt to determine how power con-
sumption can be associated with a particular applica-
tion workload across a server. Our attempt is there-
fore to characterise the impact on power usage of a
particular type of VM configuration and application
workload. The outcome of this work can be used to
subsequently provide different PUE analysis given a
particular workload.
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3 METHODOLOGY

The objective of our work is to characterise the
performance-power tradeoff when deploying Hadoop
over an IaaS Cloud environment. We describe the in-
frastructure over which our validation has been car-
ried out – outlining the key challenges faced when
attempting to measure power consumption. We also
elaborate on the characteristics of the workload and
the monitoring instrument we used in our experi-
ments.

3.1 Cloud Infrastructure

The Cloud infrastructure used in this work (Figure 1)
is composed of one cluster compute node, consist-
ing of a Viglen ix4600 with 2 Xeon e5620 CPUs (4
Cores + with support for hyperthreading in each) (In-
tel Xeon Processor e5 Family, 2012), 24GB of main
memory, and 4TB of storage). The Operating Sys-
tem is CentOS 6.2 Linux (CentOS: The Community
ENTerprise Operating System, 2012).For the man-
agement and coordination of the Cloud environment,
OpenNebula (OpenNebula: The Open Source Solu-
tion for Data Center Virtualization, 2012) software
is deployed. It is a mature open source project fo-
cused on the development of an open, flexible, exten-
sible and comprehensive management layer for build-
ing and managing Cloud infrastructures. OpenNebula
was developed within the European Reservoir project
and has since been extended to support a number of
different application types and contexts. It provides
Infrastructure as a Service (IaaS) by managing differ-
ent hypervisors (such as KVM, XEN, etc.). We make
use of KVM (Kernel Based Virtual Machine (KVM),
2012) as the hypervisor – which is a full virtualiza-
tion open source hypervisor (with support for hard-
ware virtualization extensions) for Linux widely used
in Cloud computing environments and it is supported
by RedHat. It provides support for virtualization by
the use of a/dev/kvm/ interface.

On this Cloud environment we deploy a social me-
dia data analysis application using Hadoop, described
in section 3.2. The decision about using such a pri-
vate and controlled Cloud environment was to enable
us to more accurate measure power consumption with
a variation in workload.

3.2 Social Media Analysis Workload

Social media can involve a variety of different types
of content – such as video (YouTube), audio (Spo-
tify), images (Facebook, Flickr) to text (Twitter, Face-
book). The type of analysis often undertaken on such

Figure 1: Cloud computing infrastructure.

content depends on the particular demands of the user
community involved. In this work, we make use of
text analysis using the Apache Hadoop system (Lam,
2010; White, 2009), with a user community consist-
ing mainly of researchers in social sciences. Hadoop
implements the Map/Reduce paradigm (Dean and
Ghemawat, 2008), where the input data is divided into
blocks and distributed across multiple computational
resources during the Map stage, processed, and the
results combined during the Reduce stage. Hadoop
also provides data transfer transparently, limited fault
tolerance mechanisms (achieved through replication)
and a distributed file system to store data across the
compute nodes (HDFS). Hadoop requires a cluster
environment in order to perform the Map/Reduce pro-
cess (Figure 1). This cluster consists of a master node
and1...nworker nodes. In order to provide Hadoop
as a service on the Cloud it is necessary to deploy
multiple VMs and create a virtual cluster for Hadoop
following the master/worker structure. Virtualization
enables us to customize the size and characteristics of
each virtual machine. Furthermore, it provides elas-
ticity, portability and the ability to dynamically re-
place the underlying hardware if needed. As a draw-
back, a computational overhead is introduced.

The Cardiff Social Media Observatory (COS-
MOS) aims to support social scientists in analysing
socially significant data (e.g. tweets, blogs and news
stories). The volume of data produced on a daily basis
requires significant computational resources to anal-
yse. For example, COSMOS collects around 3.5 mil-
lion tweets a day. To perform a longitudinal analysis
of say public opinion and sentiment, around a socially
significant event (e.g. a political campaign, change
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of legislation, world sporting event etc.) could re-
quire analysis of several weeks’ worth of data. An
example study may be public opinion surrounding the
London 2012 Olympics, where a study of opinion
for two weeks before, during and after would require
the analysis of 21 million tweets. On a single desk-
top computer this could take approximately 20 min-
utes. This is perfectly acceptable as a batch-processed
computational exercise, but the reality is that social
media analysis may require several “tweaks” to the
study parameters, and therefore requires a more inter-
active way of analysing data. For example, age, gen-
der, location and topic of study within the event may
change, as hypotheses are formed and tested. There-
fore, the computational analysis must be able to com-
plete much faster to give a more acceptable wait-time
for the researcher. The researcher should be able to
invoke the computational resources to support large-
scale data analysis on-demand and resources need to
be dynamically allocated depending on the size of the
job. Hadoop has been used within the COSMOS sys-
tem in order to scale the underlying analysis. This
process undertakes analysis on a large archive of pre-
viously recorded tweets in order to determine the sen-
timent of each one (by using SentiStrength tool (Sen-
tiStrength: The sentiment strength detection in short
texts, 2012)), following the Map/Reduce paradigm. It
is a very heavy process due to the fact that it has been
designed to perform this analysis through several gi-
gabytes of data. This workload was made use of in
this work in order to provide a realistic benchmark
application to stress test the underlying Cloud infras-
tructure defined in section 3.1 by using different vir-
tual cluster configurations.

For the experimentation carried out in this work, a
test tweet archive is used consisting of up to 15 mil-
lion tweets to extract their sentiment. COSMOS cur-
rently harvests and archives the ‘spritzer stream us-
ing the Twitter Streaming API, and makes it available
to researchers for inspection and analysis. Even at
1%, the API provides COSMOS with approximately
3.5 million messages (or tweets) per day. The tweet
files are archived using a specialised hierarchical fil-
ing system, which stores tweets based on the day in
which the collection was made. Hadoop also repli-
cated these files multiple times in order to improve
fault tolerance – this is achieved automatically.

3.3 Instrumentation and Monitoring

We focus on the power consumption of the whole
compute node, due to the fact that high throughput
computing (within distributed environments) exploits
almost all resources (CPU, Main memory, Storage

and Network) in an aggressive way. In order to get
the power consumption from a compute node, an ex-
ternal monitoring device is needed, since this met-
ric cannot be obtained from local monitoring soft-
ware. Although various attempts have been made
to approximate this value from system configration
data (such as type of CPU, disk, motherboard, op-
erating system, etc) – generally by interpolating be-
tween the system configration and previous recorded
data – such attempts remain of limited benefit and ac-
curacy. There are several commercial products to di-
recly measure the energy consumption of as service –
the most widely used are Kill-A-Watt1 and WattsUp2.

We make use of WattsUp PRO in this work to
monitor and log all the information related to power
consumption. This meter aims to provide an indepen-
dently managed and accessed power data collecting
mechanism, and must be positioned between the com-
puting node power supply and the mains power plug
(Figure 2). Therefore, a second computer is needed
in order to get the logging information stored in the
WattsUp PRO non-volatile memory. The reason for
choosing WattsUp Pro rather than Kill-A-Watt is due
to the fact that the latter does not provide the storage
feature (needed for long term experimentation). The
information obtained by the use of WattsUp PRO re-
flects the power consumption behaviour of the com-
pute node during the monitoring interval – and en-
ables a user to either collect data at predefined time
intervals, or only record data when particular events
(i.e. the power consumption exceeds a pre-defined
threshold) occur. The monitoring frequency has been
set to one sample per second for all experiments de-
scribed in this work.

Figure 2: Power consumption monitoring.

1http://www.p3international.com/products/special/
p4400/p4400-ce.html

2https://www.wattsupmeters.com/secure/index.php
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4 SYSTEM BEHAVIOUR
MONITORING

In order to understand the power consumption of the
Cloud system, we devise a number of experiments –
results of which are described in subsequent sections.
Our approach consists of three main parts:

1. Basic Power Consumption: the power consump-
tion of the running cluster is monitored. Monitor-
ing in this part involves understanding the power
consumption when turning on/off the system, and
the power consumption of keeping the cluster up
and running but without any workload (i.e. when
the cluster is in the idle state).

2. Power Consumption Range: this part is focused
on measuring the maximum and minimum power
consumption, that is, the power consumption
range of the cluster.

3. Virtualization Power Consumption: this stage in-
volves monitoring the power consumption with
different virtualized workloads executed on the
cluster.

4.1 Basic Power Consumption

This stage involves analysing the power demand when
turning on/off the system described in Section 3.1
without any workload. The power consumption pro-
file, illustrated in Figure 3) behaves as expected: par-
ticularly high when the server is switched on and
off and stable once it has booted (and reached stable
state). There is a peak in power consumption at start
up time, which stabilizes after the operating system
(OS) finishes loading all services (at∼105 Watts).
Stopping the server (470-510 seconds in the figure)
requires an increased use of power to stop all the OS
services and to perform a controlled switch off. Fur-
thermore, when the server is stopped, a power con-
sumption of∼10 Watts is observed which is due to
the standby state of the server. The standby state
power consumption seems to be very low for one
compute node, but this fact needs to be taken into
account within big infrastructures, as it increases lin-
early with the number of computing nodes. The ex-
cess power required to turn on/off a server needs to
be balanced against the standby state power usage.
Hence, if a server is likely to remain inactive over
long time frames, it is possibly better to incur the ex-
tra power usage hit when it is turned on/off – alterna-
tively, if the server is likely to be required for ad hoc,
bursty workloads, keeping it in standby mode is likely
to be more efficient.

Figure 3: Simulation results.

The server needs about 140 seconds to boot and
be ready to enable virtual machines to be deployment
on it. But for stopping the server, the time needed is
less than 15 seconds.

4.2 Power Consumption Range

In this stage we attempt to measure the power con-
sumption during an idle period and also measure the
subsequent increase when a particular workload is
executed on the server. The idle power consump-
tion value determines the minimum power required
by the server to be up and running, ready for host-
ing any virtual machines or any equivalent workloads.
Our approach therefore considers two types of work-
loads: (i) virtual machines deployed on the server; (ii)
data analysis algorithms executed over the virtual ma-
chine. Before continuing with the analysis of the in-
frastructure under virtualized Hadoop workloads, we
are also interested in measuring the maximum power
consumption of the server. In order to achieve this, it
is necessary to chose a workload that fully stresses all
the physical hardware (CPU, memory and disk) avail-
able on the server. The MD5 Message-Digest Algo-
rithm (Rivest, 1992) is a widely used cryptographic
hash function that produces a 128-bit hash value. It
has been utilized in a wide variety of security appli-
cations, and is also commonly used to check data in-
tegrity. MD5 is a process which exploits the CPU,
main memory and disk simultaneously and can be
scaled to run on large data files (in size and number).
As the server has a multicore subsystem, there is a
need of launching multiple MD5 threads in order to
stress it completely.

The results obtained from the execution of multi-
ple MD5 threads (Figures 4,5) show that the CPU us-
age increases as the number of threads also increases,
reaching the top CPU usage with 16 threads and keeps
this utlisation at 100% for higher number of threads
(Figure 4). It is also interesting to observe the vari-
ability in CPU usage when executing less than 16
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Figure 4: MD5 CPU usage per thread number.

Figure 5: Power consumption under MD5 process threads.

threads, and how the CPU usage variability experi-
ences a reduction from 16 threads and converges to
100%. The power consumption behaviour can be
seen to correlated directly with CPU usage but with
two major differences (Figure 5). The first one is the
slope of the illustrated curve for power consumption,
which reduces in value as the number of threads in-
creases, while the second is the significantly smaller
variability experienced in the power consumption (of
<2%) compared with the variability in CPU usage
with less than 16 threads. Using this experiment, we
find that the maximum power consumption seen with
the server is 268 Watts.

Once we have measured the maximum and min-
imum power consumption limits, the possible be-
haviour of a pre-determined number of threads (in
terms of CPU usage and power consumption), and the
cost of switching on and off the server, we now pro-
ceed to measure power consumption for virtualised
workloads.

4.3 Virtualization and Power
Consumption

The next stage focuses on analysing the behaviour of
the system under a realistic Hadoop workload, per-
formed across different virtual clusters. In this sce-
nario, the number of worker nodes and their char-
acteristics are modified, whilst keeping constant the
number of resources allocated in all of the virtual
clusters. The evaluation is performed with 1 Hadoop
server virtual machine (VM) and 4 different VMs for
Hadoop worker configurations, as described in Ta-
ble 1.

These virtual cluster configurations are designed

Table 1: Hadoop virtual cluster VM configurations.

VM # VMs CPU RAM HDD
Conf. (Gb) (Gb)
Server 1 20% 6 100

1 Worker 1 70% 14 200
2 Workers 2 35% 7 100
4 Workers 4 17,5% 3,5 50
8 Workers 8 8,75% 1,75 25

Figure 6: Hadoop Virtual Cluster idle power consumption.

to maximize the usage of the Cloud infrastructure
and reserve 10% of the CPU power and 4GB of
RAM for the Operating System and Cloud manage-
ment tools within the infrastructure. Each configura-
tion is evaluated independently from the others, and
involves stopping the workers that are not going to
be used and deploy the ones that will be used. Vir-
tual clusters are composed of multiple virtual ma-
chines, each one which runs the Ubuntu 10.04 oper-
ating system. Hence, the greater the number of VMs
deployed on the same physical node, the greater the
size of the workload introduced, even only with the
OS processes of each VM. But when running more
processes, like Hadoop, the workload increases, and
so does the impact on the node directly related to the
number of deployed VMs.

Any deployed virtual cluster adds an overhead on
the workload of the server, and as seen with the MD5
scenario, there is a relationship between workload and
power consumption. With a bigger Hadoop Virtual
Cluster deployed, the power consumption is increased
when the Cluster is idle (Figure 6). Hence the size
of the Hadoop Virtual Cluster also has an impact on
power consumption, even when not performing any
Hadoop application.

We subsequently modify the workloads we deploy
within the Hadoop virtual cluster. The results ob-
tained from the execution of the sentiment analysis
over twitter data application in the Cloud (sequential
and Hadoop versions) are shown in Figure 7 – the fig-
ure shows the maximum and minimum power con-
sumption (vertical lines) and the 90% observed val-
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a) 1.000.000 Tweets b) 5.000.000 Tweets

c) 10.000.000 Tweets d) 15.000.000 Tweets

Figure 7: Sentiment Analysis for Hadoop Power Consumption.

ues (box). It can be observed that with 8 VMs, the
maximum power consumption is achieved. If bigger
virtual clusters are deployed, there is a correspond-
ing increase in power consumption. It should also
be noted that the highest power consumption level,
as measured when applying 16 MD5 threads, can be
achieved but not exceeded. The sequential version ex-
periences less power consumption than the Hadoop
version when running on any virtual cluster, but on
the contrary, its performance is unacceptable (main
reason to develop the Hadoop version). Hence the
objective of a user deploying an analysis application
over such an infrastructure should decide the partic-
ular power consumption profile they have in mind,
and therefore chose the number of VMs based on this
profile. In this instance, we can also map power con-
sumption into a cost, by associating a unit cost for
each KWh consumed when running the VM work-
load.

The size of the problem, and consequently the
length of the executions, reduces the variability ex-
perienced in power consumption (evolution from Fig-
ure 7(a) to Figure 7(d)). This makes easy to forecast
the power consumption expected during the execution
of the Sentiment Analysis application over Hadoop.

More specifically, the variability observed (Ta-
ble 2) behaves in two different ways depending on the

increase in the number of tweets processed (# Tweets)
or the number of virtual machines (# Workers). Re-
peating the experiment for the same number of tweets
but increasing the number of workers, it can be seen
that the variability increases in all cases. On the other
hand, for the same number of workers, the increase in
the number of tweets analysed produces a reduction
in the variability.

Finally, it can be observed that the range of power
consumption values are similar for the same config-
uration (i.e. 8 workers). However, when comparing
across different configurations there is a clear differ-
ence; but the power consumption trend is maintained
from 5M to 15M tweets (independently of the sce-
nario and amount of tweets).

5 POWER CONSUMPTION
CHARACTERISATION

The behaviour of the Cloud environment running
Hadoop can be derived from the analysis undertaken
in Section 4. Synthesising the results obtained, we
can identify a power consumption profile as illus-
trated in Figure 8. Hence, six power consumption
levels (clearly defined and differentiated in the figure)
can be observed – starting from the physical machine
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Table 2: Sentiment Analysis for Hadoop Power Consumption details (90%).

# Tweets # Workers Min Power (W) Max Power (W) Average (W) Variability (W)
1.000.000 1 160.0 163.7 161.85 ±1.85
1.000.000 2 157.5 179.8 168.65 ±11.15
1.000.000 4 157.3 183.3 170.30 ±13.00
1.000.000 8 159.4 185.8 172.60 ±13.20
5.000.000 1 172.4 176.6 174.50 ±2.10
5.000.000 2 185.2 192.3 188.75 ±3.55
5.000.000 4 192.7 213.6 203.15 ±10.45
5.000.000 8 212.7 236.9 224.80 ±12.10
10.000.000 1 174.4 177.9 176.15 ±1.75
10.000.000 2 186.4 192.2 189.30 ±2.90
10.000.000 4 211.4 218.3 214.85 ±3.45
10.000.000 8 231.6 246.1 238.85 ±7.25
15.000.000 1 174.1 178.0 176.05 ±1.95
15.000.000 2 187.8 191.3 189.55 ±1.75
15.000.000 4 212.5 217.7 215.10 ±2.60
15.000.000 8 239.6 250.1 244.85 ±5.25

Figure 8: Energy consumption profile.

being initialised at boot up time to the point where it
is eventually shut down. These difference in power
consumption observed across these different stages of
machine use is influenced by the choice of particular
infrastructure capabilities – such as the type of hy-
pervisor and virtualization software chosen. As there
can be some variation in power consumption in each
stage (as observed in Section 4.3), an average value is
reported to demonstrate the representative behaviour
seen. with more than one virtual machine deployed
within the same physical node, as observed in Sec-
tion 4.3.

Furthermore, the Cloud usage, in terms of de-
ployment policy also has an impact on the power
consumption (not only affecting variability in values)
since the number of virtual machines deployed con-
ditions the peak power consumption that the system
reaches (Figure 8(W1)).

Each of the six power consumption levels identi-
fied is related to a determined machine state (Table 3).
The first of these levels is observed when the machine
is connected to the electrical grid. It is known as
Standbymode (W1) and the machine consumes some
power in this state. This consumption, although small
compared to the consumption when the machine is

running, is very important when the amount of physi-
cal nodes is increased and must be taken into account
to achieve a particular energy usage threshold. Subse-
quently, when the physical machine is switched on, an
important increase in power consumption is observed
(W2), but it is temporarily de-limited (this value can be
further reduced by the use of solid state (hard) disks
(SSD) and faster main memory technologies). Hence,
there is significant power consumption due to the use
of I/O operations on the machine. Once the physical
machine has booted it reaches the idle state (W3), in
which the machine is ready to host virtual machines.

When virtual machines are deployed, two differ-
ent power consumption levels are identified: the first
as a consequence of the deployment and idle state of
the virtual machines (W4) (increasing the power con-
sumption due to the fact that there are a higher num-
ber of services running at the same time), and the sec-
ond as a consequence of Hadoop job executions (W5).
As it has been observed in the experiments performed
in this work, Hadoop stresses the system and con-
sequently the power consumption increases signifi-
cantly (even reaching the maximum power consump-
tion value for the physical machine). However, as pre-
viously discussed in section 4.3, the actual power us-
age value depends on the number of virtual machines
currently deployed and the total execution time asso-
ciated with these VMs (Table 2).

The completion of processing jobs by Hadoop
makes the system go back to idle state (with idle vir-
tual machines deployed) (W4). The system in this
state is ready to process additional Hadoop jobs. This
corresponds to the state where the machine has VMs
available to execute additional workload to be sub-
mitted by a master node. If the virtual machines are
stopped, the system goes back to idle state (W3). It
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Table 3: Energy consumption profiles.

Time Energy Concept
(range) Consumption

0≤ x< t1 W1 Standby
t1 ≤ x< t2 W2 Switch On (Boot)
t2 ≤ x< t3 W3 Idle
t3 ≤ x< t4 W4 VMs running
t4 ≤ x< t5 W5 Hadoop working
t5 ≤ x< t6 W4 VMs running
t6 ≤ x< t7 W3 Idle
t7 ≤ x< t8 W6 Switch Off (Shut down)

t8 ≤ x W1 Standby

is then ready to host additional virtual machines (e.g.
another virtual cluster). Finally, the physical machine
can be stopped and reaches theStandbymode (W1),
and as a consequence due to the need to stop associ-
ated operating system services an increase in power
consumption is observed (W6) – although this surge is
only temporary.

The methodology used in this article can be ex-
trapolated to other computing systems, but the char-
acterisation of energy profiles identified within this
section can not be easily generalised for other types
of infrastructure. However, we note that the general
trend observed is likely to be common when deploy-
ing the OpenNebula and Hadoop environments on
other physical machines.

The information that this model may be used to
select and subsequently optimize a deployment pol-
icy. That is, to decide the proper virtual cluster for
each user requirement taking into account the power
consumption that it is going to require. Thus, it is im-
portant to decide when to stop the physical node (de-
pending on time restrictions and user requirements) in
order to estimate the additional benefit in performance
vs. the corresponding increase in power. Hence, if
only a small additional performance benefit can be
achieved with a significant power consumption in-
crease (and consequently the associated energy costs),
then a user may decide not to optimise performance
further to limit power usage. Our characterisation en-
ables such decisions to be supported across different
types of workloads.

6 CONCLUSIONS AND FUTURE
WORK

The objective of this work has been to measure and
characterise power consumption for high through-
put workloads (using Hadoop). Such measurement
can be used as the basis for developing a workload
power consumption model for analysing social me-

dia data. As sentiment analysis remains one of the
most widely performed operation on social media
data streams, our approach can provide a useful basis
for understanding how a system should be configured
to achieve a particular performance-energy profile.

The main conclusion obtained from this study is
that there is a non-linear relationship between the
number of virtual machines, the workloads that these
VMs execute and the power consumption seen on the
physical machine. Identifying how many VMs are
needed to achieve a particular throughput at a given
power usage profile can be undertaken based on the
results reported in his work. Consequently, deploy-
ing and using 8 or more VMs on the same physical
machine suggests the maximum power consumption
possible for the particular Cloud infrastructure we in-
vestigated in this work. The infrastructure makes use
of OpenNebula, Hadoop and the KVM hypervisor –
as all of these systems are widely used in the research
community, we believe the outcome of this analysis is
usable in a number of similar contexts. Our methodol-
ogy used to analyse and compare power consumption
(using the three stages outlined in section 4) could be
adapted for other applications – and other Cloud en-
vironments.

Furthermore, we have also observed a variability
in power consumption over multiple runs of the same
workload. However such variation is generally small,
although there are uncontrollable variations (such as,
sudden drops or peaks is power usage that cannot be
easily explained). This variability reduces as execu-
tion times increase. Hence, for short running jobs, us-
ing power related metrics in service level agreements
can be limiting – even on private clouds. We believe
such variation is likely to be significant within pub-
lic Cloud environments that use a multi-tenancy ap-
proach, where workloads and number of VMs can
change over time (and from a users perspective are
hard to characterise). The approach we advocate in
this work can also be used to include metrics such as
power usage within such a Service Level Agreement
– alongside more traditional performance related met-
rics. This is particularly important when the client
requiring access to a service needs to demonstrate
“green” credentials to its customers. The objective
is therefore to understand how significant the change
in performance is likely to be with an increase in the
power consumed, to execute a particular type of work-
load.

Future work guidelines are: (i) perform a simi-
lar type of study over a distributed Cloud Computing
infrastructure (with different VM deployment strate-
gies) and extend the model for these environments;
(ii) better understand how metrics related to key per-
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formance indicators (such as revenue, penalty, etc)
can be mapped into operational metrics which include
both performance and power – and subsequently how
these could be used within a service level agreement;
(iii) design and implement policies (by applying the
power characterisation described in this work) to han-
dle Cloud computing environments in an optimized
way in terms of power saving and/or performance.
Although PUE metrics already exist for a data cen-
tre, our aim is to develop similar metrics for particular
applications.
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