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Abstract: As the use of the Web expands and appears almost everywhere in business’ practices, new algorithmic 
problems appear and need to be efficiently handled; one of them that has attracted the attention of both 
researchers and practitioners is click fraud. Click fraud can be defined as the practice of repetitively clicking 
on search ads without being actually interested in the content of the related links, with the intention of either 
increasing the Website’s profits or exhausting an advertiser’s budget. In this work, we propose an algorithm, 
which exposes suspect networks instead of single IPs, based on utilizing efficient data structures that have 
not been employed in previous works. 

1 INTRODUCTION 

The emerging size of the World Wide Web, and its 
growing pattern of use, creates new challenges and 
new algorithmic problems that need to be efficiently 
handled. One of these problems that has attracted the 
attention of researchers is click fraud detection. As 
going online becomes common practice to more and 
more commercial enterprises, it has become vital for 
them to be advertised online to customers. An online 
ad is usually placed in the Web page of a hosting 
Website as a banner and the owner of the Web site 
gets paid a fee for each click on the ad from a casual 
customer; this is the pay-per-click model (PPC) of 
online advertisement, sometimes also called cost-
per-click model. Click fraud is a problem that is 
deeply connected with this model of online 
advertisement and is intimately connected (or, 
better, related) to the problem of burst of visits 
(Zhou et al., 2004), affecting a specific Web page. 

Click fraud can be formally defined as the 
practice of deliberately and repetitively clicking on 
search ads with the intention of either having third-
party Website profits increase, or of depleting the 
budget that the advertisers have charged for this 
click (Sakkopoulos et al., 2010). In both cases, 
instead of real users automated scripts or programs 
can simulate multiple clicks on the ad, and since the 
advertiser gets charged without taking any true 

values, the term “fraud” is naturally used. Other 
similar terms are “unwanted clicks” or “invalid 
clicks”; this terminology is sometimes used by 
Google since the word “fraud” can have legal 
implications or be difficult to be proved. It should be 
noted that Google publishes reports concerning the 
dangers behind click fraud and defines them as 
clicks produced by methods that are normally 
prohibited. 

Since this deliberate action of misleading an 
advertiser can be naturally justified only if the gains 
are large, the number of clicks need to be quite large 
for someone to suspect that something is going 
wrong, hence bursts of visits to the specific site 
accompanied with clicks on the related ad may help 
to indicate the probable presence of a click fraud. A 
pattern of visits or accesses is considered bursty 
when it occurs with high intensity over a limited 
period of time and such patterns have been also 
observed in various Web applications in a number of 
studies (Zhou et al., 2004), since they can be utilized 
for personalization purposes and as indicators of 
other interesting events. A burst scenario can be 
algorithmically characterized and captured by using 
counters and recording for each Web page the 
number of accesses in a fixed time interval. The 
basic principles behind detecting click fraud 
exploiting burst of visits is to employ thresholds in 
the frequency of visits from the various IP addresses 
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and locate as responsible the IP behind the majority 
of the visits.  

In this work we aim at detecting click fraud real-
time and ban the networks responsible, by 
presenting the design of an innovative solution 
which considerably increases the security in such 
cases by detecting bursts caused by networks.  The 
novelty in our approach lies in the fact that our 
technique locates not individual IPs but whole sub-
networks, since it is able to detect the common 
prefix (that is the sub-network) in the IP addresses 
that are responsible for bursts of visits and depict 
similar in frequency patterns of accesses under a 
dominant one; this was not possible in previous 
techniques that focused on individual IP addresses. 

The rest of the paper is organized as follows. In 
section 2, the related work is presented. In section 3, 
our proposed technique in order to efficiently detect 
networks that are suspects for click fraud is 
described. Finally, conclusions and future work are 
discussed in section 4. 

2 RELATED WORK 

There are various techniques that can be employed 
in order to detect click fraud, which are mainly 
based on the application of data mining and machine 
learning techniques in order to provide detailed 
evidence of possible click fraud patterns. The work 
of (Antoniou et al., 2011) is the most resembling to 
ours in the problem. In this paper, an approach for 
click fraud detection was proposed, that analyzed the 
number of visits during a certain time interval, 
depending on the kind of the investigated click fraud 
and on the application at hand (e.g. poll, posts).  

The novelty of that approach was the effective 
use of novel data structures for reducing the space 
consumption and allowing the real time detection of 
click fraud. However, that work was not capable of 
dealing with bursts of visits for which not just an IP 
address, but a whole network is responsible. In this 
case, multiple IPs, belonging to a greater network, 
perform visits to the banner on a Web site. Since 
every IP is unique, the algorithm posed by the 
authors cannot detect a single suspect IP and the 
click fraud event remains undetected. In order to 
detect such kinds of click fraud, there should exist a 
data structure, which would be able to return not the 
most recent and frequent IP address, but an 
equivalent prefix. This prefix would represent the 
network, to which, a group of IPs responsible for the 
burst of visits belongs.  To do so, we utilize another 
advanced data structure, the burst tries (Heinz et al., 

2002); as we will describe in the sequel, burst tries 
have interesting properties that permit the efficient 
handling and detection of such kind of activities. 

Before proceeding to the main section, we should 
mention that, in this paper, the term “burst” is used 
to describe two different concepts: (1) the bursting 
process in a burst trie, which will be described later 
and (2) a “burst” of visits: the case where few Web 
pages become very popular for short periods of time 
and are accessed very frequently in a limited 
temporal space. 

In order to distinguish between these two 
different concepts, we will hereafter refer to a 
“burst” of visits using quotes. 

3 CLICK FRAUD DETECTION 
USING BURST TRIES 

A burst trie is an elegant data structure tailored to 
store strings, that is series of symbols taken from a 
given alphabet, and it can be considered to be a 
hybrid data structure composed of two levels; the 
upper level resembling a traditional trie storing the 
strings according to the alphabetic representation of 
prefixes of them with a specific length and the lower 
level that stores the remaining parts of the strings 
using a dictionary data structure chosen according to 
the specific application at hand. In particular, the 
upper level of the structure is termed as Access trie 
and it resembles a traditional trie with the difference 
that the leaves, instead of atomic elements, store sets 
of elements. Each of these sets of elements is stored 
to the so called Containers that are implemented 
with data structures suitable to store small sets of 
elements. The structure begins with an empty 
container and is equipped with heuristics, three of 
which are described in (Heinz, et al., 2002), that are 
defined when a container is burst, and needs to be 
split in more than one containers. When a container 
at depth i is burst, then it is replaced by a new trie 
node and a set of containers at depth i+1. From the 
above description, it is clear that for a container 
corresponding to a leaf of the Access trie with depth 
i, all its stored elements share a common prefix of 
length i, and this common prefix does not need to be 
stored in the data structure implementing the 
container. Burst tries have been shown to perform 
effectively in practice and in various applications are 
better than splay trees and ternary search trees that 
are natural competitors in various applications 
(Heinz et al., 2002).  

The major property of the burst trie that suits our 
application is that if : (i) containers are implemented 
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using self-adjusting data structures, and (ii) the 
heuristic according to which a container is burst is 
based on how skew the accesses are in the  elements 
of the container, then at any time instance the 
elements in the same container have similar access 
characteristics under a dominant one and can be 
represented by their common prefix, while the 
topmost element in the container is the one with the 
biggest share in the accesses. 

In our algorithmic application and since we need 
to capture frequent patterns of accesses and hence 
represent strings where the frequency of access 
should be taken into account, we have chosen to 
implement the containers by employing splay trees. 

3.1 Description of the Algorithm 

In order to detect a “burst” of visits, we utilize a two 
dimensional matrix Bnm, with n denoting the number 
of Web pages or data units and with m representing 
the number of timestamps that are maintained for 
each data unit. We assign a number wϵ[0, m-1] to 
every Web page or data unit of the Website at 
random. Thus, each Web page or data unit 
corresponds to a row of the array Bnm. We define 
that, for the data unit i, a “burst” has occurred if and 
only if the difference between the timestamps stored 
in positions (i, m-1) and (i, 0) is equal or smaller 
than T, where T is the period of time in which the 
visits should occur in order to suggest a “burst”. 

We should mention that in the algorithm 
described in (Antoniou et al., 2011) a splay tree was 
used in order to store Web pages and a stack of 
timestamps for each node of the splay tree. In our 
present approach, we simplify the employed data 
structures and we save time and space, since we 
have replaced the splay tree with a simple two 
dimensional array, while additionally by using the 
two dimensional array we are no longer in need of 
the stacks storing the timestamps of the various 
users’ accesses. 

In our algorithm, we use IP addresses 
represented in dot decimal notation and we represent 
every IP address as a string of bits. We store the 
visiting IPs by employing the burst trie data 
structure. In order to take into account the different 
Internet Protocols we utilize two different burst tries, 
depending on whether the visiting IP is defined as a 
32-bit number (Internet Protocol Version 4 – IPv4) 
or as a 128-bit number (Internet Protocol Version 6 
– IPv6). An Internet Protocol Version 4 (IPv4) 
address consists of 32 bits, which may be divided 
into four octets. These four octets are written in 
decimal numbers, ranging from 0 to 255, and are 

concatenated as a character string with full stop 
delimiters between each number. Similarly and as 
far as IPv6 is concerned, the 128 bits of the address 
are split in 16 octets and each two octets are 
represented with a hexadecimal four digits number.  

As already mentioned, we use splay trees in 
order to implement the containers of the burst tries. 
Using the splaying technique, the most popular 
nodes of the tree, which represent parts of the 
visiting IP addresses, are rearranged so that they are 
located near the root of the container. Thus, the node 
that is being splayed to the root of the container 
could be quickly accessed in the future. For efficient 
splaying, a record in a splay tree requires three 
pointers, two pointing to its children and one to its 
parent, thus they use the most space of any of the 
container structures considered in (Sleator and 
Tarajn, 1985). However, it is a natural choice in our 
application since we want frequent IP accesses to be 
stored near the root of the container, in order to 
apply the burst heuristics that accompany the 
specific structure.  

The general principle for maintaining a burst trie 
is to locate inefficient containers and burst them. In 
particular three heuristics are proposed in (Heinz et 
al., 2002); the ratio, the limit and the trend 
heuristics. In the ratio heuristic, a container is burst 
when the ratio of the number of accesses to the root 
of the container with the total number of accesses is 
less than a threshold, and simultaneously the number 
of accesses to the container is large enough. In the 
limit heuristic, the container is burst when the 
number of the elements in the container exceeds a 
threshold, and finally in the trend heuristic the 
container is burst when its potential is exhausted; 
during each access to the container the potential is 
incremented by a fixed amount when the root of the 
container is accessed, otherwise it is decremented by 
another amount. In our application we have chosen 
to follow a different set of heuristics since our main 
aim is to guarantee that IPs with common prefixes 
and similar distribution in their access characteristics 
will be grouped together in the same container under 
the same dominant IP; moreover the root of the 
container will correspond to the dominant IP of the 
group. Hence, storing IPs and employing these 
heuristics should guarantee that IPs that depict 
similar characteristics will be distributed in nearby 
containers, and thus it will be easy for our 
application to locate IPs that have the same prefixes 
and similar access characteristics, in order to 
efficiently locate the responsible sub network for a 
specific “burst” of visits. 
More analytically our algorithm is as follows: 
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1. We store the IPs in the containers, with each 
container being implemented as a self-adjusting 
search tree. 

2. We count as root accesses for a container the 
number of times the element of the root of the 
container is accessed. We also define as root 
ratio the one between the root accesses and the 
total number of accesses in a container. 

3. The aim of using the Burst Trie is to cluster IPs 
with similar access behaviour under the same 
container (in order to capture their common 
prefix, and hence the latest sub network 
responsible for attacks). The ratio heuristic 
employed in (Heinz et al., 2002) is the one 
closest to our aims, but we found more 
appropriate to change it as follows:  

Burst Rule: Let x be the number of elements 
in the container when it was initially created 
(after the split of another container). A container 
will be split again when the number of operations 
(accesses/insertions) becomes larger than x, and 
the root ratio is out of a chosen range [l,u] that is 
a subrange of [0,1]. For example we could 
choose [l,u]=[1/2, 2/3]. Hence, when the number 
of operations in the container becomes greater 
than x and the root ratio is smaller than 1/2 or 
larger than 2/3, it should burst. 

By employing the above burst rule, we try to 
guarantee that the elements in a container have 
similar access behaviour. Another technique to 
achieve that could be to maintain an access 
counter for each element of a container and split 
the container when the elements depict skewed 
access behaviour (the amount of how much 
skewed defined by us).  However, this technique 
would cost too much and would need the 
employment of many parameters, and our burst 
heuristic seems more appropriate. 
We take advantage of the previously described 

structure in order to detect suspicious networks for 
click fraud. Suppose that a “burst” of visits is 
generated from different IPs, which though belong 
to the same network. In the beginning, the first 
visiting IP may form its own container. As more and 
more visits from the same network occur, they are 
inserted in the same container and thus the Access 
trie (the upper level component of the burst trie) 
permits the efficient location of the common prefix 
of the IPs (the responsible sub-network), while the 
IP address in the container that caused the most 
visits will be splayed to the root of the container 
splay tree. After a certain number of visits coming 
from this particular network, the prefix of the IP 
denoting the network address will burst out of the 

containers due to the extreme amount of visits that 
cause the prefix’s popularity to rise.  
Using this technique, we are able to detect the 
responsible network for the “burst” of visits and 
subsequently take action to prevent a possible 
“burst” in the future coming from this particular 
network. Specifically, the moment that a “burst” of 
visits occurs, we detect the responsible IP and we 
then insert it in the burst trie. If the insertion of this 
IP in the burst trie results to an event of burst in the 
trie, then we identify the subnet corresponding to the 
extracted and this subnet is banned as suspect of 
click fraud. The banned network remains as is for a 
specific amount of time in order to avert any future 
attempts coming from this network. Only after this 
specific period of time has passed is the IP network 
allowed to access the Web pages again. 

3.2 Example 

Suppose that our Web page consists of five data 
units and that we store five timestamps for every 
data unit. Therefore, a 5x5 two dimensional matrix 
is formed (Table 1). A number of the visiting IPs is 
shown in Table 2. 

Table 1: The two dimensional matrix that stores 
timestamps tij. 

t00 t01 t02 t03 t04 
t10 t11 t12 t13 T14 
t20 t21 t22 t23 T24 
t30 t31 t32 t33 T34 
t40 t41 t42 t43 t44 

 

Suppose that all but the last of the example’s IPs 
have already visited the Web site. Suppose now that 
at time t04, the IP 150.140.141.2 visits the data unit 
0. If by comparing the two timestamps t00 and t40, we 
realize that t04- t00 < T, then a burst has occurred. At 
the same time, the visiting IP is added in the burst 
trie. As shown in Figure 1, the addition of this 
particular IP results in the burst of a container and at 
the same time the total prefix that has burst out of 
the container has a length of 8 characters, including 
the “.”. Thus, this prefix represents a subnet and the 
network 150.140 is banned. 

Table 2: Table showing the visiting IPs. 

150.140.141.2 
150.140.142.3 
150.140.153.4 
150.140.168.2 
159.149.52.12 

159.122.149.13 
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0 1 2 3 4 5 6 7 8┴ 9

0 1 2 3 4 5 6 7 8┴ 9

0 1 2 3 4 5 6 7 8┴ 9

0 1 2 3 4 5 6 7 8┴ 9

0 1 2 3 4 5 6 7 8┴ 9

0 1 2 3 4 5 6 7 8┴ 9

0 1 2 3 4 5 6 7 8┴ 9

149052012

122149013

168002

153004

142003

141002  

Figure 1: The burst trie after inserting the IP 
150.140.168.2. (For readability reasons the example uses 
decimal representations instead of binary). 

At this point, we ought to mention that, for 
readability purposes of the above example, we used 
the conjecture that a sub-network address (suffix) 
consists of six decimal digits, or equivalently 16 
bits. The amount of bits that are used in order to 
declare the network address, which a certain IP 
address belongs to, may vary according to the 
subnetting method used. Thus, the conjecture 
adopted enables us to apply our algorithm in the 
general case, where 16 bits are used to represent the 
network address without loss of generality. 

In order to test the efficiency of the algorithm in 
practice, the proposed technique was implemented 
and experimentally applied on the user traffic of an 
experimental test scenario. The technique was 
implemented, using C Sharp (C#) programming 
language, as a module (Burst Module) on Microsoft 
IIS (Internet Information Services) 7.5 Web Server, 
while utilizing the IHttpModule interface. Whenever 
an HTTP request arrives on the Web server, the 
relative IP address is forwarded and stored in the 
data structure proposed by our technique through the 
burst module, thus enabling the click fraud detection 
process. 

In order to prove the effectiveness of the 
approach, Microsoft Visual Studio load test feature 
was utilized. Through the IP switching capability 
provided by Visual Studio (in each PC-test agent 
under the Load Test Manager an IP range(s) or 
random IPs are assigned thus enabling the emulation 
of a real life stress test scenario) we have conducted 
a range of experiments using a varying number of 

PCs (three, five, ten, fifteen) as test agents for the 
initial load test configuration and applying various 
real time scenarios:  
 Mobile traffic, PC traffic etc. 
 100, 200, 500, 1.000, 3.000, 5.000, 10.000 requests 

per second. 
 Various subnets assignments, as well as random 

IPs, to the various test agents’ members etc. 
 

The tests have proved in all cases that when a 
burst is detected, the Burst module automatically 
blocks the relative subnet causing the burst. 

3.3 Calibration of the Algorithm - 
Parameters 

As far as the size of the data structure is concerned, 
given that the algorithm is designed to be running in 
online mode, it should not exceed certain size 
constraints. One way to tackle this issue is to re-
initialize the data structure. In other words, after a 
certain time period, the contents of the trie are 
cleared and a new version of the burst trie is built. 
The time period is chosen according to the visiting 
frequency of the Website on which the algorithm is 
running. In the case of high traffic Websites, the trie 
should be often re-initialized, unlike Websites with 
low traffic. Another way to cope with the increasing 
size of the burst trie would be a merge operation. 
Our future research includes studying how the nodes 
of the tree that their IP is not recently accessed could 
be merged, in order to avoid re-initializing the tree 
and decrease its size at the same time. 

A second very important issue concerning the 
efficiency of the algorithm is the size of the sub-
networks we wish to detect. We consider a subnet as 
a candidate to be banned when it is of class-B (16 
bits prefix) and below in order to avoid banning a 
larger network for a click fraud coming from a 
subnet. To be able to detect the exact subnet from 
which the click fraud was generated, we have to find 
the common prefix of all IP-addresses (in binary) 
that visited the Web server. 

For example, suppose that the Web server 
receives hits from the following IP-addresses: 
 

 150.140.141.8 (binary: 10010110. 10001100. 
10001101. 00001000) 

 150.140.141.9 (binary: 10010110. 10001100. 
10001101. 00001001) 

 150.140.141.10 (binary: 10010110. 10001100. 
10001101. 00001010) 

 150.140.141.11 (binary: 10010110. 10001100. 
10001101. 00001011 
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Then, a burst of visits is caused by the subnet 
10010110. 10001100. 10001101.000010 (longest 
common prefix). 
We apply our algorithm in order to detect the 
suspicious subnet. All IP-addresses are inserted into 
the burst trie. For achieving the best performance of 
the algorithm, it can be adjusted in several ways as 
follows:  
1. If the IP-addresses are inserted in binary format, 

the alphabet of the trie would be {0, 1} and the 
number of the tree levels would increase. 
However, the exact subnet would be detected. 

2. If the IP-addresses are inserted in decimal 
format, the alphabet of the trie would be {0, 1, 2, 
3, 4, 5, 6, 7, 8, 9} and although the tree would be 
more efficient, an accurate detection of the 
subnet would be impossible. The reason for this 
situation is that there is no one-to-one 
correspondence of the decimal representation to 
the binary one, as far as the subnets are 
concerned. If this is the case, the detection is 
limited to class A networks (224 IP-addresses), 
class B (216 IP-addresses) and class C (28 IP-
addresses) resulting to non-efficient detection 
process and in most of the cases extreme IP-
addresses ranges banning. 

In order to find the best solution to the issues just 
described, a possible choice would be to insert IP-
addresses in binary format but with all bits grouped 
in pairs. Then the trie alphabet would be {00, 01, 10, 
11} and a better performance would be achieved, 
since the subnet detected would be close enough to 
the actual suspect subnetwork (maximum difference 
of one bit).  
Another possibility would be to insert the IP-
addresses in two formats simultaneously as follows. 
The fields of the address until class B network are 
inserted in decimal format (6 first digits: 255.255. 
***. ***) and the remaining digits are inserted in 
simple binary format or as bits grouped in pairs. The 
reason for this choice is obvious, because as already 
explained the subnet we are looking for is of class B 
and below. 
In all cases the splay trees of the burst trie data 
structure will host the remaining part of the IP 
addresses as a whole number (in binary or decimal 
format as shown on Figure 1). 

4 CONCLUSIONS & FUTURE 
WORK 

In this paper we have presented the design decisions 
for an algorithm for real-time detection of click 

fraud that focuses not on individual IPs, but on 
whole subnetworks. In order to achieve that, we 
exploited inherent properties and characteristics of 
the burst trie data structure that permit the efficient 
implicit clustering of IPs with common prefixes that 
depict similar access characteristics. It would be 
interesting to find out if this specific structure can 
have other applications too and compare it 
experimentally with other algorithmic choices that 
could (if suitably enhanced) depict similar 
characteristics, such as the structure in (Badr and 
Oommen, 2005). 

Moreover, we are planning to investigate the use 
of other data structures that could be employed 
besides burst tries such as self-adjusting ternary 
search tries (Badr and Oommen, 2005), and compare 
the pros and cons of both alternatives.  
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