
Designing a Click Fraud Detection Algorithm
Exposing Suspect Networks

Dimitris Antoniou1, Christos Makris1, Despina Meridou1,Giannis Tzimas2 and Emmanouil Viennas1
1Department of Computer Engineering and Informatics, University of Patras, Patras, Greece

2Department of Applied Informatics in Management & Economy, Faculty of Management and Economics,
Technological Educational Institute of Messolonghi, Messolonghi, Greece

Keywords: Burst Web Visits, Click Fraud, Burst Tries.

Abstract: As the use of the Web expands and appears almost everywhere in business’ practices, new algorithmic
problems appear and need to be efficiently handled; one of them that has attracted the attention of both
researchers and practitioners is click fraud. Click fraud can be defined as the practice of repetitively clicking
on search ads without being actually interested in the content of the related links, with the intention of either
increasing the Website’s profits or exhausting an advertiser’s budget. In this work, we propose an algorithm,
which exposes suspect networks instead of single IPs, based on utilizing efficient data structures that have
not been employed in previous works.

1 INTRODUCTION

The emerging size of the World Wide Web, and its
growing pattern of use, creates new challenges and
new algorithmic problems that need to be efficiently
handled. One of these problems that has attracted the
attention of researchers is click fraud detection. As
going online becomes common practice to more and
more commercial enterprises, it has become vital for
them to be advertised online to customers. An online
ad is usually placed in the Web page of a hosting
Website as a banner and the owner of the Web site
gets paid a fee for each click on the ad from a casual
customer; this is the pay-per-click model (PPC) of
online advertisement, sometimes also called cost-
per-click model. Click fraud is a problem that is
deeply connected with this model of online
advertisement and is intimately connected (or,
better, related) to the problem of burst of visits
(Zhou et al., 2004), affecting a specific Web page.

Click fraud can be formally defined as the
practice of deliberately and repetitively clicking on
search ads with the intention of either having third-
party Website profits increase, or of depleting the
budget that the advertisers have charged for this
click (Sakkopoulos et al., 2010). In both cases,
instead of real users automated scripts or programs
can simulate multiple clicks on the ad, and since the
advertiser gets charged without taking any true

values, the term “fraud” is naturally used. Other
similar terms are “unwanted clicks” or “invalid
clicks”; this terminology is sometimes used by
Google since the word “fraud” can have legal
implications or be difficult to be proved. It should be
noted that Google publishes reports concerning the
dangers behind click fraud and defines them as
clicks produced by methods that are normally
prohibited.

Since this deliberate action of misleading an
advertiser can be naturally justified only if the gains
are large, the number of clicks need to be quite large
for someone to suspect that something is going
wrong, hence bursts of visits to the specific site
accompanied with clicks on the related ad may help
to indicate the probable presence of a click fraud. A
pattern of visits or accesses is considered bursty
when it occurs with high intensity over a limited
period of time and such patterns have been also
observed in various Web applications in a number of
studies (Zhou et al., 2004), since they can be utilized
for personalization purposes and as indicators of
other interesting events. A burst scenario can be
algorithmically characterized and captured by using
counters and recording for each Web page the
number of accesses in a fixed time interval. The
basic principles behind detecting click fraud
exploiting burst of visits is to employ thresholds in
the frequency of visits from the various IP addresses

93Antoniou D., Makris C., Meridou D., Tzimas G. and Viennas E..
Designing a Click Fraud Detection Algorithm - Exposing Suspect Networks.
DOI: 10.5220/0004369300930098
In Proceedings of the 9th International Conference on Web Information Systems and Technologies (WEBIST-2013), pages 93-98
ISBN: 978-989-8565-54-9
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

and locate as responsible the IP behind the majority
of the visits.

In this work we aim at detecting click fraud real-
time and ban the networks responsible, by
presenting the design of an innovative solution
which considerably increases the security in such
cases by detecting bursts caused by networks. The
novelty in our approach lies in the fact that our
technique locates not individual IPs but whole sub-
networks, since it is able to detect the common
prefix (that is the sub-network) in the IP addresses
that are responsible for bursts of visits and depict
similar in frequency patterns of accesses under a
dominant one; this was not possible in previous
techniques that focused on individual IP addresses.

The rest of the paper is organized as follows. In
section 2, the related work is presented. In section 3,
our proposed technique in order to efficiently detect
networks that are suspects for click fraud is
described. Finally, conclusions and future work are
discussed in section 4.

2 RELATED WORK

There are various techniques that can be employed
in order to detect click fraud, which are mainly
based on the application of data mining and machine
learning techniques in order to provide detailed
evidence of possible click fraud patterns. The work
of (Antoniou et al., 2011) is the most resembling to
ours in the problem. In this paper, an approach for
click fraud detection was proposed, that analyzed the
number of visits during a certain time interval,
depending on the kind of the investigated click fraud
and on the application at hand (e.g. poll, posts).

The novelty of that approach was the effective
use of novel data structures for reducing the space
consumption and allowing the real time detection of
click fraud. However, that work was not capable of
dealing with bursts of visits for which not just an IP
address, but a whole network is responsible. In this
case, multiple IPs, belonging to a greater network,
perform visits to the banner on a Web site. Since
every IP is unique, the algorithm posed by the
authors cannot detect a single suspect IP and the
click fraud event remains undetected. In order to
detect such kinds of click fraud, there should exist a
data structure, which would be able to return not the
most recent and frequent IP address, but an
equivalent prefix. This prefix would represent the
network, to which, a group of IPs responsible for the
burst of visits belongs. To do so, we utilize another
advanced data structure, the burst tries (Heinz et al.,

2002); as we will describe in the sequel, burst tries
have interesting properties that permit the efficient
handling and detection of such kind of activities.

Before proceeding to the main section, we should
mention that, in this paper, the term “burst” is used
to describe two different concepts: (1) the bursting
process in a burst trie, which will be described later
and (2) a “burst” of visits: the case where few Web
pages become very popular for short periods of time
and are accessed very frequently in a limited
temporal space.

In order to distinguish between these two
different concepts, we will hereafter refer to a
“burst” of visits using quotes.

3 CLICK FRAUD DETECTION
USING BURST TRIES

A burst trie is an elegant data structure tailored to
store strings, that is series of symbols taken from a
given alphabet, and it can be considered to be a
hybrid data structure composed of two levels; the
upper level resembling a traditional trie storing the
strings according to the alphabetic representation of
prefixes of them with a specific length and the lower
level that stores the remaining parts of the strings
using a dictionary data structure chosen according to
the specific application at hand. In particular, the
upper level of the structure is termed as Access trie
and it resembles a traditional trie with the difference
that the leaves, instead of atomic elements, store sets
of elements. Each of these sets of elements is stored
to the so called Containers that are implemented
with data structures suitable to store small sets of
elements. The structure begins with an empty
container and is equipped with heuristics, three of
which are described in (Heinz, et al., 2002), that are
defined when a container is burst, and needs to be
split in more than one containers. When a container
at depth i is burst, then it is replaced by a new trie
node and a set of containers at depth i+1. From the
above description, it is clear that for a container
corresponding to a leaf of the Access trie with depth
i, all its stored elements share a common prefix of
length i, and this common prefix does not need to be
stored in the data structure implementing the
container. Burst tries have been shown to perform
effectively in practice and in various applications are
better than splay trees and ternary search trees that
are natural competitors in various applications
(Heinz et al., 2002).

The major property of the burst trie that suits our
application is that if : (i) containers are implemented

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

94

using self-adjusting data structures, and (ii) the
heuristic according to which a container is burst is
based on how skew the accesses are in the elements
of the container, then at any time instance the
elements in the same container have similar access
characteristics under a dominant one and can be
represented by their common prefix, while the
topmost element in the container is the one with the
biggest share in the accesses.

In our algorithmic application and since we need
to capture frequent patterns of accesses and hence
represent strings where the frequency of access
should be taken into account, we have chosen to
implement the containers by employing splay trees.

3.1 Description of the Algorithm

In order to detect a “burst” of visits, we utilize a two
dimensional matrix Bnm, with n denoting the number
of Web pages or data units and with m representing
the number of timestamps that are maintained for
each data unit. We assign a number wϵ[0, m-1] to
every Web page or data unit of the Website at
random. Thus, each Web page or data unit
corresponds to a row of the array Bnm. We define
that, for the data unit i, a “burst” has occurred if and
only if the difference between the timestamps stored
in positions (i, m-1) and (i, 0) is equal or smaller
than T, where T is the period of time in which the
visits should occur in order to suggest a “burst”.

We should mention that in the algorithm
described in (Antoniou et al., 2011) a splay tree was
used in order to store Web pages and a stack of
timestamps for each node of the splay tree. In our
present approach, we simplify the employed data
structures and we save time and space, since we
have replaced the splay tree with a simple two
dimensional array, while additionally by using the
two dimensional array we are no longer in need of
the stacks storing the timestamps of the various
users’ accesses.

In our algorithm, we use IP addresses
represented in dot decimal notation and we represent
every IP address as a string of bits. We store the
visiting IPs by employing the burst trie data
structure. In order to take into account the different
Internet Protocols we utilize two different burst tries,
depending on whether the visiting IP is defined as a
32-bit number (Internet Protocol Version 4 – IPv4)
or as a 128-bit number (Internet Protocol Version 6
– IPv6). An Internet Protocol Version 4 (IPv4)
address consists of 32 bits, which may be divided
into four octets. These four octets are written in
decimal numbers, ranging from 0 to 255, and are

concatenated as a character string with full stop
delimiters between each number. Similarly and as
far as IPv6 is concerned, the 128 bits of the address
are split in 16 octets and each two octets are
represented with a hexadecimal four digits number.

As already mentioned, we use splay trees in
order to implement the containers of the burst tries.
Using the splaying technique, the most popular
nodes of the tree, which represent parts of the
visiting IP addresses, are rearranged so that they are
located near the root of the container. Thus, the node
that is being splayed to the root of the container
could be quickly accessed in the future. For efficient
splaying, a record in a splay tree requires three
pointers, two pointing to its children and one to its
parent, thus they use the most space of any of the
container structures considered in (Sleator and
Tarajn, 1985). However, it is a natural choice in our
application since we want frequent IP accesses to be
stored near the root of the container, in order to
apply the burst heuristics that accompany the
specific structure.

The general principle for maintaining a burst trie
is to locate inefficient containers and burst them. In
particular three heuristics are proposed in (Heinz et
al., 2002); the ratio, the limit and the trend
heuristics. In the ratio heuristic, a container is burst
when the ratio of the number of accesses to the root
of the container with the total number of accesses is
less than a threshold, and simultaneously the number
of accesses to the container is large enough. In the
limit heuristic, the container is burst when the
number of the elements in the container exceeds a
threshold, and finally in the trend heuristic the
container is burst when its potential is exhausted;
during each access to the container the potential is
incremented by a fixed amount when the root of the
container is accessed, otherwise it is decremented by
another amount. In our application we have chosen
to follow a different set of heuristics since our main
aim is to guarantee that IPs with common prefixes
and similar distribution in their access characteristics
will be grouped together in the same container under
the same dominant IP; moreover the root of the
container will correspond to the dominant IP of the
group. Hence, storing IPs and employing these
heuristics should guarantee that IPs that depict
similar characteristics will be distributed in nearby
containers, and thus it will be easy for our
application to locate IPs that have the same prefixes
and similar access characteristics, in order to
efficiently locate the responsible sub network for a
specific “burst” of visits.
More analytically our algorithm is as follows:

Designing�a�Click�Fraud�Detection�Algorithm�-�Exposing�Suspect�Networks

95

1. We store the IPs in the containers, with each
container being implemented as a self-adjusting
search tree.

2. We count as root accesses for a container the
number of times the element of the root of the
container is accessed. We also define as root
ratio the one between the root accesses and the
total number of accesses in a container.

3. The aim of using the Burst Trie is to cluster IPs
with similar access behaviour under the same
container (in order to capture their common
prefix, and hence the latest sub network
responsible for attacks). The ratio heuristic
employed in (Heinz et al., 2002) is the one
closest to our aims, but we found more
appropriate to change it as follows:

Burst Rule: Let x be the number of elements
in the container when it was initially created
(after the split of another container). A container
will be split again when the number of operations
(accesses/insertions) becomes larger than x, and
the root ratio is out of a chosen range [l,u] that is
a subrange of [0,1]. For example we could
choose [l,u]=[1/2, 2/3]. Hence, when the number
of operations in the container becomes greater
than x and the root ratio is smaller than 1/2 or
larger than 2/3, it should burst.

By employing the above burst rule, we try to
guarantee that the elements in a container have
similar access behaviour. Another technique to
achieve that could be to maintain an access
counter for each element of a container and split
the container when the elements depict skewed
access behaviour (the amount of how much
skewed defined by us). However, this technique
would cost too much and would need the
employment of many parameters, and our burst
heuristic seems more appropriate.
We take advantage of the previously described

structure in order to detect suspicious networks for
click fraud. Suppose that a “burst” of visits is
generated from different IPs, which though belong
to the same network. In the beginning, the first
visiting IP may form its own container. As more and
more visits from the same network occur, they are
inserted in the same container and thus the Access
trie (the upper level component of the burst trie)
permits the efficient location of the common prefix
of the IPs (the responsible sub-network), while the
IP address in the container that caused the most
visits will be splayed to the root of the container
splay tree. After a certain number of visits coming
from this particular network, the prefix of the IP
denoting the network address will burst out of the

containers due to the extreme amount of visits that
cause the prefix’s popularity to rise.
Using this technique, we are able to detect the
responsible network for the “burst” of visits and
subsequently take action to prevent a possible
“burst” in the future coming from this particular
network. Specifically, the moment that a “burst” of
visits occurs, we detect the responsible IP and we
then insert it in the burst trie. If the insertion of this
IP in the burst trie results to an event of burst in the
trie, then we identify the subnet corresponding to the
extracted and this subnet is banned as suspect of
click fraud. The banned network remains as is for a
specific amount of time in order to avert any future
attempts coming from this network. Only after this
specific period of time has passed is the IP network
allowed to access the Web pages again.

3.2 Example

Suppose that our Web page consists of five data
units and that we store five timestamps for every
data unit. Therefore, a 5x5 two dimensional matrix
is formed (Table 1). A number of the visiting IPs is
shown in Table 2.

Table 1: The two dimensional matrix that stores
timestamps tij.

t00 t01 t02 t03 t04
t10 t11 t12 t13 T14
t20 t21 t22 t23 T24
t30 t31 t32 t33 T34
t40 t41 t42 t43 t44

Suppose that all but the last of the example’s IPs
have already visited the Web site. Suppose now that
at time t04, the IP 150.140.141.2 visits the data unit
0. If by comparing the two timestamps t00 and t40, we
realize that t04- t00 < T, then a burst has occurred. At
the same time, the visiting IP is added in the burst
trie. As shown in Figure 1, the addition of this
particular IP results in the burst of a container and at
the same time the total prefix that has burst out of
the container has a length of 8 characters, including
the “.”. Thus, this prefix represents a subnet and the
network 150.140 is banned.

Table 2: Table showing the visiting IPs.

150.140.141.2
150.140.142.3
150.140.153.4
150.140.168.2
159.149.52.12

159.122.149.13

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

96

0 1 2 3 4 5 6 7 8┴ 9

0 1 2 3 4 5 6 7 8┴ 9

0 1 2 3 4 5 6 7 8┴ 9

0 1 2 3 4 5 6 7 8┴ 9

0 1 2 3 4 5 6 7 8┴ 9

0 1 2 3 4 5 6 7 8┴ 9

0 1 2 3 4 5 6 7 8┴ 9

149052012

122149013

168002

153004

142003

141002

Figure 1: The burst trie after inserting the IP
150.140.168.2. (For readability reasons the example uses
decimal representations instead of binary).

At this point, we ought to mention that, for
readability purposes of the above example, we used
the conjecture that a sub-network address (suffix)
consists of six decimal digits, or equivalently 16
bits. The amount of bits that are used in order to
declare the network address, which a certain IP
address belongs to, may vary according to the
subnetting method used. Thus, the conjecture
adopted enables us to apply our algorithm in the
general case, where 16 bits are used to represent the
network address without loss of generality.

In order to test the efficiency of the algorithm in
practice, the proposed technique was implemented
and experimentally applied on the user traffic of an
experimental test scenario. The technique was
implemented, using C Sharp (C#) programming
language, as a module (Burst Module) on Microsoft
IIS (Internet Information Services) 7.5 Web Server,
while utilizing the IHttpModule interface. Whenever
an HTTP request arrives on the Web server, the
relative IP address is forwarded and stored in the
data structure proposed by our technique through the
burst module, thus enabling the click fraud detection
process.

In order to prove the effectiveness of the
approach, Microsoft Visual Studio load test feature
was utilized. Through the IP switching capability
provided by Visual Studio (in each PC-test agent
under the Load Test Manager an IP range(s) or
random IPs are assigned thus enabling the emulation
of a real life stress test scenario) we have conducted
a range of experiments using a varying number of

PCs (three, five, ten, fifteen) as test agents for the
initial load test configuration and applying various
real time scenarios:
 Mobile traffic, PC traffic etc.
 100, 200, 500, 1.000, 3.000, 5.000, 10.000 requests

per second.
 Various subnets assignments, as well as random

IPs, to the various test agents’ members etc.

The tests have proved in all cases that when a
burst is detected, the Burst module automatically
blocks the relative subnet causing the burst.

3.3 Calibration of the Algorithm -
Parameters

As far as the size of the data structure is concerned,
given that the algorithm is designed to be running in
online mode, it should not exceed certain size
constraints. One way to tackle this issue is to re-
initialize the data structure. In other words, after a
certain time period, the contents of the trie are
cleared and a new version of the burst trie is built.
The time period is chosen according to the visiting
frequency of the Website on which the algorithm is
running. In the case of high traffic Websites, the trie
should be often re-initialized, unlike Websites with
low traffic. Another way to cope with the increasing
size of the burst trie would be a merge operation.
Our future research includes studying how the nodes
of the tree that their IP is not recently accessed could
be merged, in order to avoid re-initializing the tree
and decrease its size at the same time.

A second very important issue concerning the
efficiency of the algorithm is the size of the sub-
networks we wish to detect. We consider a subnet as
a candidate to be banned when it is of class-B (16
bits prefix) and below in order to avoid banning a
larger network for a click fraud coming from a
subnet. To be able to detect the exact subnet from
which the click fraud was generated, we have to find
the common prefix of all IP-addresses (in binary)
that visited the Web server.

For example, suppose that the Web server
receives hits from the following IP-addresses:

 150.140.141.8 (binary: 10010110. 10001100.
10001101. 00001000)

 150.140.141.9 (binary: 10010110. 10001100.
10001101. 00001001)

 150.140.141.10 (binary: 10010110. 10001100.
10001101. 00001010)

 150.140.141.11 (binary: 10010110. 10001100.
10001101. 00001011

Designing�a�Click�Fraud�Detection�Algorithm�-�Exposing�Suspect�Networks

97

Then, a burst of visits is caused by the subnet
10010110. 10001100. 10001101.000010 (longest
common prefix).
We apply our algorithm in order to detect the
suspicious subnet. All IP-addresses are inserted into
the burst trie. For achieving the best performance of
the algorithm, it can be adjusted in several ways as
follows:
1. If the IP-addresses are inserted in binary format,

the alphabet of the trie would be {0, 1} and the
number of the tree levels would increase.
However, the exact subnet would be detected.

2. If the IP-addresses are inserted in decimal
format, the alphabet of the trie would be {0, 1, 2,
3, 4, 5, 6, 7, 8, 9} and although the tree would be
more efficient, an accurate detection of the
subnet would be impossible. The reason for this
situation is that there is no one-to-one
correspondence of the decimal representation to
the binary one, as far as the subnets are
concerned. If this is the case, the detection is
limited to class A networks (224 IP-addresses),
class B (216 IP-addresses) and class C (28 IP-
addresses) resulting to non-efficient detection
process and in most of the cases extreme IP-
addresses ranges banning.

In order to find the best solution to the issues just
described, a possible choice would be to insert IP-
addresses in binary format but with all bits grouped
in pairs. Then the trie alphabet would be {00, 01, 10,
11} and a better performance would be achieved,
since the subnet detected would be close enough to
the actual suspect subnetwork (maximum difference
of one bit).
Another possibility would be to insert the IP-
addresses in two formats simultaneously as follows.
The fields of the address until class B network are
inserted in decimal format (6 first digits: 255.255.
***. ***) and the remaining digits are inserted in
simple binary format or as bits grouped in pairs. The
reason for this choice is obvious, because as already
explained the subnet we are looking for is of class B
and below.
In all cases the splay trees of the burst trie data
structure will host the remaining part of the IP
addresses as a whole number (in binary or decimal
format as shown on Figure 1).

4 CONCLUSIONS & FUTURE
WORK

In this paper we have presented the design decisions
for an algorithm for real-time detection of click

fraud that focuses not on individual IPs, but on
whole subnetworks. In order to achieve that, we
exploited inherent properties and characteristics of
the burst trie data structure that permit the efficient
implicit clustering of IPs with common prefixes that
depict similar access characteristics. It would be
interesting to find out if this specific structure can
have other applications too and compare it
experimentally with other algorithmic choices that
could (if suitably enhanced) depict similar
characteristics, such as the structure in (Badr and
Oommen, 2005).

Moreover, we are planning to investigate the use
of other data structures that could be employed
besides burst tries such as self-adjusting ternary
search tries (Badr and Oommen, 2005), and compare
the pros and cons of both alternatives.

REFERENCES

Antoniou, D., Paschou, M., Sakkopoulos, E., Sourla, E.,
Tzimas, G., Tsakalidis, A. K. and Viennas,
E.,2011.Exposing click-fraud using a burst detection
algorithm. In Proc. ISCC, pages 1111-1116.

Badr, H. G., and Oommen, B., 2005. Self-Adjusting of
Ternary Search Tries Using Conditional Rotations and
Randomized Heuristics. In Computer Journal, pages
200-219.

Heinz, S., Zobel, J., and Williams, H. 2002. Burst tries: a
fast, efficient data structure for string keys. In ACM
Trans. Inf. Syst, pages 192-223.

Sakkopoulos, E., Antoniou, D., Adamopoulou, P.,
Tsirakis, N., Tsakalidis, A., 2010. A Web
personalizing technique using adaptive data structures:
The case of bursts in Webvisits. In Journal of Systems
and Software, Elsevier, vol. 83, issue 11, pages 2200-
2210.

Sleator, D. D, Tarjan, R.E., 1985. Self adjusting binary
search trees. In Journal of the ACM 32, pages 652–
686.

Zhou, B., Hui, S. C., Chang, K., 2004. An intelligent
recommender system using sequential Web access
patterns. In IEEE Conference on Cybernetics and
Intelligent Systems, pages 393-398. IEEE, Singapore.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

98

