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Abstract: Finite automata with translucent letters do not read their input strictly from left to right as traditional finite
automata, but for each internal state of such a device, certain letters are translucent, that is, in this state the
automaton cannot see them. We address the word problem of these automata, both in the deterministic and in
the nondeterministic case. Some interesting examples from the formal language theory and from a segment of
the Hungarian language is shown using automata with translucent letters.

1 INTRODUCTION

The finite automaton is a fundamental computing de-
vice for accepting languages. Its deterministic ver-
sion (DFA) and its nondeterministic version (NFA)
both accept exactly the regular languages, and they
are being used in many areas like compiler construc-
tion, text editors, computational linguistics, etc. For
regular languages the word problem is decidable by
a real-time (i.e., linear) computation. However, the
expressiveness of regular languages is quite limited,
and thus, these automata are too weak for several fur-
ther applications. Accordingly, much more powerful
models of automata have been introduced and studied
like, e.g., pushdown automata, linear-bounded auto-
mata, and Turing machines. But this larger expressive
power comes at a price that certain algorithmic ques-
tions like the word problem or the emptiness problem
become more complex or even undecidable. Hence,
when dealing with applications, for example in natu-
ral language processing or concurrency control, it is
of importance to find models of automata that rec-
oncile two contrasting goals: they have sufficient ex-
pressiveness and, at the same time, a moderate degree
of complexity.

An interesting question in application of formal
languages is whether the sentences of natural lan-
guages (NL) can be modeled with a class of the
Chomsky hierarchy or not. There are many differ-
ent views and approaches in the literature regarding
the position of natural languages in this hierarchy. It
is folklore that finite languages are regular, and hence

the simplest model for NL uses regular form approach
based on the idea that the set of all sentences of hu-
mans are finite (there is only a finite number of people
live/lived and each of them said/wrote only a finite
number of sentences). There are also different ap-
proaches which use context-free grammars (Gazdar,
1982) while others like Matthews (Matthews, 1979)
consider NL even more complex than the recursively
enumerable languages. Since we do not understand
all features of the human brain, one may believe that
human brain can do more complex ‘computations’
than the computers/Turing machine can do.

The first finite state model for NL was developed
in 1955 by Hockett (Hockett, 1955). Later, in 1969,
Reich (Reich, 1969) has argued that NLs are not self-
embedding to any arbitrary degree. Another argument
for regularity is given by among others Sullivan (Sul-
livan, 1980): an individual neuron in the brain can be
modeled with a finite automaton and the brain con-
tains only finite number of neurons thus the resulting
structure also corresponds to a finite automaton. The
number of states of the resulting non-deterministic fi-
nite automaton is approximated with 10109

. Thus the
only way to prove that NL are more complex than reg-
ular grammars is to exhibit some infinite sequences
of grammatical sentences (Kornai, 1985). Chom-
sky (Chomsky, 1957) himself argues that English and
other NLs are not regular languages. The most fa-
mous example for non-regular behaviour is the fol-
lowing pattern (Wintner, 2002):
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A white male (whom a white male)n (hired)n

hired another white male.

Also in the case, when the argumentation is accepted
that the given structure can’t be realized in infinite
depth, it is clear that the corresponding base regular
grammar/finite automata for finite depth may have a
very large complexity. Thus, from a practical point of
view it is worth to find more compact grammars that
can describe the special behaviour of the different nat-
ural languages.

There are also very strong arguments that NLs are
not context-free. In the area of formal languages in
conjunction with computational linguistics and nat-
ural language processing the formulation of the no-
tion of “mildly context-sensitive languages” (Joshi,
2010; Mery et al., 2006) has been appeared and used.
These classes are proper subclasses of the class of
context-sensitive languages and proper superclasses
of the class of context-free languages. They con-
tain some typical examples of non-context-free lan-
guages that show important features of natural lan-
guages, e.g.,{anbncn|n≥ 0}, {ww|w∈ {a,b}∗} and
{anbmcndm|m,n ≥ 0}. At the same time mildly
context-sensitive languages share many of the nice
properties with the context-free languages. For ex-
ample, they have semi-linear Parikh images and their
parsing complexity is polynomially bounded.

An interesting extension of the class of finite auto-
mata that vastly increases its expressive power, the so-
called finite automaton (or finite-state acceptor) with
translucent letters (NFAwtl for short) was introduced
in (Nagy and Otto, 2011). The idea of this new model
comes from the research of cooperative distributed
systems of stateless deterministic restarting automata
with window size 1 (Nagy and Otto, 2012a; Nagy
and Otto, 2012b). An NFAwtl does not read its in-
put strictly from left to right as the traditional finite
automaton does, but for each of its internal states,
certain letters are translucent, that is, in this state the
NFAwtl cannot see them. Accordingly, it may read
(and erase) a letter from the middle or the end of
the given input. They accept certain non-regular and
even some non-context-free languages, but all lan-
guages accepted by NFAwtls have semi-linear Parikh
images (Nagy and Otto, 2012a). These issues are im-
portant for the linguistic applications point of view.
In contrast to the classical finite-state acceptors, the
deterministic variants of the NFAwtls, the so-called
DFAwtls, are less expressive than the nondeterminis-
tic ones (Nagy and Otto, 2012b). In this paper, as a
continuation of the work started in (Nagy and Otto,
2011), we consider the word problem of these au-
tomata by showing a nondeterminsitic/deterministic

linear-time algorithm that decides if a given word is
accepted or not by an NFAwtl/DFAwtl, respectively.
Some linguistical examples are also shown to demon-
strate the efficiency of NFAwtl/DFAwtl.

This paper is structured as follows. In Section 2
we recall the definition of the finite automata with
translucent letters and we also present an example. In
Section 3 the word problem (parsing) is considered
with some further examples, while in Section 4 we
show examples for the usage of finite automata with
translucent letters modeling some phenomena of the
Hungarian language. In our investigation, the Hun-
garian language was selected which differs from En-
glish in the following important aspects:

• it is an agglutinative language (in Hungarian most
grammatical information is given through suf-
fixes: cases, conjugation, etc.),

• it has no dominant word order (as we will see, in
Hungarian, several kinds of order of the words of
a sentence can be considered emphasizing slightly
different special meaning),

• reduced use of postpositions (since suffixes are of-
ten equivalent to English prepositions, there are
only few postpositions in Hungarian).

In Section 5 we summarize our work and give
some open problems for future work.

2 FINITE-STATE ACCEPTORS
WITH TRANSLUCENT
LETTERS

In this section we fix our notation and recall the def-
inition and some basic facts about the finite automata
with translucent letters.

A nondeterministic finite automaton(NFA) is de-
scribed by a tupleA= (Q,Σ, I ,F,δ), whereQ is a fi-
nite set of internal states,Σ is a finite alphabet of input
letters,I ⊆ Q is the set of initial states,F ⊆ Q is the
set of final states, andδ : Q×Σ → 2Q is a transition
relation. If|I |= 1 and|δ(q,a)| ≤ 1 holds for allq∈ Q
and alla∈ Σ, thenA is adeterministic finite automa-
ton (DFA).

An NFA A works as follows. It is given an input
string w ∈ Σ∗, andA starts its computation/run in a
stateq0 that is chosen nondeterministically from the
setI of all initial states. This configuration is encoded
asq0w. Now it reads the first letter ofw, saya, thereby
deleting this letter, and it changes its internal state to
a stateq1 that is chosen nondeterministically from the
set δ(q0,a). Shouldδ(q0,a) be empty, thenA gets
stuck (in this run), otherwise, it continues its run by
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reading letters untilw has been consumed completely.
We say thatA acceptsw with a run if A is in a final
stateqf ∈ F after readingw completely at the end of
this run. ByL(A) we denote the set of all stringsw∈
Σ∗ for which A has an accepting computation in the
sense described above.

It is well-known that the classL (NFAwtl) of lan-
guagesL(A) that are accepted by NFAs coincides with
the classREG of regular languages, and that DFAs ac-
cept exactly the same languages.

Now we recall a variant of the nondeterministic
finite automata that does not process its input strictly
from left to right (Nagy and Otto, 2011).

Definition 1. A finite-state acceptor with translu-
cent letters(NFAwtl) is defined as a 7-tuple A=
(Q,Σ,$,τ, I ,F,δ), where Q is a finite set of internal
states,Σ is a finite alphabet of input letters,$ 6∈ Σ
is a special symbol that is used as anendmarker,
τ : Q → 2Σ is a translucency mapping, I ⊆ Q is a set
of initial states, F⊆ Q is a set of final states, and
δ : Q×Σ → 2Q is a transition relation. For each state
q ∈ Q, the letters from the setτ(q) are translucent
for q, that is, in state q the automaton A does not see
these letters. A is calleddeterministic, abbreviated as
DFAwtl, if |I |= 1 and if |δ(q,a)| ≤ 1 for all q ∈Q and
all a ∈ Σ.

An NFAwtl A = (Q,Σ,$,τ, I ,F,δ) works as fol-
lows. For an input wordw ∈ Σ∗, it starts in a non-
deterministically chosen initial stateq ∈ I with the
word w · $ on its input tape. A single step compu-
tation ofA is as follows. Assume thatw= a1a2 · · ·an
for somen≥ 1 anda1, . . . ,an ∈ Σ. ThenA looks for
the first occurrence from the left of a letter that is not
translucent for the current stateq, that is, ifw= uav
such thatu ∈ (τ(q))∗ anda 6∈ τ(q), thenA nondeter-
ministically chooses a stateq′ ∈ δ(q,a), erases the
letter a from the tape thus producing the tape con-
tentsuv·$, and its internal state is set toq′. In state
q′ the automaton considers the tapeuv$ and contin-
ues the process by another single step computation
looking for the first visible letter ofuv at stateq′. In
caseδ(q,a) = /0, A halts without accepting. Finally,
if w ∈ (τ(q))∗, thenA reaches the $-symbol and the
computation halts. In this caseA accepts ifq is a final
state; otherwise, it does not accept. Observe that this
definition also applies to configurations of the form
q · $, that is,q · ε · $ ⊢A Accept holds if and only ifq
is a final state. A wordw ∈ Σ∗ is accepted by Aif
there exists an initial stateq0 ∈ I and a computation
q0w·$⊢∗

A Accept, where⊢∗
A denotes the reflexive tran-

sitive closure of the single-step computation relation
⊢A. NowL(A) = {w∈ Σ∗ |w is accepted byA} is the
language accepted by A.

The classicalnondeterministic finite automata

(NFA) is obtained from the NFAwtl by removing
the endmarker $ and by ignoring the translucency
relation τ, and thedeterministic finite-state accep-
tor (DFA) is obtained from the DFAwtl in the same
way. Thus, the NFA (DFA) can be interpreted as a
special type of NFAwtl (DFAwtl). Accordingly, all
regular languages are accepted by DFAwtl. More-
over, DFAwtls are much more expressive than stan-
dard DFAs as shown by the following example.

Example 1. Let A = (Q,Σ,$,τ, I ,F,δ), whereQ =
{q0,q1,q2}, I = {q0} = F , Σ = {a,b,c,d}, and the
functionsτ andδ are defined as follows:

τ(q0) = /0, δ(q0,a) = {q1},
δ(q0,b) = {q2},

τ(q1) = {a,b}, δ(q1,c) = {q0},
τ(q2) = {b}, δ(q2,d) = {q0},

andδ(q,x) = /0 for all other pairs(q,x) ∈ Q×Σ. Ob-
serve thatA is in fact a DFAwtl.

It can be shown thatL(A) consists only some of
words with |w|a = |w|c and |w|b = |w|d, moreover
L(A)∩ (a∗ ·b∗ · c∗ ·d∗) = {anbmcndm | n,m≥ 0} and
thus this language is not context-free.

It is shown that already DFAwtls accept non-
context-free languages.

An NFAwtl A = (Q,Σ,$,τ, I ,F,δ) is described
more transparently by a graph, similar to the graph
representation of standard NFAs. A stateq∈ Q is re-
presented by a node labelled withq, where the node
of an initial statep is marked by a special incoming
edge without a label, and the node of a final statep is
marked by a special outgoing edge with label(τ(p))∗.
For each stateq ∈ Q and each lettera ∈ Σr τ(q), if
δ(q,a) = {q1, . . . ,qs}, then there is a directed edge
labelled((τ(q))∗,a) from the node corresponding to
stateq to the node corresponding to stateqi for each
i = 1, . . . ,s. The graph representation of the DFAwtlA
of Example 1 is given in Figure 1. (Using the notation
/0∗ = {ε}.)

According to the definition, an NFAwtl may ac-
cept a word without processing it completely. This,
however, is only a convenience that makes for simple
instructions, since for every NFAwtlA one can effec-
tively construct an NFAwtlB such thatL(B) = L(A),
but for each wordw∈ L(B), each accepting computa-
tion ofB on inputw consists of|w|many reading steps
plus a final step that accepts the empty word (i.e., the
input is totally processed). Nevertheless it is an open
problem whether the same fact holds for DFAwtls in
general. IfA is an NFAwtl onΣ that is accepting only
totally processed input, then by removing the translu-
cency relation fromA, we obtain a standard NFAA′

that accepts a letter equivalent language of the origi-
nal languageL(A), moreoverL(A)⊇ L(A′).
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?>=<89:;q1

({a,b}∗,c)

��
// ?>=<89:;q0

{ε} //

({ε},b)

��

({ε},a)

OO

?>=<89:;q2

({b}∗,d)

YY

Figure 1: The graphical representation of the DFAwtlA of
Example 1.

a1
a2
:
an

a1 a1 . . . a1

a2 . . . a2

. . .

an . . .

Figure 2: Divided tape model of NFAwtl.

3 THE PARSING PROBLEM

In this section we address the word problem, i.e.,
how we can decide if a given word is accepted by an
NFAwtl/DFAwtl.

One may feel that in every step of our automaton
the input should be processed from the beginning by
searching an occurrence of the letter indicated by the
transition; and in this way the time complexity of the
word problem looks quadratic. In the next part of this
section we show a representation method which gives
lower complexity for the word problem.

Let us start this section with a kind of description
of our automata, i.e., how it could work. Our aim is to
reach easily the next occurrence of a given letter. To
do so, first, let us divide the tape into as many parts as
the cardinality of the alphabet (about a similar way as
a one-tape Turing machine can simulate a multi-tape
Turing machine (Hopcroft and Ullman, 1969)). See
Figure 2 as well. In each division exactly one of the
letters is used: there is a bijection fromΣ to the parts
of the tape.

Then in each state those parts of the tape are not
used that are assigned to translucent letters. With this
picture in mind, one can construct the ‘linked-list’
data structure of the tape content in a linear number of
steps (by the length of the input). The notationwn is
used for then-th letter of the wordw. The linked-list
structure contains the arraySTOREwith dimension
|w| and|Σ| pointers. A pointerHEADa shows the first
occurrence of lettera in w. In that position in the ar-
ray there is a value that shows the second occurrence

of lettera in w, etc. At the last occurrence ofa there
is a special marker that shows that there is no further
occurrences of the lettera. The formal algorithm is
shown in Figure 3. Starting from the end of the word
we easily find the last occurrence of every type of let-
ters of the word, we mark these places ofSTOREby
special markers (NULL). Further preprocessing the
input we put every place toSTOREthe value that in-
dicates the next occurrence of the given letter. Finally,
the pointersHEADj show the first occurrences of the
letters.

Then the constructed data structure is used in com-
putation as a representation of the input word (see
Figure 4). By the constructed data structure one can
easily access the first occurrence of any lettersa of
any word w by the pointerHEADa. When a ma-
chine should read a lettera then one needs a con-
stant number (at most|Σ| − 1) of comparisons: if
HEADa > HEADb for any non-translucent lettersb
occurring in the unprocessed part of the input (here
the valueNULL is considered as∞), then the ma-
chine gets stuck, elsea is read by the machine: it is
done by erasing the current head of the list represent-
ing a’s: let HEADa = STOREHEADa. When all lists
are empty, i.e.,HEADa =NULL for every input letter
a, then the input is fully processed.

In this way a DFAwtl processes the input in lin-
ear time: linear preprocessing and linear processing
(the number of simple operations (comparisons and
assignment statements) are bounded by(|Σ|+2|w|)+
(|Σ|−1)|w|) ).

Therefore the word problem for DFAwtl is almost
as simple as for DFA, this family of languages has
this very pleasant and effective property. (Note that
here we allowed to compare numbers in a fixed time
complexity, however the stored numbers of the array
STOREdepend on the length of the input.)

For NFAwtl the word problem using our represen-
tation is linear with a nondeterministic version of our
algorithm (i.e., the problem is in the classNLIN).

Further in this section we present some additional
examples. The next example is one of the most essen-
tial context-free languages.

Example 2. The Dyck language is accepted by the
DFAwtl shown in Figure 5. The inputabaababbis
represented byHEADa = 1, HEADb = 2, STORE=
35467∞8∞ (where∞ represents the valueNULL as
discussed before). The run of the machine on this in-
put is as follows:

State q0, HEADa = 1 (HEADa < HEADb) is
changing toSTOREHEADa = STORE1 = 3; the next
state isq1.

State q1, HEADb = 2 is changing to
STOREHEADb = STORE2 = 5; the next state is
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Input: the alphabet Σ and the input word w.
Output: linked lists for every element a∈ Σ:

stored in a |w|-long string STOREand HEADs of the lists.
Initialization: For every a∈ Σ let HEADa = NULL.
For i = |w| downto 1 step −1 do

Let STOREi = HEADwi

Let HEADwi = i
EndFor. [....]

Figure 3: Preprocessing algorithm to obtain linked list representation of the input word.

HEADa1

HEADa2

:
HEADan

→a1 →a1 . . . →a1 →NULL
→a2 . . . →a2 →NULL

. . .

→an . . . →NULL

Figure 4: Linked list model of NFAwtl with preprocessed input.

q0.
State q0, HEADa = 3 (HEADa < HEADb) is

changing toSTOREHEADa = STORE3 = 4; the next
state isq1.

State q1, HEADb = 5 is changing to
STOREHEADb = STORE5 = 7; the next state is
q0.

State q0, HEADa = 4 (HEADa < HEADb) is
changing toSTOREHEADa = STORE4 = 6; the next
state isq1.

State q1, HEADb = 7 is changing to
STOREHEADb = STORE7 = 8; the next state is
q0.

State q0, HEADa = 6 (HEADa < HEADb) is
changing toSTOREHEADa = STORE6 = ∞; the next
state isq1.

State q1, HEADb = 8 is changing to
STOREHEADb = STORE8 = ∞; the next state is
q0.

The input is empty (bothHEADa andHEADb are
NULL andq0 is a final state, the input is accepted.

The inputabbabaabis represented byHEADa =
1, HEADb = 2,STORE= 435687∞∞. The run of the
machine on this input is as follows:

State q0, HEADa = 1 (HEADa < HEADb) is
changing toSTOREHEADa = STORE1 = 4; the next
state isq1.

State q1, HEADb = 2 is changing to
STOREHEADb = STORE2 = 3; the next state is
q0. The first two letters of the input are already
processed.

State q0, HEADa = 4, HEADb = 3, therefore
HEADa >HEADb this transition cannot be executed.
The machine gets stuck. This input is not accepted,
abbabaabis not in the Dyck language.

Further, we present two non-context-free lan-
guages that are closely related to basic mildly context-

// ?>=<89:;q0
{ε} //

({ε},a)

��
?>=<89:;q1

({a}∗,b)

YY

Figure 5: The DFAwtl of Example 2.

// ?>=<89:;q0

({b,c}∗,a)

����
��
��
��
�

{ε} //

?>=<89:;q1
({a,c}∗,b)

// ?>=<89:;q2

({a,b}∗,c)

ccGGGGGGGGGGGG

Figure 6: The DFAwtl of Example 3.

sensitive languages.

Example 3. Let A = (Q,Σ,$,τ, I ,F,δ), whereQ =
{q0,q1,q2}, I = {q0}=F , Σ= {a,b,c}, and the func-
tionsτ andδ are defined as follows:

τ(q0) = {b,c}, δ(q0,a) = {q1},
τ(q1) = {a,c}, δ(q1,b) = {q2},
τ(q2) = {a,b}, δ(q2,c) = {q0},

andδ(q,x) = /0 for all other pairs(q,x) ∈ Q×Σ. The
language{w ∈ {a,b,c}∗||w|a = |w|b = |w|c} is ac-
cepted by this DFAwtl. Its graphical representation
is shown in Figure 6.

An example run on inputabbacbccais :
Representation of the input: HEADa = 1,

HEADb = 2, HEADc = 5, STORE= 43697∞8∞∞.
Starting from the initial stateq0 an a is read by

changingHEADa from 1 toSTORE1 = 4.
Then in stateq1 a b is read by increasingHEADb

from 2 toSTORE2 = 3.
In stateq2 a c is read by changingHEADc from 5

to STORE5 = 7.
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Now the system is inq0 and ana is read:HEADa
is changed toSTORE4 = 9.

In stateq1 HEADb is increased toSTORE3 = 6.
In stateq2 HEADc is changed toSTORE7 = 8.
In stateq0 HEADa is increased toSTORE9 = ∞.
In stateq1 HEADb is increased toSTORE6 = ∞.
In stateq2 HEADc is changed toSTORE8=∞ and

the system is arrived toq0.
Since all lists are empty (allHEADs areNULL)

the input is fully processed and the system is in its
final state, the input is accepted.

Note that in this example all letters that are not
being read in a step are translucent, therefore the run
does not need any comparisons. The machine may get
stuck only if one of the letters is running out...

The language of the previous example intersected
by the regular languagea∗b∗c∗ gives the language
anbncn. The language{anbmcndm} can be recog-
nized in a similar way: it can be obtained as an inter-
section of the DFAwtl language presented in Exam-
ple 1 and the regular languagea∗b∗c∗d∗. These lan-
guages are belonging to mildly context-sensitive lan-
guage families and they are important from linguistic
point of view. The next language is closely connected
to the copy language that is also belonging to mildly
context-sensitive language families.

Example 4. The disjoint copy language{ww′|w ∈
{a,b}∗,w′ ∈ {a′,b′},w′ = h(w), where the alphabetic
morphism h maps the letters to their primed ver-
sions} is accepted in the following way. Consider the
DFAwtl shown in Figure 7. The language accepted
by the DFAwtl of Figure 7 intersected by the regular
language(a+b)∗(a′+b′)∗ gives exactly the disjoint
copy language.

4 APPLICATIONS IN A NATURAL
LANGUAGE: MODELING
SOME STRUCTURES OF
HUNGARIAN LANGUAGE

In the previous section we gave some examples how
NFAwtl’s/DFAwtl’s can be used modelling languages
that are not context-free and closely connected to the
main mildly context-sensitive languages. In this sec-
tion we make a further step: we use NFAwtl’s to
present some features of a natural language, namely,
of the Hungarian language.

In our investigation, the Hungarian language was
selected which differs from English in many aspects.
As we already mentioned, the Hungarian language is
an agglutinative language, it has no dominant word

?>=<89:;q1

({a,b}∗,a′)

��
// ?>=<89:;q0

{ε} //

({ε},b)

��

({ε},a)

OO

?>=<89:;q2

({a,b}∗,b′)

YY

Figure 7: The graphical representation of the DFAwtl of
Example 4.

order, and there is a reduced use of postpositions.
Our next example is modeling the two types of

conjugation of the Hungarian language. The Hungar-
ian language is a free order language therefore our
new model can effectively be used. In our example
we consider a very small segment of the language fo-
cusing on the phenomenon.

Example 5. The used ‘alphabet’, i.e., the Hungarian
words can be seen in Tables 1 and 2. Conjugation of
verbs can be seen in Table 2.

One of the most widely investigated distinguish-
ing features of languages is the ordering of subject
(S), object (O) and verb (V) within a sentence. Theo-
retically there are seven different ways and each way
is represented by a set of living languages. Accord-
ing to the statistical analysis (Dryera et al., 2012), the
dominating sequence is the SOV order with about 565
languages, the smallest group is the cluster with 4 lan-
guages for OSV order. An example of OSV order can
be found in the Nadeb language, where the sentence
’the child sees the jaguar’ is given with

awad (jaguar) kalapéé (child) hapúh (to see)

(Note that in Hungarian it also make sense to use OSV
order: Jaguárt a gyerek lát. (a gyerek = the child, lát =
(can) see) However, in Hungarian this sentence may
have an additional meaning, it underlines the child,
i.e., not the adult (or anybody else), but the child sees
the jaguar.

In a significant number of languages, no single
dominant order can be found. This languages use
a relatively free word order. According to some re-
cent approaches (Dryer, 1997) the SOV order has a
marginal role in categorization of the languages as
in more languages some of these components can
be eliminated from the sentences, the corresponding
clause will be pronominal or it is expressed by some
verbal affixes. It is argued that a more useful typology
is one based on two more basic features, whether the
language is OV or VO and whether it is SV or VS.
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Table 1: Hungarian words used in Example 5.

person énI teyou ő she/he JaniJohnny Mari Mary
thing a könyv az újság a kenyér a keksz a sajt

the book the newspaper the bread the biscuit the cheese
object a könyvet az újságot a kenyeret a kekszet a sajtot

Table 2: Hungarian verbs used in Example 5.

(I) (you) (she/he/it) (I) (you) (she/he/it)
definite eszem eszed eszi olvasom olvasod olvassa

eat read
indefinite eszek eszel eszik olvasok olvasol olvas
situation fekszem fekszel fekszik vagyokam vagyare van is

lay be

Correct sentences in Hungarian can be formed in
the following way: a person or a thing and a situation
verb can be paired in any order (respecting the per-
son of the conjugation), e.g., “Én fekszem.”, “Vagyok
én.”, “Fekszel te.”, “Te vagy.”, “̋O fekszik.”, “Fekszik
Jani.”, “Mari van.”, “Az újság van.”, “A könyv fek-
szik.”

A person and a verb in indefinite form can also
be paired in any order (respecting the person of the
conjugation), e.g., “́En eszek.”, “Olvasok én.”, “Te
eszel.”, “Olvas ő.”, “Mari eszik.”, “Eszik Jani.”

A person, a verb in definite form and an object
can also be grouped to form a sentence in any or-
der (respecting the person of the conjugation), e.g.,
“ Én eszem a kenyeret.”, “A kenyeret te eszed.”, “Eszi
Mari a kenyeret.”, “́En az újságot olvasom.”, “Te a
könyvet olvasod.”, “A kekszet eszi Jani.”, “Én eszem
kenyeret.”, “Olvassa ő a könyvet.”

Therefore the automaton may look first for the
subject (having everything else translucent), and then
depending on the object the automaton looks for the
verb (with everything else translucent). If definite ver-
sion of a verb is used with a person, then the automa-
ton will check the existence of the object also.

From the theoretical viewpoint, the main interest
in modeling natural language grammars focuses on
the sentences with unlimited length. Regarding the
set of sublanguages belonging to the class accepted
by NFAwtl the following condition should be met
(Nagy and Otto, 2011): any language accepted by an
NFAwtl should contain a regular sublanguage being
letter equivalent with the language itself. Allowing
an unbounded length, this regular sublanguage must
have the following structure

S1S∗2S3

whereS1 ,S2 ,S3 are of finite length. Thus the pattern
accepted by the NFAwtl is letter equivalent with this
pattern. In the simplest cases, this part is equal to

• the repetition of a fixed subsequence or

• the repetition of any permutations of elements of
the subsequence or

• the permutation of equal numbers of elements
from each different symbols in the subsequence

Considering the first case, the pattern includes the
repetition of the same element:

S1w∗S3

A sample sentence can be given as

Péter szereti Annát,́Evát, Katit, Marikát,... (Peter
likes Anna, Eve, Kate, Mary,...)

This kind of pattern can be described with a sim-
ple regular grammar, thus no translucent symbols
are needed. Thus, the power ofNFAwtl can be
demonstrated at such pattern where the ordering of
the elements can be arbitrary. The next sentence
demonstrates this kind of pattern:

Anna egy könyvet olvas arról, hogy egy könyvet
olvas Zoli arról, hogy olvas Maria egy könyvet arról,
hogy Tibor olvas egy könyvet arról,... (Anna is
reading a book about that Zoli is reading a book
about that Maria is reading a book about that Tibor is
reading a book about that ..)

In this example, the order of some words within the
repeating subsentence can be arbitrary, as the seman-
tic role is encoded in Hungarian language with case-
making (inflection) of the words. The word “könyvet”
is the accusative form of the stem “könyv” (book).
Thus all of the following sentences can be used:

• hogy Anna könyvet olvas

• hogy könyvet olvas Anna

• hogy Anna olvas könyvet
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// ?>=<89:;q1
({ε},x)// ?>=<89:;q2

({z,v}∗,y)

��

?>=<89:;q3
({ε},w)

// ?>=<89:;q4

({ε},x)

{{
//

?>=<89:;q5
({z}∗,v) // ?>=<89:;q6

({ε},z)

OO

Figure 8: The graphical representation of the DFAwtl for(x(yzv)!w)∗.

• hogy olvas Anna könyvet

The pattern of the corresponding subsentence can be
given with

(x(yzv)!w)∗

where thes! symbol denotes here the permutation of
the elements ofs. In general, the form of the sublan-
guage is

(S1S!
2S3)

∗

The pattern(x(yzv)!w)∗ can be validated with the
NFAwtl grammar given in Figure 8.

Theoretically, the language of pattern(S1S!
2S3)

∗

with finite S2 could be accepted also by DFA or by
regular grammar. This DFA/grammar should contain
the explicit description of every possible permutation.
Thus the size of the grammar isO(|S2|!) times larger
than the size of the correspondingNFAwtl. Thus the
main benefit ofNFAwtl is the compact representation
form of the grammar.

In natural languages, the semantic role can be
represented at the syntax level by different ways.
The two most usual encoding methods are the
inflection and the relative position of the words.
In Hungarian language, where free orders can be
accepted, the different permutations usually convey
different marginally semantic contents like emphases
or the opinion of the sender. For example, taking the
sentence

Maria sokat olvas (Mary reads a lot)

the following permutations can be constructed:

• Maria sokat olvas (correct, natural)

• Maria olvas sokat (rare use, special situation)

• olvas Maria sokat (special situation)

• olvas sokat Maria (special situation)

• sokat Maria olvas (very special situation, sounds
strange)

• sokat olvas Maria (correct, natural)

The complexity of natural languages can be well
demonstrated with the phenomena that acceptance
of a permutation depends on the semantic of the sit-
uation. In the next example a similar sentence is used:

Maria olvas egy könyvet (Mary reads a book)

The related permutations are

• Maria olvas egy könyvet (correct)

• Maria egy könyvet olvas (correct)

• olvas egy könyvet Maria (correct)

• olvas Maria egy könyvet (correct)

• egy könyvet Maria olvas (sounds strange)

• egy könyvet olvas Maria (correct).

There are some cases also in Hungarian where
the order of the words has a key role in correct inter-
pretation of the sentence. Let us take the following
example:

Péter segı́tette Jóskát (acc) Tomit (acc) kifesteni
(Peter helped John to paint Tom)

The sentence

Péter segı́tette Tomit (acc) Jóskát (acc) kifesteni
(Peter helped Tom to paint John)

means on the other hand a very different situation.

5 CONCLUSIONS

A large group of natural languages has no single dom-
inant word order, several permutations of the symbols
are grammatical. The traditional finite automata rep-
resent every possible orders explicitly resulting in a
huge/complex structure. The presented finite auto-
mata with translucent letters can be used for a more
compact modeling of free word order in natural lan-
guages. The NFAwtl automaton provides a more ex-
pressive and precise description of the grammar than
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the base (regular) finite automaton. The next step of
the investigation is to cover also the non-regular and
non-context-free elements of natural languages, since
DFAwtl’s and NFAwtl’s are good candidates to handle
some of these features...

Other main result is that we provide a linear time
algorithm for the word problem. The considered al-
gorithm is non-deterministic for NFAwtl and deter-
ministic for DFAwtl. Thus, it remains open to give
an effective deterministic algorithm for NFAwtl lan-
guages.

It is also an interesting question whether all lan-
guages accepted by DFAwtl, can be accepted by such
a way that all the input letters are erased during the
computation.
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