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Abstract: Assessing large populations of students puts a serious burden on teaching staff capacity. For open-format
assignments, automation of the reviewing process can offer only limited support. Peer ranking is a partial
solution to the problem, with the added benefit that students’ critical reading skills are developed. We see two
remaining problems, however: (1) for students, it is a major challenge to assign marks on an absolute scale, and
(2) students’ competence in reviewing may vary significantly—so not all peer reviews should have a similar
weight in the process. To remedy these shortcomings, we suggest an approach to peer ranking, inspired by
Jon Kleinberg’s HITS-algorithm, where both the students’ assignment results and the quality of their double
anonymous peer reviews are algorithmically ranked. Based on preliminary model calculations, we estimate
that this strategy may reduce the required effort for reviewing open-format assignments approximately by a
factor of ten. A first large-scale pilot with this method will take place in undergraduate courses at Eindhoven
University of Technology, spring 2013. Since this involves about 900 students, automated support is a must.
We describe the peer reviewing facilities that were introduced in our web-based education support system
namedpeach3.

1 MOTIVATION AND PROBLEM
DEFINITION

Assessing large populations of students puts a seri-
ous burden on teaching staff capacity. This is even
more so if strict deadlines need to be observed with re-
spect to providing feedback to students. In a practical
scenario, set at Eindhoven University of Technology
in early 2013, some 900 students will be submitting
elaborations of homework assignments, each corre-
sponding to about two A4 pages of text, in a weekly
rhythm, where marks need to be provided no later
than two weeks after submission, and no more than
two staff members are available for reviewing.

If reviewing a single work is estimated to take 20
minutes, completing the entire correction takes 300
person hours, or 150 hours per individual teacher. Al-
though one week contains 24× 7 = 168 hours, it is
obvious that straightforward reviewing is no option.

Peer reviewing, i.e., students reviewing each
other’s work using a protocol that ensures anonymity,
seems a plausible first option (Sadler and Good, 2006;
Lu and Bol, 2007). A naive scheme, however, where
students give marks to their peers, suffers from two

obvious drawbacks:

1. Unless the assignments admit only a single correct
answer, there is subjectivity involved in marking.
In the current casus, the assignments are deliber-
ately open ended. They contain questions of the
form ‘give an example for X’, ‘give some argu-
ments in favor of, and some arguments against Y’,
or ‘what is your substantiated opinion regarding
Z’. Although a student can be expected to form a
global opinion (‘this is quite good’), we ask too
much if this opinion should be made quantitative,
say, on a 10-point scale.

2. More importantly, not all students can be expected
to be equally competent reviewers. This prob-
lem could be mitigated by having every work re-
viewed by sufficiently many students, so that non-
systematic errors can be expected to average out.
This will not work in practice, however, since it is
unrealistic to have students review more than, say,
five works each.

Problem 1 is partially solved by having students
merelyrank works, that is, to put the (say) five works
they review in order of quality, rather than to give ab-

399van Overveld K. and Verhoeff T..
Self-consistent Peer Ranking for Assessing Student Work - Dealing with Large Populations.
DOI: 10.5220/0004352903990404
In Proceedings of the 5th International Conference on Computer Supported Education (CSEDU-2013), pages 399-404
ISBN: 978-989-8565-53-2
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



solute marks. From the methodology of social sci-
ences (Mellenbergh, 2011), it is known that compara-
tive ranking is generally easier than absolute ranking.
We use the term “peer ranking” (following (Allain
et al., 2006)) for comparative ranking in the context
of peer review.

Peer ranking, however, does not completely solve
Problem 1: as part of the assessment process, our stu-
dents need an absolute marking.

The research question of this paper, combining
Problems 1 and 2, is now stated as:

‘How can peer ranking be used, taking differ-
ences in students’ reviewing competences into
account, in order to obtain absolute marks in
assessments?’

For peer ranking that accounts for differences in re-
viewing competences among peers, we coin the term
‘self-consistent peer ranking’.

In Section 2, we formally define self-consistent
peer ranking and an approach to it, loosely based on
Jon Kleinberg’s HITS algorithm (Kleinberg, 1999).
Some implementation details are described in Sec-
tion 3. Prior to the actual implementation in a real-life
setting, we want to gain some feeling for the merits
of the approach. Therefore, we performed a model
study; this is discussed in Section 4. Section 6 lists
a number of possible variations of the method, Sec-
tion 5 discusses the conditions for application of the
algorithm in an educational context, and Section 7
discusses the web-based support facilitypeach3. Fi-
nally, in Section 8 we summarize our conclusions and
indicate directions of future work.

2 PROPOSED APPROACH

The problem of ranking the quality of submitted
works, based on judgments by reviewers with un-
known and varying reviewing competence, somewhat
resembles the problem that Google is solving by
means ofpage ranking:

• a web page isgood if many web pages link to it;

• not every link should contribute equally to the
‘goodness’ of a webpage;

• a link from a good webpage should contribute
more;

• this gives a cyclic definition of what constitutes
‘good’ for web pages.

In the case of peer reviewing, the reasoning goes:

• a student’s work isgood if peers have a high es-
teem of it;

• not every peer’s opinion should contribute equally
to the ‘goodness’ of a work;

• the opinion of acompetent peer should contribute
more;

• this gives a cyclic definition of what constitutes
‘good’ (for works) and ‘competent’ (for peers).

The definitions for the goodness of a work and the
competence of a peer can now be given formally.

Students have areviewing competence, calledci
for student numberi, i = 1. . .N. Competences are
initially unknown.

Works have aquality (‘goodness’), calledq j for
work numberj, j = 1. . .N. Note that aq j is not nec-
essarily a final grade; that is, once we have an esti-
mate forq j, we still have the problem of converting
it into a grade. Qualities are initially unknown. Re-
view competence and quality of work are assumed to
be independent variables.

An assessment where studenti reviews work j
produces anindicator, calledai j. A largerai j value
means that studenti rates work j as better. The in-
dicatorai j gives information both about studenti and
work j. Again, this is not necessarily a grade. When a
collection ofai j is known, the challenge is to recover
theci and theq j.

For a first, naı̈ve approach, we treatci andq j sym-
metrically; we scale them between−1 and 1; we as-
sume a full set ofai j (that is, every student has re-
viewed every work), and we prepare theai j so that
they are also scaled between−1 and 1. The valuesci,
q j, andai j are calledself-consistent, when (a) theq j
are the weighted averages of theai j, where theci are
the weight factors, i.e.q j = ∑i ai jci, and (ii) similarly
with the roles ofci andq j reversed, i.e.,ci = ∑ j ai jq j.
The following algorithm, if it converges, produces a
set ofci andq j that are self-consistent for givenai j.

1. Initialize all ci to random values between−1
and+1.

2. Calculate first estimate∀ j : q0
j = ∑i ai jc0

i .

3. Update∀i : cn+1
i = ∑ j ai jqn

j .

4. Update∀ j : qn+1
j = ∑i ai jc

n+1
i .

5. Renormalizeci andq j to keep them between−1
and+1.

6. Repeat steps 3 through 5 until convergence, that
is, cn

i ≈ ∑ j ai jqn
j ; andqn

j ≈ ∑i ai jcn
i .

This algorithm is in fact a so-calledpower iteration
(Golub and Van Loan, 1996). Power iteration con-
verges under weak conditions. Indeed, in case of
convergence,q = AAT q holds, whereq is a vector
of q j, and matrixA holds all ai j. We see thatq is
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an eigenvector of the positive-definiteAAT ; the re-
peated scaling ensures that the largest eigenvalue is 1,
and power iteration is a well-known stable route to
find the eigensystem with the largest eigenvalue for
positive-definite matrices.

The above algorithm has the same structure as Jon
Kleinberg’s HITS algorithm (Kleinberg, 1999), used
for self-consistent ranking of scientific citations. In
the next section, we examine the modifications and
additions needed to make the algorithm work for self-
consistent peer ranking.

3 IMPLEMENTATION DETAILS

To apply the algorithm from the previous section to
reviewing students’ works, we have to resolve three
issues.

i. If students’ reviewing comprisesranking instead
of marking their peers’ works, we have tocon-
struct a numeric value for ai j for every pair (stu-
denti, work j) from all orderings on the collection
of works as found by all students;

ii. Since students will review and rank no more than,
say, five works each, the majority ofai j is un-
known. If an unknownai j is represented by 0
(encoding a neutral judgment for workj by stu-
denti), the matrixA is sparse. We mustcope with
the sparseness of A;

iii. We demand that, eventually, students receive
marks for their works on some given scale, say
0 through 10. Theq j only carry information in
their ordering; hence, we have toconvert ranks to
absolute marks.

The resolution of these three issues is closely related.
We start with item iii, then i, and finally item ii.

3.1 From Ordered qi to Marks

After completion of the algorithm, we re-order theq j
so that they are monotonically increasing inj. Now
that we have obtained the vectorq, we know the order
of the quality of the works. This means that the even-
tual marks should be such that the workj = 1 should
receive the lowest mark, and the work withj = N re-
ceives the highest mark. The marks of the other works
could be obtained, for instance, by linear interpolation
between these two. The markmk for work k then is
given by

mk = m1+(mN −m1)(k−1)/(N −1) (1)

So, with merely correcting two works, we can assign
marks to all works.

To obtain a more reliable set of marks, however,
we may prefer to have a few more works corrected
and marked by teaching staff. In case more works
are marked by hand, the interpolation could be more
advanced: with four hand-corrected works, we might
choose the numbers 1,N/3, 2N/3, N and use a piece-
wise linear function or a spline ink for the interpola-
tion instead of (1).

3.2 From Ranking Results toai j Values

Students each rank a small collection of works. The
result of ranking by studenti is equivalent to a set
of relations,ai j1 < ai j2 for j1 and j2 in the set of in-
dices of works, reviewed by this student. We may op-
tionally allow ex aequo ranking, that isai j1 = ai j2 for
some maximum number of pairs( j1, j2). Ranking in-
formation can be encoded in an anti-symmetricN×N
matrix, say Si, where+1 occurs in entry( j1, j2)
when, according to studenti, ai j1 < ai j2;, and−1 oc-
curs in entry( j2, j1). All other entries are 0.

For example, if studenti rankedai j3 < ai j1 < ai j2,
then we will have

Si =

j1 j2 j3 . . .
j1 0 +1 −1 0
j2 −1 0 −1 0
j3 +1 +1 0 0

(2)

Next, all matricesSi need to be aggregated to obtain
the matrixA for the algorithm.

This aggregation is not trivial. For instance, theSi
need not all be mutually consistent. That is, an en-
try ( j1, j2) may contain+1 in one of theSi, whereas
it is −1 in anotherSi′ . Now, prior to running the al-
gorithm, the weightsci are unknown. Still, it seems
that theci are necessary to resolve conflicts due to in-
consistencies. Therefore, for full self-consistency, the
construction ofA should take place simultaneous with
obtainingc andq.

Although we plan to derive a fully self-consistent
aggregation algorithm to obtainA from the matricesSi
in the future, we intend to run first trials with a sim-
ple approximation to this scheme. This approxima-
tion amounts to settingai j1 = −1 andai j2 = +1 for
respectively the lowest and highest ranking worksj1
and j2, according to studenti, and to give the other
worksai j values that linearly interpolate these values.
So, for five reviewed works per student, theai j are set
to the sequence−1,−0.5,0,0.5,1, irrespective of any
rank assignments by other students to these works.1

Constructing theai j from the initial ranking inputs in
this way is obviously ad-hoc, and we will use it for a
first trial only to see if the approach is promising.

1When we admit ex aequo ranking, one or more of the
values may be left out of the sequence−1,−0.5,0,0.5,1.
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3.3 SparseA

Convergence of the algorithm can be proven for full
rank matrix A. Due to sparseness, however,A is
highly rank deficient. Fortunately, power iteration is
relatively robust. This means that, as long as a min-
imum percentage ofai j is known, the algorithm still
can approximately recoverc, and, more importantly,
q from A. There are two considerations, however, that
we need to take into account.

• Obviously, the fraction of non-empty entries inA
cannot be arbitrarily low. Therefore, given that
each student reviews five works, the total popu-
lation of students (to be called ‘cluster’) in one
peer-ranking trial cannot be too high. In order to
estimate the size of the largest allowable cluster,
we perform a model study, described in the next
section.

• With increasing cluster size, the convergence of
our algorithm becomes increasingly problematic.
‘Problematic convergence’ implies the following.

– We need more iterations (perhaps infinitely
many) until convergence. This is no fundamen-
tal issue: it is easy to detect convergence; by
admitting a maximal number of iterations, we
can conclude if convergence fails.

– With full rank, the solution of the power iter-
ation algorithm is unique. This can no longer
be proven for rank deficientA. This again is no
fundamental issue, however: when we run the
iteration several times with different starting
conditions, we can easily verify if converged
solutions are sufficiently close.2

– If A gets increasingly rank deficient, the ob-
tained vectorq will contain increasingly more
noise. This means that theaccuracy of the al-
gorithm decreases, where the accuracy is de-
fined as the extent to which the found order of
the works matches with the order as it would
be found with hand-correction. The match be-
tween the hand-corrected order and the order
found by the algorithm can be empirically as-
sessed by doing a hand correction of the en-
tire cluster. Small mismatches—that is, mis-
matches where the rank position of anyq j does
not differ too much from a rank position as

2There is one curious subtlety. Ifq is a solution toq = AAT q,
then so is−q. Since the elements ofq are scaled between−1 and 1,
we cannot distinguishq and−q beforehand. If the teacher reviews
both extreme works (that is, after renumbering, the works with j =
1 and j = N), however, it should be immediately clear which of the
two is the best and which is the worst. This unambiguously fixes
the sign ofq.

would be found with hand correction—can be
partially compensated for by doing a larger
fraction of hand corrections—to the extreme
where all works are corrected by hand, and
there is no added value of peer ranking. We
plan to find the optimal cluster size, such that
the accuracy of the algorithm is sufficient, by
means of empirical assessment prior to full-
scale implementation of the algorithm.

4 MODEL STUDY

To get a first, global, idea of attainable maximal clus-
ter size, and hence the maximal efficiency improve-
ment that can be attained by self-consistent peer rank-
ing, we perform a model study. In this model, we
postulated a relation between theci (student’s review-
ing competence) and theai j (the scores, attributed to
works j by studenti) as follows.

• A student with higherci contributes values forai j
that are closer to the trueq j. By the ‘trueq j ’ we
mean theq j that would result if a teacher would
have reviewed workj.

• A student with lowerci inputs values forai j
that are closer to a uniform random number be-
tween−1 and+1. That is, failing competence is
modeled as an unbiased noise term.

Next, to test the algorithm, we set up a collection of
sizeN of works, every work with aknown quality q j,
and a collection of sizeN of students, every student
with aknown reviewing competenceci. Cluster sizeN
will be varied to see what cluster sizes give acceptable
accuracy, where the number of reviewed works per
student is kept fixed to five. Known qualities and re-
viewing competences are taken randomly between−1
and+1. The knownc andq are calledcknown, qknown,
respectively.

With cknown andqknown, the matrixai j is computed
as follows. For everyi, five randomj’s are selected
such that every workj is ‘reviewed’ by exactly five
different studentsi. The scoresai j are calculated as

ai j =
qknown j(1+ cknowni)+R (1− cknowni)

2
, (3)

whereR = rand(−1,1) is a uniformly distributed ran-
dom number between−1 and+1. All otherai j are set
to 0.

With matrix A set up in this way, the algorithm is
run, and, if convergent, the resultingq andc are plot-
ted againstqknown andcknown. For ideal reconstruc-
tion, the graph should be monotonically increasing.
The precise shape is determined by the normalization
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used. In our case, the normalization is a Euclidean
distance norm, resulting in a roughly sigmoid shape
for the graph.

Experiments reproduce the predicted behavior,
where increasing sparseness inA causes increasing
deviations from purely monotonic. If we find 5% de-
viations acceptable (that is, 5% of the works receive
an out-of-orderq j), the matrixA can be as sparse
as 10%. In other words, for a cluster size as large
as 50, with five reviews per work, the algorithm is
capable to find an approximation to the correct order
with no more than 5% errors.

It turns out, however, that the outcome of these tri-
als is sensitive to the assumptions with respect to the
precise form of (3). If we assume students are slightly
more competent in reviewing, the performance of the
algorithm is drastically better; if students are less
competent, the performance is considerably worse—
which is not too unexpected. Therefore, although
these model trials suggest a cluster size of 50 with
five reviewed works per student, we may want to be
a bit more conservative when we actually implement
the scenario for the first time.

5 DISCUSSION

An algorithm for calculating students’ reviewing
competence and the quality of students’ work may
be a necessary ingredient of peer reviewing, but it is
definitely not sufficient. In (van Zundert, 2012), ed-
ucational considerations regarding peer reviewing are
studied. In this section, we list a number of assump-
tions that should hold for an algorithm like the present
one to be trustworthy.

• Peer groups should be unbiased and uncorrelated
so that every assessment can be seen as an in-
dependent measurement of each student’s perfor-
mance. Careful randomization helps to remove
correlations; bias is more subtle to deal with,
though. For instance, in case of misconceptions,
shared by a majority of the students (‘homework
is boring’), correct answers (such as ‘homework
is exciting’) may score systematically low, and the
algorithm has no means to detect this error. It will
manifest itself in that the order, calculated by the
algorithm, consistently differs from the order ob-
tained by staff. In preparing assignments, there-
fore, questions with likely answers that are objec-
tively ‘wrong’, but that could result from collec-
tively shared misconceptions, should be avoided.
Rather, assignments should be such that students
can base their scores on how much detail is pro-
vided, how elaborate an answer is, how clearly the

answer has been written, how convincing the an-
swer is, et cetera.

• Peer ranking should be applied to a series of as-
signments rather than a single assignment, so that
statistical evidence can be used to assess the reli-
ability of the final outcome. Statistical evidence
could be, e.g., the standard deviationσ of the
marks over a series of assignments in one term.
If σ decreases as one over the square root of the
number assignments,N, it may be the case that the
outcome indeed measures students’ performance
during that term. In caseσ does not decrease with
increasingN when averaging over the series of as-
signments, the per-assignment scores apparently
do not measure the actual performance level of
a student, and the peer review gives no informa-
tion about this level. There could be various rea-
sons for such inconclusive outcomes: perhaps the
assignments do not accurately measure students’
performance levels, or students performance lev-
els vary wildly over the term. From a method-
ological point, it would be good to include theσ’s
in the final marks.

6 POSSIBLE VARIATIONS

We briefly present three possible variations.

1. The algorithm calculates bothc and q from
scratch, using the matrixA as only input. We
may expect, however, that the students’ reviewing
competence will not vary much over time. This
suggests to bootstrap the algorithm with the re-
sults in the first week, and use the foundc as a
first estimate in the next week. We may even con-
sider to use the running average of thec’s over
subsequent weeks, representing the intuition that
we get increasingly more accurate estimates of the
individual students’ reviewing competence.

2. Teachers may consider to have one or more ‘ex-
ample elaborations’ to be, unknowingly, reviewed
by the students. Since works are reviewed anony-
mously, students will not know that they review a
teacher’s work instead of one of their peers. As-
suming that teacher’s works have insurmountable
quality, the associatedq j must keep a constant
value of 1 during the iterations. Therefore, they
serve to further stabilize the algorithm.

3. Despite the efficiency improvement offered by the
algorithm, reviewing still requires works to be as-
sessed by teachers, which takes time. To reduce
waiting time for students, feedback can be given
in three tiers. The first tier is immediately after the

Self-consistent�Peer�Ranking�for�Assessing�Student�Work�-�Dealing�with�Large�Populations

403



raw ranking: a student then can be informed about
the ‘five relative rankings among four other works
that this student’s work received. Although this
carries no absolute information, the difference be-
tween ‘five times number one’ or ‘five times num-
ber five’ is probably significant. The second tier is
immediately after running the algorithm: students
then can get a percentile score (‘85% of your clus-
ter has lower scores than you’). Only the third
tier feedback, where a student receives an abso-
lute mark, needs to wait until teachers correct the
few representative works per cluster.

7 WEB-BASED SUPPORT:peach3

At Eindhoven University of Technology, we use a
web-based education support systempeach3, since
2001 (Scheffers and Verhoeff, 2012). Students sub-
mit their work for deadlined assignments topeach3

through a web browser.peach3 monitors the dead-
lines, stores submitted work, performs configurable
automatic checks on the content, disseminates it to
those involved in the course, and allows entering of
manual feedback and grades. Recently, we added sup-
port for peer reviews, including peer ranking.

To carry out a peer review of an assignmentZ, a
new assignment is created that is designated as a peer
review ofZ. Students who submitted work forZ are
allocated random works by other students within their
cluster, in such a way that each work is reviewed by
a configurable number of students (in this paper, we
have used five as bundle size). They read anonymized
versions of work under review in a browser, and pro-
vide review reports, grades, and/or a ranking with re-
spect to each other, through a web GUI. All review
results can then be exported, processed, and imported
back into the system as grade. Afterwards, if so de-
sired, students can see anonymized review reports,
grades, and rankings of their work.

8 CONCLUSIONS,
FUTURE WORK

We propose a strategy for reducing the amount of re-
viewing, to be done by teachers, for open-ended as-
signments. An algorithm, calledself-consistent peer
ranking, requires students in a cluster of peers to
anonymously rank, say, five peer works. The differ-
ences between students’ ranking competence (theci
in the algorithm) are estimated, and used to compute
a weighted final rank score (the order of theq j in

the algorithm). Next, teachers review the highest and
lowest ranking work (and perhaps few more for in-
creased reliability) in a cluster, to establish the abso-
lute marks; marks of works not reviewed by teachers
are found by interpolation.

A preliminary model study suggests that clusters
can contain some 40 to 50 students, which would in-
dicate a factor of 8 to 10 reduction of manual correc-
tion work, if students rank five works each, while the
amount of out-of-order errors of the algorithm is no
more than 5%. A group of 1000 students would then
be split into 20–25 clusters.

A first field trial will take place early 2013 at Eind-
hoven University of Technology, involving about one
thousand students. This will involve our web-based
education support systempeach3, that provides sup-
port for peer reviews and peer ranking. If the results
are promising, we will fine tune the cluster size and
other parameters in the algorithm to get the optimally
achievable efficiency improvement. Also, we will de-
velop the algorithm further so that the matrixA can be
obtained from the individual ranking inputs without
having to resort to the ad-hoc assignment of a range
of numerical values to theai j for giveni.
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