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Abstract: Scientific reasoning is a key skill in academic contexts and may be trained with interactive learning tasks, that
require learners to explicitly give reasons for their solution. We provide a general, mathematically motivated
algebraic model for reasoning tasks that enables computer-based analysis of answers and feedback generation,
especially in the case of tasks that have distinct permissible correct solutions; furthermore we present our
ready sample implementation guided by that model.

1 INTRODUCTION

Scientific reasoning has been known to be an impor-
tant skill for university students in order to obtain
higher academic degrees, such as master’s and PhD
degrees. In 1933The American Physics Teacherfea-
tured an article that links better ability to solve tests
that involve reasoning to higher achieved academic
degrees (Worthing, 1933).

Zimmerman considers the study of the develop-
ment of conceptual knowledge in particular scien-
tific domains along with the study of the reasoning
and problem solving strategies involved in hypothesis
generation, experimental design, and evidence eval-
uation to be the two main approaches to the study of
scientific thinking and finds that these two approaches
distinguish different connotations of scientific rea-
soning (Zimmerman, 2000). Domain-specific scien-
tific reasoning typically requires the use of concep-
tual knowledge of a particular scientific phenomenon
(Zimmerman, 2000). It has been studied among oth-
ers in the domain of physics, where individuals had
to use their conceptual understanding to generate so-
lutions to tasks, but were not required to make ob-
servations, evaluate evidence, or conduct experiments
(Zimmerman, 2000).

Ziegler (1990) studied solution rates for the Wa-
son selection task (1968) for abstract implications and
found an improvement of correct solution rates after
training measures (Meiser and Klauer, 2001). Klauer
et al. (1997) researched interference effects regarding
propositional reasoning and found a significant effect

of training on the number of correct solutions (Meiser
and Klauer, 2001). Klauer et al. (2000) compared
the effects of different training conditions on proposi-
tional reasoning: both abstract semantic training and
domain-specific semantic training were significantly
more effective than both syntactic and no training,
whereas there were no significant differences between
abstract and domain-specific training (Klauer et al.,
2000).

A study conducted by Cheng et al. (1986) sug-
gests that human reasoning relies rather on available
inference schemes than on content-independent syn-
tactic rules (Meiser and Klauer, 2001). Klaczynski
et al. (1989) showed that better solution skills in one
domain may be transferred to other domains if the
training measures led to the acquisition of new men-
tal representations of the logical connectives, which
may be achieved by either abstract training or content-
oriented training where participants are confronted
with contradictions between their previous represen-
tation and the formal correct meaning of the premises
(Meiser and Klauer, 2001). Content-oriented training
measures that do not challenge previous representa-
tions showed no transfer effects (Meiser and Klauer,
2001; Klaczynski et al., 1989). Therefore it is im-
portant to challenge errors and misconceptions in or-
der to train scientific reasoning skills. This may be
achieved by training measures that give interactive
feedback that points out possible contradictions be-
tween the mental representations of the logical con-
nectives and their formal correct meaning. Suitable
training measures may combine answer-until-correct
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or multiple-try feedback strategies with knowledge of
performance feedback, knowledge of result feedback
and elaborated feedback, such as knowledge of the
location and count of mistakes (Narciss, 2008).

1.1 Interactive Learning Tasks

An interactive learning task consists of two main
parts: the question or problem to be solved and its
solution (Proske et al., 2012). Such a task is designed
such that the series of cognitive operations and actions
conducing to its outcome lead learners to be actively
engaged in knowledge construction, and such that the
learner may interact with a system or a person dur-
ing the execution of the task in a way that supports
in performing the necessary cognitive operations and
actions (Proske et al., 2012). Working on interactive
learning tasks may help in overcoming obstacles or
in correcting incorrect solution steps, thus interactive
learning tasks provide mastery experiences and foster
learners’ motivation (Proske et al., 2012).

Design Requirements

In general, interactive learning tasks should give stu-
dents opportunities for repetition and correction, tu-
tor learning task processing, and reciprocally react
on learners’ actions by providing feedback or other
means (Proske et al., 2012). Furthermore “instruc-
tions should enable students to apply basic scientific
principles flexibly, to explain or predict diverse phe-
nomena, and to become good problem solvers and in-
dependent learners.” (Reif and Scott, 1999)

In order to train scientific reasoning skills with an
interactive learning task, the task must involve scien-
tific reasoning and provide a possibility for the learner
to see at which points their own reasoning is not cor-
rect in the sense of proper scientific reasoning. Thus
interactive learning tasks should provide interactive
feedback that not only gives information whether the
solution is correct or incorrect, but also which parts
of the solution contain mistakes. This should be done
by providing multiple response steps with elaborated
feedback components that guide the learner toward
successful task completion without offering the cor-
rect response immediately (Narciss, 2008). This feed-
back may be given either by automated solutions or
by human tutors.

1.2 Example Learning Task

We want to give an example of a learning task that
involves scientific reasoning in the domain of physics.

ProblemP:

Consider the schematic
to the left!
How do the luminosities
of the bulbs A, B, and
C relate to each other, if
all three bulbs are of the
same kind?

Solution. Bulb A has higher luminosity than the
other bulbs and the luminosities of bulb B and bulb C
are equal.

In order to give the correct solution, a student un-
familiar with such problems has to extract informa-
tion from the schematic, that the bulbs B and C are
connected in series and that the bulb A is connected
in parallel with the bulb chain BC. Afterwards the stu-
dent has to use conceptual knowledge regarding both
kinds of connections in order to infer the luminosity
qualities of the bulbs. On the other hand, a student
familiar with such problems may be able to give the
solution right away. Thus the problem has to be mod-
ified in order to train scientific reasoning:

ProblemQ:
Consider the schematic
to the left!
How do the luminosities
of the bulbs A, B, and
C relate to each other, if
all three bulbs are of the
same kind?
Give reasons for your an-
swer!

Although the modified problem is well defined, it
is quite cumbersome to give the solution beforehand,
because there are lots of different rationales that infer
the solution from the problem all of which are correct.
Thus a supervisor has to undertake the tiresome and
arduous task of checking each student’s answer for
factual correctness and completeness by following the
given reasoning steps and checking their soundness.

1.3 Computer based Interactive
Learning Tasks

Reif and Scott (1999) give an example computer
based PAL1 tutorial for Newton’s law and its appli-
cations regarding basic Newtonian mechanics. Their
computer based system offers three modes of oper-
ation: the student may be coached in implementing

1Personal Assistant for Learning
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specified actions, the student may assess and correct
the work of the PAL, and the student is provided with
independent practice on similar problems (Reif and
Scott, 1999). All problems of the computer based
PAL tutorial example by Reif and Scott (1999) in-
volve the creation of a diagram of all forces relevant
to the mechanical system as the key step towards the
solution. Although there is some non-linearity in the
construction process, there is only a single valid dia-
gram of the relevant forces per problem, which makes
it easy to decide whether there are components miss-
ing and whether there are misplaced arrows or errors
in the calculations – it suffices to compare the stu-
dent’s work against the correct solution of the prob-
lem, and to give feedback accordingly.

1.4 Reasoning in Learning Tasks

Learning tasks that require the student to explicitly
do scientific reasoning as part of the solution have
more than only one distinct correct answer in gen-
eral: Consider problem Q. We might argue that the
same voltage means the same luminosity. But we also
might argue that the same current means the same lu-
minosity. If we chose the first argument, we could
say that the current through bulb B is the same as the
current through bulb C, thus bulb B and bulb C are
equal bright. If we chose the second argument, we
would argue that the voltage of bulb B is as big as
the voltage of bulb C, thus they have the same lu-
minosity. In order to systematically give interactive
feedback for learning tasks that require scientific rea-
soning, we need a model of reasoning. Although a
complete model of scientific reasoning could be used
as well, incomplete – and sometimes much easier –
models that only cover those aspects of scientific rea-
soning that are relevant to give interactive support and
to check the student’s answer will suffice.

2 ALGEBRAIC MODEL OF
REASONING IN INTERACTIVE
LEARNING TASKS

In this section, we will provide an algebraic back-
ground model that is sufficient to generate appropriate
interactive learner’s feedback for scientific reasoning
tasks.

The atomar entity of reasoning that we are dealing
with is an assertion, and theset of all assertionswill
be denoted byA. Furthermore we will denote the two-
elementary complete lattice by

L= (L,≤,

∨
,

∧
,0,1)

and interpret 0 as false or incorrect, and 1 as true or
correct.

Each implementation of an interactive learning
task has a set of assertions that a learner may use in or-
der to generate her answer. This set is calledassertion
domainand will be denoted byD′ ⊆ A. For obvious
reasons any assertiona ∈ D′ must be of a form such
that it is either is true or false within the context of the
learning task, thus there is a mapv: D → L that maps
each decidable assertiona∈ D ⊆ A to its truth value
va∈ L, andD′ ⊆ D.

2.1 Stating Reasons as Inverse Inference

If we ask for reasons for a specific assertion we would
be satisfied if we got some assertions from which we
could somehow infer the former assertion. This cir-
cumstance may be captured by the following: We let
n be a natural number, then we will call anyn+1-ary
relation onD an inference rule, i.e. I is an inference
rule if I ⊆ Dn+1 for some natural numbern that de-
pends onI . We will interpret

(a1,a2, . . . ,an,an+1) ∈ I

such that the assertionsa1 throughan are considered
to be reasons foran+1 w.r.t. I .

Of special interest arevalid inference rules: An
inference ruleI ⊆ Dn+1 is called valid, if for all
a1,a2, . . . ,an,an+1 ∈ D

n∧

i=1

van ≤ van+1

holds. If we have a given set of valid inference
rules, we can use it to generate new correct asser-
tions from known-to-be-correctassertions, and to ver-
ify that some given reasons are indeed sufficient for
some assertions.

2.2 Using Inference Bases to Decide
Correctness inD′

If we want to check whether an assertiona ∈ D′ is
correct, we can use an initial set of correct assertions
A0 ⊆ D and a set of valid inference rulesR. We will
successively extend our knowledge of correct asser-
tions: starting withA0 we apply all the rulesI ∈ R to
all combinations of correct assertions we know and
continue with combinations involving assertions we
just gained knowledge of until no more new correct
assertions arise. Thus we are closingA0 underR:

A0
R

=
⋂

{A∈ 2D | A0 ⊆ A,

∀I ∈ R, a1, . . . ,an ∈ A,

an+1 ∈ D :

(a1, . . . ,an,an+1) ∈ I ⇒ an+1 ∈ A}

Fostering�Scientific�Reasoning�Skills�through�Interactive�Learning�Tasks

395



Although we can use any such pair(A0,R) to verify
that an assertiona∈ D′ is indeed correct, we need an-
other property of(A0,R) in order to know that an in-
correct assertiona is indeed incorrect: We consider a
pair(A0,R) – whereA0 ⊆D andR is a set of inference
rules – to be aD′-base, if for all a∈ D′

va= 1 ⇔ a∈ A0
R

This means that if we have a givenD′-base we may
close its set of correct assertions under its set of in-
ference rules and use the resulting set of correct as-
sertions to check whether an assertiona ∈ D′ from
the assertion domain of the interactive learning task
implementation is correct within this context. If the
assertion is in the closure, i.e.a ∈ A0

R
, it is correct,

otherwise it is incorrect. An author creating an imple-
mentation of such a task now only has to give a suffi-
cient amount of both valid inference rules and correct
assertions2 in contrast to having to enter all correct
assertions fromD′.

2.3 Checking Reasons for Assertions

We also want to use valid inference rules to check
whether a given argumentation – which we consider
to be merely a set of assertionsP⊆ D′ – contains rea-
sons for all of the non-trivial and non-obvious correct
assertions that it contains. Therefore we want to use
a setR of inference rules, where every inference rule
I ∈ R represents a satisfactory way of arguing.3

Let (A0,R) be aD′-base where everyI ∈ R also
represents a way of arguing, and letP⊆ D′ be a given
argumentation. We further assume thatP⊆ A0

R
, i.e.

that all assertions fromP are correct. In order to check
whether the argumentationP is not missing any rea-
sons from the assertion domainD′, we will start with
the trivial and obvious assertions fromP, and then try
to use rulesI ∈ R to successively justify new asser-
tions fromP. Thus we compute the relative closure of
the empty set/0 with regard toP underR:

P̃R =
⋂

{A∈ 2P | ∀I ∈ R,

a1, . . . ,an ∈ P∪ (A0
R
\D′),

an+1 ∈ P:

(a1, . . . ,an,an+1) ∈ I ⇒ an+1 ∈ A}

Clearly, the set̃PR consists of those assertions from
the argumentationP that are either trivial or obvious,

2Those assertions do not necessarily have to be from the
assertion domain the student is composing her answer from.

3Note that 1-ary inference rulesI ⊆ D1 represent ob-
vious or trivial assertions, since they are contained in the

closure of the empty set/0R
.

Figure 1: Screenshot of a sample implementation of prob-
lem Q.

or that may be satisfactory justified by other given as-
sertions. In other words, the setP\P̃R contains the
assertions fromP for which the student should give
more reasons.

3 IMPLEMENTING AN
INTERACTIVE LEARNING
TASK ON SCIENTIFIC
REASONING

In order to demonstrate that our algebraic modeling
approach is fruitful we have developed and imple-
mented an interactive learning platform that works in
a standard Java and JavaScript enabled web-browser.
Below we will sketch how an interactive learning plat-
form web page as seen in figure 1 can be created
for problem Q. The interactive learning web page
contains a description of the problem, along with a
template kit that can be used to construct sentences,
which subsequently can be dragged into separate ar-
eas, one for the answer of the question and one for
reasons that lead to the answer. After entering the
answers and reasons the student can request the web
site to check the answer, in which case the student is
provided with information whether each point is cor-
rect, whether the student should give more reasons for
each point, and whether there are points regarding the
schematic or the underlying physical laws missing.

3.1 Working with the Algebraic Model
of Reasoning

First, we need to choose a good assertion domain
D′ for the learning task. Any number of sentences
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Table 1: Sentence template for the description of the schematic.

bulb A is serial connected with bulb A
bulb B is connected in parallel with bulb B
bulb C bulb C

bulb chain BC bulb chain BC
the battery the battery

Table 2: Sentence template for the comparison of circuit element parameters.

the current through bulb A is smaller than the current through bulb A
the voltage of bulb B is as big as the voltage of bulb B

the resistance of bulb C is bigger than the resistance of bulb C
the input power of bulb chain BC the input power of bulb chain BC
the luminosity of the battery the luminosity of the battery

Table 3: Sentence template for the relations between the parameters.

a smaller current means, for bulbs, a smaller current
bigger voltage bigger voltage

resistance resistance
input power input power
luminosity luminosity

Table 4: Examples for the inference rule set of our implementation of problem Q.

rule name example reasons example conclusion
schematic to
comparison

bulb B is serial connected with bulb C the current through bulb B is as big as the
current through bulb C

comparison transitivity the voltage of bulb A is as big as the
voltage of bulb chain BC

the voltage of bulb A is bigger than the
voltage of bulb B

the voltage of bulb chain BC is bigger than
the voltage of bulb B

parameters &
comparison

the voltage of bulb A is bigger than the
voltage of bulb B

the luminosity of bulb A is bigger than the
luminosity of bulb B

a bigger voltage means, for bulbs, a bigger
luminosity

comparison inversion the voltage of bulb A is bigger than the
voltage of bulb B

the voltage of bulb B is smaller than the
voltage of bulb A

parameter transitivity a bigger current means, for bulbs, a bigger
voltage

a bigger current means, for bulbs, a bigger
luminosity

a bigger voltage means, for bulbs, a bigger
luminosity

parameter inversion a bigger current means, for bulbs, a bigger
voltage

a bigger current means, for bulbs, a bigger
voltage

quantifier negation a bigger voltage means, for bulbs, a bigger
luminosity

a smaller voltage means, for bulbs, a
smaller luminosity

schematic inversion bulb B is serial connected with bulb C bulb C is serial connected with bulb B

schematic transitivity
the battery is connected in parallel with
bulb A

the battery is connected in parallel with
bulb chain BC

bulb A is connected in parallel with bulb
chain BC

from this domain may be chosen by the student and
dragged into thepoints or conclusionsareas of the
web page. We would like to point out that the choice
of a good assertion domainD′ is the key step in our
endeavor of creating a good interactive learning task
implementation for a given problem. Serious effort
and consideration should be put into this step before
doing any of the technical steps, since changes regard-
ing the assertion domain usually effect all subsequent

work. Clearly, the student has to describe the compo-
nents of the schematic. In order to do this, the student
may compose sentences by choosing an option from
each of the columns given in table 1. The student
also has to compare some of the electrical and physi-
cal parameters of the circuit elements by constructing
sentences from options given in table 2. And last the
student has to give information on how the parameters
will influence each other regarding the bulbs. This can
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Table 5: Initial set of correct assertions for our implementation of problem Q.

bulb A is connected in parallel with bulb chain BC
the battery is connected in parallel with bulb A

bulb B is serial connected with bulb C
the resistance of bulb A is as big as the resistance of bulb B
the resistance of bulb A is as big as the resistance of bulb C

the resistance of bulb chain BC is bigger than the resistanceof bulb C
the voltage of bulb chain BC is bigger than the voltage of bulbB

a bigger voltage means, for bulbs, a bigger current
a bigger voltage means, for bulbs, a bigger input power

a bigger input power means, for bulbs, a bigger luminosity

be done by composing sentences from table 3. These
three sentence templates constitute the assertion do-
mainD′, which has 2025 elements – sentences4 which
the student may use to complete the task.

After we have chosen the assertion domain for our
implementation we have to think about the relations
between the assertions and come up with an appropri-
ate setR of valid inference rules. Since giving all the
inference rulesI ∈ R in detail is a technical and tire-
some task that does not provide deeper insights, we
will only sketch the inference rules of our implemen-
tation here by sparing the technicalities and giving an
example for each rule in table 4 instead.

Further we consider all correct assertions regard-
ing the schematic, the fact that the voltage of the bulb
chain BC is bigger than the voltage of each of the
bulbs B and C, and the relations between the param-
eters to be obvious for our problem and hence do not
demand reasons for them.

Having fixed the assertion domainD′ and the set
of inference rulesRwe need to give a set of assertions
A0 ⊆D such that(A0,R) is aD′-base. In table 5 we list
a set of assertions sufficient to determine whether any
assertiona∈ D′ from the assertion domain is correct.

4 CONCLUSIONS AND FURTHER
WORK

In this paper we showed that scientific reasoning is
an important skill that can be trained by appropriately
designed interactive learning tasks. We elaborated a
profound model that can be used to generate interac-
tive web-based learning platforms that may provide
feedback and tutor learners in order to improve their
reasoning skills across different tasks and domains.
We presented a sample implementation using a gen-
eral framework. As part of future work this imple-

4Notice that there are different sentences that essentially
carry the same information, but since we allow for distinct
solutions anyway, there is no need to enforce a normalized
way of generating sentences from underlying information.

mentation framework may be used to create further
computer-based interactive learning tasks, on which
highly needed further empirical studies on training
scientific reasoning may be based.
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