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Abstract: Here, we intend to give a rule for the choice of the smoothing parameter of the orthogonal estimate of Patrick-
Fisher distance in the sense of the Mean Integrate Square Error. The orthogonal series density estimate preci-
sion depends strongly on the choice of such parameter which corresponds to the number of terms in the series
expansion used. By using series of random simulations, we illustrate the better performance of its dimensional-
ity reduction in the mean of the misclassification rate. We show also its better behavior for real data. Different
invariant shape descriptors describing handwritten digits are extracted from a large database. It serves to com-
pare the proposed adjusted Patrick-Fisher distance estimator with a conventional feature selection method in
the mean of the probability error of classification.

1 INTRODUCTION

It is well known that the feature extraction obtained
by dimensional reduction algorithms is very impor-
tant task for pattern recognition. Different applica-
tions in this field as face analysis, handwritten charac-
ter recognition, 3D-medical image segmentation have
investigated such approach. The famous Linear Dis-
criminate Analysis (LDA) method which optimizes
the Fisher ratio (Fukunaga, 1990) is very used in
practice for reducing dimensionality. However, when
one of the conditional probability density functions
(PDFs) relative to labels follows a non Gaussian dis-
tribution, the LDA gives generally bad and non stable
result (Ghorbel et al., 2012). It has been proved that
the maximization of an estimate of the Patrick-Fisher
distance (Drira and Ghorbel, 2012) (Aladjem, 1997)
(Patrick and Fisher, 1969) (Hillion et al., 1988) could
be improves the result because it considers the hole of
the statistical information about the conditional ob-
servation. However the LDA method is generally ex-
pressed only according to the first and second statisti-
cal moments of PDFs. In the present work, we inves-
tigate a dimensionality reduction method introduced
in (Ghorbel, 2011). It consists on an estimator of the
Patrick-Fisher distance (d̂PF) using the conventional
orthogonal series density estimator.

Among the non parametric density estimation
method, the PDFs could be approximated by an or-
thogonal series expansion (Cencov and Nauk, 1962).
The performance and smoothness of the orthogonal
series density estimate depend strongly on the optimal
choice of the parameter kN which corresponds to the
number of terms in the series expansion used. Rather
than arbitrarily choosing the value of kN for each class
to estimate the Patrick-Fisher distance (dPF), we pro-
pose to select the number of terms that minimize the
mean integrated square error (MISE) of the d̂PF . The
remaining of the paper is organized as follows. In
section 2, we review the orthogonal series density es-
timator. The LDA method and the one based on the
d̂PF are recalled in Section 3. After that, we propose
a novel rule for selecting the optimal values of kN for
d̂PF . Experimental results both on simulated data and
on handwritten digits database are given in Section 4.
Section 5 gives a conclusion of the paper.

2 ORTHOGONAL SERIES
DENSITY ESTIMATION

In the following, we just recall the orthogonal series
density estimation method by presenting its essen-
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tial convergence studies detailed in (Beauville, 1978).
The orthogonal series estimator of the PDF of a given
sample Xi assumed to follow the same distribution
could be obtained by the following limited Fourier se-
ries expansion:

f̂kN (x) =
kN

å
m=0

âm;Nem(x) (1)

Where fem(x)g is a complete and orthogonal basis
of functions. Here kN is called the truncation value
or sometimes the smoothing parameter. It represents
an integer depending on the sample size N. The
Fourier coefficients estimators fâm;Ng could be writ-
ten according to the sample set of random variable
X = (x1; :::;xN) as:

fâm;Ng=
1
N

N

å
i=1

em(xi) (2)

The convergence of this orthogonal series density
estimator depends on the choice of kN . Kronmal and
Tarter investigated a method for the determination of
the optimal choice of kN (Kronmal and Tarter, 1968).

2.1 Smoothing Parameter Selection for
Orthogonal Density Estimation

Convergence theorems have been established to find
the optimal value of kN for several error criteria.
Among these criteria the MISE between the theoreti-
cal PDF and its estimate f̂kN can be expressed by:

MISE = E(
Z
j f (x)� f̂kN (x)j

2dx) (3)

Where E(:) is the expectation operator.
By replacing f̂kN (x) by its orthogonal density es-

timate and after some calculations given in (Kronmal
and Tarter, 1968), the MISE could be written as fol-
low:

MISE( f̂kN (x))’
1

N�1

kN

å
i=0

[2d̂i� (N +1)â2
i;N ]+

¥

å
i=0

a2
i

(4)
Where

d̂i =
1
N

N

å
j=1

e2
i (x j) (5)

As
¥

å
i=0

a2
i does not depend on kN then searching for

kN which minimize the MISE( f̂kN (x)) is the same to
minimize the following expression:

J(kN) =
1

N�1

kN

å
i=0

[2d̂i� (N +1)â2
i;N ] (6)

Figure 1: Behavior of J(kN) against kN (k�N correspond to
the minima of J(kN)).

Kronmal and Tarter (Kronmal and Tarter, 1968)
indicated the existence of an optimal value of kN that
minimize the J(kN). They proved that kN has a value
much smaller than the sample size N. Their strategy
for determining the optimal value of kN consists on
the following rule. Starting from kN = 1 and increase
by 1 this value until J(kN) increase. The optimal value
will be the value of kN just before J(kN) increase.
This strategy is called stopping rule. Since J(kN) may
have multiple local minima, to avoid being trapped at
a local minimum, one cannot simply increase m incre-
mentally until J(kN+1)> J(kN). For this reason, Kro-
nmal and Tarter give an improvement on this rule by
suggesting to stop the rule only if we obtain a certain
sequence length of DJ(kN) = (J(kN)� J(kN+1))< 0.
This rule is adopted latter in (Beauville, 1978) and
(Wong and Wang, 2005).

We give the following experience to illustrate this
strategy. We generate a sample set of random variable
X from a multimodal distribution composed of the su-
perposition of two Gaussians with the following pa-
rameters µ1 = 1, Var1 = 2 and µ2 = 3, Var2 = 1. Here
µ and Var correspond respectively to the mean and
the variance of X . In Figure 1, we plot J(kN) against
kN for different values of sample size. The optimal
values obtained are equal to 4, 6 and 15 respectively
to sample size equal to 100, 1000 and 10000. This
experimental results show that the optimal number of
terms for the orthogonal density estimation is much
smaller than the sample size. In addition the error
J(kN) increases monotonically from all values greater
than the optimal kN . In the next section, we will re-
view a standard method for dimensionality reduction
and the one we investigated based on the d̂PF .

3 DIMENSIONALITY
REDUCTION

The goal of a dimensionality reduction is to project
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high dimensional data samples in a low dimensional
space in which groups of data are the most sepa-
rated. In the following subsections, we recall the LDA
method and the one based on the d̂PF . We also present
a novel rule for selecting the optimal smoothing pa-
rameters values to improve the convergence of the
d̂PF .

3.1 Linear Discriminant Analysis
Method

The LDA is a widely used method for dimensionality
reduction. It intends to reduce the dimension, so that
in the new space, the between class distances are max-
imized while the within class ones are minimized. To
that purpose, LDA considers searching for orthogonal
linear projection matrix W that maximizes the follow-
ing so-called Fisher optimization criterion (Fukunaga,
1990) :

J(W ) =
trace(W T SbW )

trace(W T SWW )
(7)

SW is the within class scatter matrix and Sb is the
between class scatter one. Their two well known ex-
pressions are given by:

SW =
c

å
k=1

pkE((X�µk)(X�µk)
T ) (8)

Sb =
c

å
k=1

pk(µk�µ)(µk�µ)T (9)

Where µk is the conditional expectation of the
original multidimensional random vector X relative to
the class k. µ corresponds to the mean vector over all
classes. c is the total number of classes and pk de-
note the prior probability of the kth class. E(:) is the
expectation operator.

Because it’s not practical to find an analytical so-
lution W that maximizes the criteria J(W), one pos-
sible suboptimal solution is to choose W formed by
the d eigenvectors of S�1

W Sb those correspond to the
d largest eigenvalues. In general, the value of d is
chosen to be equal to the number of classes minus
one. After computation of W, the LDA method pro-
ceeds to the projection of the original data onto the
reduced space spanned by the vectors of W. Note that
this method is based only on first and second order
moments and thus it assumes that the different under-
lying distributions of classes are normally distributed.
This restrictive assumption constitutes a limitation to
using LDA and makes it fail when dealing with non-
Gaussian classes distributions.

3.2 Dimensionality Reduction using
Patrick-Fisher Distance based on
Orthogonal Series

Let recall the expression of the Patrick-Fisher dis-
tance dPF :

dPF = [
Z

X
jp1P1(x=w1)�p2P2(x=w2)j2dx]1=2 (10)

Here pi is the prior probability of class wi and
Pi(x=wi) denotes its conditional probability density.

The d̂PF (Ghorbel, 2011) is obtained by substitut-
ing the conditional probability density by its orthog-
onal estimation into the expression of the dPF . After
some computations given in (Ghorbel, 2011), the ex-
pression of the d̂PF could be written as follow:

d̂PF(W ) =
1

N2 (
N1

å
i=1

N1

å
j=1

KkN1
(<W jx1

i >;<W jx1
j >)+

N2

å
i=1

N2

å
j=1

KkN2
(<W jx2

i >;<W jx2
j >)�2Re(

N1

å
i=1

N2

å
j=1

Kmin(kN1;kN2)(<W jx1
i >;<W jx2

j >)))

(11)

Where < j > denotes the scalar product opera-
tor. xk

i is the ith observation of the kth class. Re(:)
correspond to the real part of complex number and
KkNi(x;y) is the kernel function associated to the or-
thogonal system of functions fem(x)g used (Ghorbel,
2011). fNigi2f1;2g is the sample size of the ith class
and N is the total size of all classes.

The d̂PF expression depends on fkNigi2f1;2g which
represent the number of terms to be used to estimate
the PDF of the ith class.

For dimensionality reduction purpose, this d̂PF is
considered as the criterion function to be maximized
with respect to a linear projection matrix W that trans-
form original data space onto a d-dimensional sub-
space so that classes are most separated. A linear pro-
jection matrix W that maximizes the d̂PF should be
found numerically. Since the equation of this estima-
tor is highly nonlinear according to the element of W
and an analytical solution is often practically not fea-
sible, we will resort to an optimization algorithm to
compute a suboptimal projection matrix W.

3.3 Smoothing Parameter Selection for
Orthogonal Patrick-Fisher Distance
Estimator

To determine the optimal numbers of fkNigi2f1;2g to
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be used for estimating the d̂PF , we propose to con-
sider those minimizing the MISE criteria of this esti-
mator. We define this latter as:

MISE = J(kN1;kN2) = E(jdPF � d̂PF j2) (12)
Note that the simplicity of the MISE expression

for orthogonal density estimator does not seem to be
the same for the d̂PF . Hence, a numerical evaluation
of kN1 and kN2 is extremely complex. For solving the
optimal choice problem for the d̂PF , we propose to use
for each class orthogonal density estimator the opti-
mal value determined by the method described in sec-
tion 2. Rather than used a pre-specified values, this
choice seems to be reasonable to minimize the MISE
of the d̂PF . To verify this purpose, we give the follow-
ing simulation study. We generate two samples data
from two different Gaussians distributions with pa-
rameters µ1 = 1, Var1 = 3 and µ2 = 3, Var2 = 1. Each
sample have a size equal to 1000. We vary kN1 from 1
to
p

N1 and kN2 from 1 to
p

N2 and we calculate d̂PF
for each pair (kN1;kN2) by considering kN1 terms and
kN2 terms to estimate respectively the PDF of the first
sample and the second one. The theoretical dPF can
be calculated since we have the analytical expression
of the Gaussian PDF of each sample. We approxi-
mate the integral in the expression of dPF by using
the Simpson’s method (Atkinson, 1989). To estimate
the expectation in the expression of J(kN1;kN2), we
generate samples one hundred times and we calculate
the means of the square difference between the dPF
and its orthogonal estimation d̂PF . Figure 2 shows the
values of J(kN1;kN2). The pair (kN1;kN2) that mini-
mizes J(kN1;kN2) is selected to be used as the optimal
values of kN1 and kN2.

Based on an extensive simulation, the values of
kN1 and kN2 which minimize respectively the orthog-
onal density estimate of the first class and the sec-
ond one give a sub-optimal solution to minimize
J(kN1;kN2). This choice could be useful when we
have no information about the PDFs of data which
corresponds generally to the case of real world data.

4 EXPERIMENTAL RESULTS

In this section, we intend to compare the perfor-
mances of the dimensionality reduction method based
on the d̂PF described above with the LDA both on sim-
ulated data and on real world dataset. To do that, we
evaluate the classification accuracy of a nonparamet-
ric Bayesian classifier that is applied on the projected
data onto the reduced space. We evaluate the classifi-
cation accuracy by counting the number of misclassi-
fied samples obtained by the classifier over all classes
of the projected data.

Figure 2: Values of J(kN1;kN2) against the different val-
ues of pair (kN1;kN2). In red color the selected minima of
J(kN1;kN2).

4.1 Experiment with Simulated Data

This experiment concerns the two-class case. Vec-
tors data from the first class are drawn from a multi-
variate Gaussian distribution with mean vector µ1 =
(3:::3)T . For the second class, vectors data are gen-
erated from a mixture of two multidimensional Gaus-
sians distributions. The first distribution has a mean
vector µ2 = (2:::2)T and the second has a mean vector
µ3 = (4:::4)T . We consider for all these distributions
the same covariance matrix å = 2I where I denotes
the identity matrix. The sample size for each class
is equal to 1000 and generated vectors have a dimen-
sion equal to 14. We search for the projection vector
W that map the generated data onto the optimal one-
dimensional subspace according to the two methods
of reduction studied. Note that the used system of the
orthogonal functions is the trigonometric one (Hall,
1982). After finding the projection vector W accord-
ing to each method, simulated data are projected onto
the reduced space. Then we applied a Bayesian clas-
sifier on the projected data obtained. Classification
results are summarized in Table 1. We remark that the
dimensional reduction accuracy of the method based
on the d̂PF is better than the LDA.

Table 1: Classification results of experiment with simulated
data.

LDA
method

Method
based on d̂PF

Misclassification
rate 0.47 0.22

The LDA method fails to find an optimal subspace
in which satisfactorily class separation is obtained
since the original simulated data contain multimodal
distribution. However, the method based on the d̂PF
succeeds to overcome the restriction of unimodality.
The success of this latter method can be explained by
the fact that the d̂PF based method accounts for higher
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order statistics and not just for the second order as in
the LDA.

4.2 Experiment with Real World Data

In this experiment, we consider a sample set selected
from the publicly available MNIST database contain-
ing binary images of handwritten digits. From this
database we consider a subset formed by two classes
of digits. Each class contains 1000 randomly selected
digits. Figure 3 shows some examples of selected
digits. Each digit is described by a features vector
which is invariant under planar rotation, translations
and scale factors. We denote the features vector by
Ik. Among the large proposed invariant descriptors
for planar contour shape in the literature, we con-
sider here three different kinds of contour-descriptors.
The first one is well known and is called Fourier de-
scriptors (Ghorbel and Bougrenet, 1990). The second
one introduced by Crimmins admits the completeness
property (Crimmins, 1982). Third one introduced in
(Ghorbel, 2011) gives in the same time the complete-
ness and the stability properties to the descriptors. In
the following, we recall the definitions of these three
set of invariants descriptors. Let denote by g a nor-
malized arc length of a closed contour which repre-
sents the exterior handwritten boundary and by Ck(g)
its corresponding Fourier coefficient with order k.

4.2.1 Fourier Descriptors Set

fIkg=
jCk(g)j
jC1(g)j

8 k � 2 (13)

4.2.2 Crimmins Descriptors Set8>>>><>>>>:
Ik0 = jCk0(g)j
Ik1 = jCk1(g)j(
8 k 6= k0 and k 6= k1 :

Ik =Ck0�k1
k (g)Ck1�k

k0
(g)Ck�k0

k1
(g)

(14)

4.2.3 Ghorbel Descriptors Set8>>>>>>>>>>><>>>>>>>>>>>:

Ik0 =Ck0(g)

Ik1 =Ck1(g)8>>>>>><>>>>>>:

8 k 6= k0 and k 6= k1 :
Ik = 0 i f jCk0(g)j= 0 or jCk1(g)j= 0

Ik =
Ck0�k1

k (g)Ck1�k
k0

(g)Ck�k0
k1

(g)

jCk0(g)jk1�k�pjCk1(g)jk�k0�q otherwise

(p and q are two f ixed positive f loats)
(15)

Figure 3: Some examples of digits selected from MNIST
database.

We compute Fourier coefficients from digit out-
line boundary and we construct the three invariants
descriptors sets as defined above. We consider for
each digit shape from our selected sample the first
fourteen Fourier coefficients. After dimensional re-
duction with the two methods studied, classification
results are computed and are illustrated in Table 2.

We notice that the two dimensionality reduction
methods perform similar when using the Fourier de-
scriptors dataset and Ghorbel descriptors. These re-
sults can be justified by the fact that these two sets
of descriptors verify the property of stability intro-
duced in (Ghorbel, 2011). This property expresses the
fact that low level distortion of the shape does not in-
duce a noticeable divergence in the set of descriptors.
Hence, the distribution of the invariant descriptors as-
sociated to each class has one mode since in this case
we can assume that only the first and the second statis-
tical moments are needed to estimate their conditional
PDFs. This is not the case for Crimmins descriptors
since it does not verify the stability property so that
the induced classes PDFs could be multi-modal.

Table 2: Misclassification rate results of experiment with
real dataset.

LDA method Method based
on d̂PF

Fourier
descriptors
set

0.26 0.25

Crimmins
descriptors
set

0.38 0.15

Ghorbel
descriptors
set

0.1 0.1

5 CONCLUSIONS

In this paper we propose a rule for the determina-
tion of the optimal number of terms in an orthogo-
nal series for best approximation of the orthogonal
Patrick-Fischer distance estimator. When data are
multi-modal, experimental results both on simulated
data and on real dataset have shown that the orthogo-
nal Patrick-Fisher distance estimator gives better per-
formance in the mean of misclassification rate since it
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increases the probabilistic measure between the pro-
jected classes onto the reduced space and decreases
the number of the misclassified samples. Otherwise,
when the different conditional distributions are with
one mode, the LDA performance becomes similar.
Thus, LDA becomes preferable because of its relative
algorithmic simplicity. Simulation data and real data
basis are tested in order to prove the importance of the
adjustment of the orthogonal Patrick-Fischer distance
estimator. In our future work, we will consider the
multi-class case.
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