
A Systematic Comparison of Semantic Integration Data Storage
Architectures for Multidisciplinary Systems

Estefanı́a Serral, Olga Kovalenko, Thomas Moser and Stefan Biffl
Christian Doppler Laboratory ”Software Engineering Integration for Flexible Automation Systems”

Vienna University of Technology, Vienna, Austria

Keywords: Multidisciplinary Projects, Data Integration, Ontologies, Querying Across Disciplines.

Abstract: Multidisciplinary projects typically rely on the contributions of various disciplines using heterogeneous en-
gineering tools. This paper focuses on the challenge of querying across different disciplines, which may be
influenced by the selection of a proper instance data storage architecture for storing the heterogeneous tool
data. Specifically, we have identified three different architectures: ontology file stores, triple stores and rela-
tional database stores. This paper systematically compares these architectures using an industrial case study
and analyses their selection according to important requirements such as performance and maintainability.

1 INTRODUCTION

Multidisciplinary projects bring together experts from
various engineering domains and organizations that
work in a heterogeneous engineering environment.
This environment involves a wide range of models,
processes, and tools that were originally not designed
to cooperate seamlessly. In order to reach the com-
mon goal of developing software products in the en-
gineering team, it is important to share the neces-
sary knowledge for common work processes between
engineering-domain experts. These experts usually
want to use their well-known local tools and data
models, and additionally want to access data from
other tools in their local syntax. Thus, experts have to
invest considerable effort to bridge the semantic gaps
between common project-level engineering concepts
and the diverse local data representation.

In this context, the three major challenges of
semantic data integration in the area of multidisci-
plinary projects can be defined as (a) the definition
of mappings between local and common engineer-
ing concepts for integrating and sharing the neces-
sary data; (b) the transformations between local en-
gineering concepts used in the different domains fol-
lowing these mappings; and (c) queries to local engi-
neering concepts using the syntax of the common en-
gineering concepts. The first two challenges have al-
ready been addressed in recent research (Moser et al.,
2011)(Moser and Biffl, 2012) by proposing a seman-
tic data integration framework, the so-called Engi-

neering Knowledge Base (EKB). The EKB maps the
data elements of local tool data models (models of
tools which are relevant for supporting specific engi-
neering tasks), to the respective elements in a com-
mon project-wide or domain-wide data model (Moser
and Biffl, 2012), so called the Engineering Object
(EO) Model. The EKB models the tool data mod-
els and the common data model using ontologies and
explicitly represent the mappings using a machine-
understandable ontology syntax.

This paper focuses on the third challenge, which is
the ability of performing queries in a general project
context and independently of local engineering tools.
To query the knowledge of the local tool data mod-
els using the EKB, we apply the mediator architec-
ture(Wiederhold, 1992). Mediated query systems rep-
resent a uniform data access solution by providing
a single access point (so called common model) for
querying various data sources. A mediator contains
a global query processor which is used to send sub-
queries to local data sources. The local query results
are then combined and returned back to the query pro-
cessor. Using the EO ontology model (the common
model), the structure of the query is more intuitive for
the user because it corresponds more to the users ap-
preciation of the project relevant information. We use
SPARQL(Pérez et al., 2006) for describing a query
over the EO ontology (i.e., the mediator) since it is the
W3C standard for querying ontologies. SPARQL syn-
tax makes virtually all join operations implicit, mak-
ing the queries more compact and easier to describe

190 Serral E., Kovalenko O., Moser T. and Biffl S..
A Systematic Comparison of Semantic Integration Data Storage Architectures for Multidisciplinary Systems.
DOI: 10.5220/0004318101900197
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 190-197
ISBN: 978-989-8565-42-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

and to get them right with less debugging time spent.
This SPARQL query is decomposed and rewritten in
order to be executed over the local tool data models.
The SPARQL queries are locally evaluated and the re-
sults are returned to the mediator site.

With a specific focus on querying in the EKB,
different factors may have an impact on important
project requirements (such as scalability, mainte-
nance, semantic expressiveness, etc.). In this paper,
we focus on the study of three different semantic inte-
gration data storage architectures that can be used in
the EKB for storing the instance data (i.e., the individ-
uals). The paper presents a comparative study of these
architectures, which can be classified as follows:

� Ontology file stores: the ontology definition and
the data instances are stored using file systems
based on ontology languages.

� Triple stores: the ontology definition and the data
instances are specified using an ontology lan-
guage, but the data instances are internally stored
using special ontology-based databases capable of
storing triples (i.e., subject-predicate-object ex-
pressions, which is the specific form of describing
data using an ontology).

� Relational databases stores: the ontology defini-
tion is defined in an ontology language, but the
data instances are stored in relational databases.

The remainder of this paper is structured as fol-
lows: Section 2 pictures a typical multidisciplinary
case study, which is situated in the hydro power plant
engineering domain. Sections 3 - 5 present the three
introduced architectures for data storage. Section
6 describes how the data of the case study can be
queried depending on the applied data storage archi-
tecture. Further, these architectures are discussed and
compared in Section 7. Finally, Section 8 concludes
the paper and identifies further work.

2 CASE STUDY: HYDRO POWER
PLANT ENGINEERING

A typical example of multidisciplinary system is the
engineering of hydro power plants. Figure 1 shows
two engineering tool data models corresponding to
two different domains: software engineering (SE)
domain and mechanical engineering (ME) domain.
These tools contain local data sources, which produce
and/or consume data with heterogeneous data struc-
tures. Specifically, the data model of the SE domain
contains information about Programmable logic con-
troller (PLC) variables; and the data model of the ME

Listing 1: Mapping M1.

ME: S en so r (? s e n s o r) ^
ME: hasID (? s e n s o r , ? s e n s o r i d) ^
SE : V a r i a b l e (? v a r) ^
SE : d e v i c e I D (? var , ? s e n s o r i d) !
S i g n a l (? s i g n a l) ^
: c o r r V a r i a b l e (? s i g n a l , ? v a r) ^
: c o r r S e n s o r (? s i g n a l , ? s e n s o r)

domain comprises information about monitoring de-
vices. Figure 1 shows a simplified version of these
models. The left hand side shows the concept Sensor
from the ME domain, while the right hand side shows
the concept Variable from the SE domain. The at-
tribute Type of the concept Sensor could be defined as
either analog or digital, which directly correlates to
the attribute Type of the concept Variable that could
be defined as either float or boolean. These two con-
cepts can be mapped to the common engineering ob-
ject Signal which is shown in the middle of the figure.
The upper side of the figure shows some instances of
these data models.

The EKB facilitates the efficient data exchange
between these tools by defining the tool data mod-
els and the EO model using ontologies and making
explicit and in machine-understandable way the map-
ping among them. The EO in this system is identified
as the Signal concept, which is composed by: a vari-
able, a sensor, and a property to indicate whether the
signal is consistent or not. Thus, the Signal EO links
the two domain-specific data models (i.e., the ME on-
tology and the SE ontology).

For representing the mappings that link the local
tool ontologies with the EO ontology, we specify that
the properties corrVariable and corrSensor of the Sig-
nal EO are object properties; and that their range is
Variable (from the SE ontology) and Sensor (from
the ME ontology), respectively. In addition, we use
SWRL rules1. In particular, three mappings are de-
fined. The first mapping (see Listing 1) defines that if
a variable is linked with a sensor then there must be a
corresponding signal in the EO ontology.

The next two mappings (see Listing 2 and Listing
3) basically mean that if a value obtained from a mon-
itoring device sensor is represented in PLC code as a
variable var then the types of these two must conform
to each other (”digital” and ”boolean”; ”analog” and
”float”). Otherwise there is an inconsistency in the
signal description that has to be checked by domain
experts.

Next we describe the different semantic integra-
tion data storage architectures that can be applied in
the EKB according to the store used for the engineer-

1http://www.w3.org/Submission/SWRL

A�Systematic�Comparison�of�Semantic�Integration�Data�Storage�Architectures�for�Multidisciplinary�Systems

191

Software

Engineer

Mechanical

Engineer

Mechanical

Engineering Domain

Software Engineering

Domain

Engineering Object Ontology

Engineering Knowledge Base

Definition

 Signal

corrVariable

corrSensor

notConsistent: Boolean

ME Ontology

 Sensor

hasID: int

hasType: (“digital”, “analog”)

SE Ontology

Variable

hasName: String

hasType: (“boolean”, “float”)

hasDeviceID: int

boolean
boolean

float
float

Type

i_ls_01
o_ls_01
i_ts_02
i_ts_03

Name

1100
1101
1102
1103

DeviceID

Variable

digital
analog
analog
digital

Type

1100
1101
1102
1103

ID

Sensor

Engineering Data Instances

Figure 1: EKB for Automation Systems Engineering (adapted from (Moser and Biffl, 2012)).

Listing 2: Mapping M2.

SE : hasDevice ID (? var , ? s e n s o r i d) ^
SE : hasType (? var , ” b o o l e a n ”) ^
ME: hasID (? s e n s o r , ? s e n s o r i d) ^
ME: hasType (? s e n s o r , ” a n a l o g ”) !
: n o t C o n s i s t e n t (? s i g n a l , t r u e)

Listing 3: Mapping M3.

SE : hasDevice ID (? var , ? s e n s o r i d) ^
SE : hasType (? var , ” f l o a t ”) ^
ME: hasID (? s e n s o r , ? s e n s o r i d) ^
ME: hasType (? s e n s o r , ” d i g i t a l ”) !
: n o t C o n s i s t e n t (? s i g n a l , t r u e)

ing data instances. Afterwards, we use the explained
case study for showing how the data is queried in each
one of the architectures.

3 USING ONTOLOGY FILE
STORES

The engineering data instances can be directly stored
as individuals together with the corresponding local
tool ontology on XML-based semantic files, either in
a single file or distributed among several segments
across several files.

For managing and querying the data, this ap-
proach loads the whole ontology model data (i.e.,
the engineering knowledge base definition and the
data instances) into the memory. This allows the
data to be queried using SPARQL queries through

the EO ontology, but also introduces high memory
cost. For instance, the Jena framework2, Oracle
11g3 and Sesame4 provide this type of store, charg-
ing the models in memory. The family of seman-
tic RDF5 (Resource Description Framework) stor-
age solutions OWLIM(Bishop et al., 2011) also pro-
vides with SwiftOWLIM, which is an in-memory
RDF database. It uses optimized indexes and data
structures to be able to process tens of millions of
RDF statements on standard desktop hardware. Jena,
Sesame and SwiftOWLIM source code are provided
free of charge for any purpose.

Some approaches, such as (Novák and Sindelár,
2011) (Battista et al., 2007) have successfully used
this architecture; however, in both approaches the
users plan to use other more sophisticated storage
solutions to make their approaches scalable to large
models. More detail about these approaches can be
found in (Serral et al., 2012).

This type of store is considered very useful for
tests or small examples, but in general it is not rec-
ommended for working with large models.

4 USING TRIPLE STORES

In the same way that the engineering data instances
can be stored in files and managed in memory, they
can be also stored and managed using triple stores

2http://jena.apache.org
3http://www.oracle.com
4http://www.openrdf.org
5http://www.w3.org/RDF/

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

192

(one triple store for each tool ontology). In a triple
store, the local tool ontologies and the instances are
specified using ontology languages; however, the in-
stances (i.e., the individuals) are internally managed
using special databases built specifically for storing
triples. These databases are also called semantic
stores or semantic web databases. In this way, the
database management is transparent for users and the
data can be queried using SPARQL queries through
the EO ontology.

The generic schema of these special databases cor-
responds to one table that contains three columns
named Subject, Predicate and Object. Thus, it re-
flects the triple nature of RDF statements. The triple
store can be used in its pure form (Oldakowski et al.,
2005), but most existing systems add several modi-
fications to improve performance or maintainability.
A common approach, the so-called normalized triple
store, is adding two further tables to store resource
URIs and literals separately, which requires signifi-
cantly less storage space (Harris S, 2003). Further-
more, a hybrid of the the normalized triple store can
be used, allowing the values to be stored themselves
either in the triple table or in the resources table6.

By using this approach, users can manage the data
in an ontology language (e.g., OWL or RDF) and use
SPARQL queries having a better performance than
ontology file stores thanks to the use of the databases.

Some relevant examples of these stores are TDB4

and BigOWLIM (Lu et al., 2007). The TDB com-
ponent is provided by the Jena framework for op-
timized RDF storage and query. TDB supports the
full range of Jena APIs and TDB performs and scales
well. BigOWLIM is designed for large data volumes
and uses file-based indices that allow it to scale, po-
sitioning it as an enterprise-grade database manage-
ment system that can handle tens of billions of state-
ments.

Some examples of applications of this architecture
are (Klieber et al., 2009)(Miles et al., 2010). Both of
them have used Jena TDB triple store and specifically,
(Klieber et al., 2009) shows the feasibility of using
TDB with a population of about 4.5 million triples.
More detail about these approaches can be found in
(Serral et al., 2012).

5 USING RELATIONAL
DATABASE STORES

Applying this architecture, the local engineering tool

6Jena2 Database Interface - Database Layout. http://
jena.sourceforge.net/DB/layout.html

ontologies are specified using an ontology language,
while the engineering data instances are stored us-
ing relational databases (one relational database for
each tool ontology). In this case, only ontology
classes, their hierarchies, object and data properties,
axioms and restrictions are extracted into a mem-
ory. Instances have to be accessed by queries to the
databases. Thus, the SPARQL queries written for
querying the EO ontology have to be finally translated
into the query language associated with the database.

This process can be defined as follows: to query
the overlapping engineering concepts described in the
EO ontology, a SPARQL query is specified. This
query is then automatically transformed to the terms
of the engineering tool ontologies, which include
concepts that are mapped to the concepts of the
common ontology that were included in the origi-
nal query. These engineering tool ontology-specific
queries are then executed using the query language
of the database where the knowledge is stored, and
the results are obtained. Then, these results are again
transformed into their representation in the EO on-
tology by exploiting the mappings between tool on-
tologies and the EO ontology. Finally, the combined
results are returned using the representation described
in the EO ontology.

Several relational databases have been already
proposed for applying this architecture. For instance,
the Jena framework provides the SDB4 component
that allows the data of the model to be stored in a re-
lational database. The storage is provided by a SQL
database and many databases, such as Oracle, Post-
greSQL, MySQL and MS SQL, are supported. A
SDB store can be accessed and managed with the Jena
API and can be queried using SPARQL. SDB is able
to perform well up to 100 million triples.

Another example is D2RQ7, which is an RDF
based platform that is used to access the content of
relational databases without having to replicate it into
an RDF store. The D2RQ is open source software
published under the Apache license.

Minerva(Zhou et al., 2006) is a component of
the IBM Integrated Ontology Development Toolkit
(IODT). The query language supported by Minerva
is SPARQL. Using Minerva, one can store multi-
ple large-scale ontologies in different ontology stores,
launch SPARQL queries and obtain results listed in
tables or visualized as RDF graphs. Currently, Min-
erva can take IBM DB2, Derby8 and HSQLDB9 as
the back-end database.

Other examples are Oracle 10g RDBMS5, Sesame

7http://d2rq.org
8http://incubator.apache.org/derby
9http://www.hsqldb.org

A�Systematic�Comparison�of�Semantic�Integration�Data�Storage�Architectures�for�Multidisciplinary�Systems

193

on PostgreSQL10, and DLDBOWL 11.
This type of storage adopts binary tables for the

database, mapping the triples of the RDF graph to
these binary tables. The most common schema is
composed by a table for each class (resp. each prop-
erty) in an ontology; each class table stores all in-
stances belonging to the same class and each property
table stores all triples which have the same property
(Lu et al., 2007).

This architecture has been successfully applied
in several projects such as (Calvanese et al.,
2011)(Wiesner et al., 2011)(Tinelli et al., 2009).
More detail about these approaches can be found in
(Serral et al., 2012).

6 APPLYING THE DATA
STORAGE ARCHITECTURES
TO THE CASE STUDY

Using the EKB approach, comprehensive queries
against the project data can be done in terms of EOs,
i.e. using the classes and properties defined in the EO
ontology. To be evaluated over the engineering data
instances, which are located in data storages, such
queries must be transformed. First, the initial query
(in terms of EO ontology) must be rewritten in terms
of the engineering tool ontologies. The rewriting pro-
cess bases on mappings that bind the EO ontology
with the engineering tool ontologies.

Listing 4: Query Q1.

SELECT ? s i g n a l
WHERE f

? s i g n a l n o t C o n s i s t e n t t rue ;
g

In the hydro power plant engineering case study
described in Section 2, two different engineering tool
ontologies are integrated using the Signal EO. Let’s
consider that project engineers want to obtain a list
of all signals that are not consistent. Such kinds of
queries can be expressed in SPARQL as shown in
Listing 4 (in terms of engineering object ontology).

Based on mappings M1, M2 and M3 (see Listings
1, 2 and 3) the query Q1 can be rewritten in terms
of engineering tool ontologies, resulting in the two
queries Q2 (see Listing 5) and Q3 (see Listing 6).

10http://www.postgresql.org
11http://swat.cse.lehigh.edu/downloads/dldb-owl.html

Listing 5: Query Q2.

SELECT ? var , ? s e n s o r
WHERE f

? v a r a SE : V a r i a b l e ;
? v a r SE : hasDevice ID ? s e n s o r i d ;
? v a r SE : hasType ” b o o l e a n ” ;
? s e n s o r a ME: S en so r ;
? s e n s o r ME: hasID ? s e n s o r i d ;
? s e n s o r ME: hasType ” a n a l o g ” ;

g

Listing 6: Query Q3.

SELECT ? var , ? s e n s o r
WHERE f

? v a r a SE : V a r i a b l e ;
? v a r SE : hasDevice ID ? s e n s o r i d ;
? v a r SE : hasType ” f l o a t ” ;
? s e n s o r a ME: S en so r ;
? s e n s o r ME: hasID ? s e n s o r i d ;
? s e n s o r ME: hasType ” d i g i t a l ” ;

g

If the engineering tool data instances are stored
in ontology file stores or triple stores, then Q2 and
Q3 can be already executed to obtain results since
SPARQL queries can be executed across several on-
tology models. However, if the data is stored in
databases then several further transformations will be
needed before the queries could be executed over the
data. Basically, Q2 and Q3 must be translated into
SQL queries to be evaluated over the databases. This
can be done in 2 steps. First of all, since each query
has terms from more than one database, evaluating
them independently over SE or ME database would
fail. This problem can be solved by creating a set of
independent queries.

For the sake of brevity we show only the rewrit-
ing for Q2 (as it will be similar for Q3). Listing 7
shows the rewritten SPARQL query for the SE en-
gineering tool ontology, while Listing 8 shows the
rewritten SPARQL query for the ME engineering tool
ontology.

Listing 7: Query Q4.

SELECT ? var , ? s e n s o r i d
WHERE f

? v a r a SE : V a r i a b l e ;
? v a r SE : hasDevice ID ? s e n s o r i d ;
? v a r SE : hasType ” b o o l e a n ” ;

g

Listing 8: Query Q5.

SELECT ? s e n s o r , ? s e n s o r i d
WHERE f

? s e n s o r a ME: S en so r ;
? s e n s o r ME: hasID ? s e n s o r i d ;
? s e n s o r ME: hasType ” a n a l o g ” ;

g

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

194

These independent queries can be finally trans-
lated to SQL and evaluated over the domain databases
as shown in Listing 9 and Listing 10.

Listing 9: Query Q6.

SELECT �
FROM Se ns o r s
WHERE s . hasType = ” a n a l o g ”

Listing 10: Query Q7.

SELECT �
FROM V a r i a b l e v
WHERE v . hasType = ” b o o l e a n ”

After obtaining the results, an intermediate join
should be done to obtain the correct answer for the
initial query.

7 DISCUSSION

The comparison among the presented methodologies
is summarized in Table 1. Based on the consulted
literature, the following aspects have been analyzed
and compared:

� Query and Result Transformations. It indicates
if a SPARQL query can be directly executed or it
has to be transformed to other query languages to
be executed. If the query has to be transformed,
then another transformation is also needed to re-
turn the results as asked in the SPARQL query.
Ontology files and triple stores allow SPARQL
queries to be directly executed across the on-
tology models. However, the use of relational
databases requires: 1) the SPARQL queries to be
transformed to the corresponding relational query
language; and 2) the obtained results from the
databases to be transformed in accordance to the
data asked in the SPARQL query.

� Scalability. It indicates how efficient the architec-
ture for accessing the data is (the more response
time, the less efficiency) and how it scales to large
data applications.
Ontology files are very efficient for small mod-
els greatly reducing the load and update time;
however, when the data grows in volume, this
storage becomes unsuitable (Shen and Huang,
2010)(Vysniauskas et al., 2011).
The performance of the relational database
methodology considerably varies according to the
used database (Shen and Huang, 2010); however,
this methodology provides many query optimiza-
tion features, thereby contributing positively to

query response time (Lu et al., 2007). Accord-
ing to the Berlin SPARQL Benchmark (Bizer and
Schultz, 2009), the comparison of the fastest triple
store with the fastest relational database store
shows that the last one has a better overall per-
formance with increasing dataset size.

� Reusability of Existing Knowledge. It indicates
the facilities provided for reusing data instances
stored in other existing databases or ontologies.
Nowadays, there is a massive amount of data
stored in SQL databases with associated technol-
ogy, infrastructure and know-how (Sami Kiminki
and Hirvisalo, 2010). The use of relational
databases facilitates to reuse this data. However,
in a similar way, ontology files and triple stores
facilitate the reuse of data stored in a compatible
ontology language.

� Support for SQL Queries: Queries can be per-
formed over the ontology (high level of abstrac-
tion), but also directly over the database (lower
level of abstraction).
Only the use of relational databases supports SQL
queries; in this way, users and applications can
perform queries at both ontology level (higher
level) and database level (lower level).

� Facilities to Use Semantic Technologies. The use
of semantic standard languages like OWL or RDF
facilitates the use of numerous semantic technolo-
gies available to perform tasks such as data man-
agement (e.g., by using Protégé or Jena), rea-
soning (using reasoners such as Pellet, Racer12,
etc.), ontology mapping or model transformation.
For instance, given the mapping between a source
ontology and a target ontology, the OntoMerge
(D. Dou and Qi, 2003) tool can translate instances
that conform to the source ontology to instances
conforming to the target ontology.
Ontology files and triple stores represent the data
using semantic standard languages; therefore,
these methodologies facilitate the use of existing
semantic technologies.

� Maintenance. Facilities provided in order to per-
fect the system, to adapt the system and to correct
the system (Lientz and Swanson, 1980).
In ontology files and triple stores both the knowl-
edge base definition and the data instances can
be maintained using semantic tools (e.g., Protégé)
and middlewares (e.g., Jena). Using relational
databases, the knowledge base definition and the
data instances are managed differently. While the
ontologies’ definition can be managed by using

12http://www.racer-systems.com/

A�Systematic�Comparison�of�Semantic�Integration�Data�Storage�Architectures�for�Multidisciplinary�Systems

195

Table 1: Comparative table of the presented data storage methodologies.

 Ontology Files Triple Stores Relational Databases

Query and Result
transformations

Not needed Not needed Needed

Scalability Low

Medium/High High

Reusability of
existing data

Facilities to reuse data
stored in a compatible
ontology language

Facilities to reuse data
stored in a compatible
ontology language

Facilities to reuse data stored
in relational databases.

Support for SQL
queries

Yes No Yes

Facilities to use
semantic

technologies

Yes Yes Only for the knowledge base
definition

Maintenance Using semantic tools. Using semantic tools. Knowledge base definition:
using semantic tools.
Database schema has to be
synchronized with the
ontologies when they change.
Data instances: using
relational database tools.

Semantic
expressiveness

High High Low

Available tools SwiftOWLIM, Jena
framework, Oracle 11g,
Sesame, etc.

Jena TDB, BigOWLIM,
etc.

Jena SDB, D2RQ, Minerva,
Oracle 10g, RDBMS, Sesame
on PostgreSQL, and
DLDBOWL, etc.

semantic tools, the data instances have to be man-
aged using relational database tools, at a lower
level of abstraction. In addition, the schema of
the databases has to be modified (e.g., deleting or
creating tables) when ontologies change.

� Semantic Expressiveness It indicates if the archi-
tecture provides total support for representing se-
mantics.
Since ontology files and triple stores use semantic
languages for representing the data instances, they
can be semantically represented at a high level of
abstraction (using the concepts defined in the on-
tologies, which are close to the domain); there-
fore, they provide more semantic expressiveness
than relational databases, where semantics may be
lost in the process for transforming the data into a
relational schema (Uschold and Gruninger, 2004).

� Available Tools. It gives some examples of cur-
rent available tools for applying each one of the
architectures.

8 CONCLUSIONS AND FURTHER
WORK

In this paper, we have performed a systematic com-
parison of three different data storage architectures

with a specific focus on querying data over heteroge-
neous engineering tools. We have summarized avail-
able technologies that make these architectures pos-
sible and also research approaches that have applied
these technologies successfully.

The comparison shows that the data storage selec-
tion is an important architectural decision that must
be made according to the requirements of the soft-
ware project to develop. Thus, ontology file stores are
better for testing and for small data models; however,
they are not scalable for large models, for which triple
stores and relational databases are more appropriate.

The management of the data in triple stores is
quite efficient and invisible for the users. Further-
more, these stores provide more semantic expres-
siveness and allow SPARQL to be directly executed
over the data instances. In addition, triple stores and
ontology file stores allow the use of semantic web
tools facilitating the reusability of existing data rep-
resented in compatible ontology languages. On the
other side, the use of relational database stores pro-
vides a very good performance for accessing, manag-
ing and querying the data of large models. In addi-
tion, this type of store facilitates reusability of exist-
ing knowledge in SQL databases.

Besides the data store, other factors have an in-
fluence in the aspects discussed in Section 7. For in-
stance, storage layouts and the order of query patterns

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

196

have significant effects on query performance (Shen
and Huang, 2010). As further work, we plan to eval-
uate these effects in our case study.

ACKNOWLEDGEMENTS

This work has been supported by the Christian
Doppler Forschungsgesellschaft and the BMWFJ,
Austria.

REFERENCES

Battista, A. D. L., Villanueva-Rosales, N., Palenychka, M.,
and Dumontier, M. (2007). Smart: A web-based,
ontology-driven, semantic web query answering ap-
plication. In Semantic Web Challenge, volume 295.
CEUR-WS.org.

Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev,
Z., and Velkov, R. (2011). Owlim: A family of scal-
able semantic repositories. Journal of Web Semantics,
2(1):3342.

Bizer, C. and Schultz, A. (2009). The berlin SPARQL
benchmark. Int. J. Semantic Web Inf. Syst, 5(2):1–24.

Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M.,
Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi,
M., and Savo, D. F. (2011). The mastro system for
ontology-based data access. Semantic Web, 2(1):43–
53.

D. Dou, D. M. and Qi, P. (2003). Ontology translation on
the semantic web. In Proceedings of International
Conference on Ontologies, Databases and Applica-
tions of Semantics.

Harris S, G. N. (2003). 3store: Efficient bulk rdf storage.
In Proceedings of the 1st International Workshop on
Practical and Scalable Semantic Systems, PSSS 2003.

Klieber, W., Sabol, V., Muhr, M., and Granitzer, M. (2009).
Using ontologies for software documentation. In Pro-
ceedings of Malaysian Joint Conference on Artificial
Intelligence.

Lientz, B. P. and Swanson, E. B. (1980). Software main-
tenance management: a study of the maintenance of
computer application software in 487 data processing
organizations. Addison-Wesley.

Lu, J., Ma, L., 0007, L. Z., Brunner, J.-S., Wang, C., Pan,
Y., and Yu, Y. (2007). Sor: A practical system for on-
tology storage, reasoning and search. In VLDB, pages
1402–1405. ACM.

Miles, A., Zhao, J., Klyne, G., White-Cooper, H., and Shot-
ton, D. M. (2010). Openflydata: An exemplar data
web integrating gene expression data on the fruit fly
drosophila melanogaster. Journal of Biomedical In-
formatics, 43(5):752–761.

Moser, T. and Biffl, S. (2012). Semantic integration of soft-
ware and systems engineering environments. Systems,
Man, and Cybernetics, Part C: Applications and Re-
views, IEEE Transactions on, 42(1):38 –50.

Moser, T., Biffl, S., Sunindyo, W., and Winkler, D. (2011).
Integrating production automation expert knowledge
across engineering domains. International Journal
of Distributed Systems and Technologies (IJDST),
Special Issue on Emerging Trends and Challenges
in Large-Scale Networking and Distributed Systems,
2(3):88–103.

Novák, P. and Sindelár, R. (2011). Applications of ontolo-
gies for assembling simulation models of industrial
systems. In OTM Workshops, pages 148–157.

Oldakowski, R., Bizer, C., and Westphal, D. (2005). Rap:
Rdf api for php. In Proceedings of Workshop on
Scripting for the Semantic Web, SFSW 2005, at 2nd
European Semantic Web Conference, ESWC 2005.

Pérez, J., Arenas, M., and Gutierrez, C. (2006). Semantics
and complexity of sparql. In Cruz, I., Decker, S., Alle-
mang, D., Preist, C., Schwabe, D., Mika, P., Uschold,
M., and Aroyo, L., editors, The Semantic Web - ISWC
2006, volume 4273 of Lecture Notes in Computer Sci-
ence, pages 30–43. Springer Berlin / Heidelberg.

Sami Kiminki, J. K. and Hirvisalo, V. (2010). Sparql to
sql translation based on an intermediate query lan-
guage. In Proceedings of 6th International Workshop
on Scalable Semantic Web Knowledge Base Systems
(SSWS2010).

Serral, E., Kovalenko, O., Moser, T., and Biffl, S.
(2012). Semantic integration data storage archi-
tectures: A systematic comparison for automation
systems engineering. Technical report, Institute
of Software Technology and Interactive Sys-
tems. http://cdl.ifs.tuwien.ac.at/files/TechReportNo
TR2012.2.5.pdf.

Shen, X. and Huang, V. (2010). A framework for perfor-
mance study of semantic databases. In Proceedings of
the International Workshop on Evaluation of Semantic
Technologies (IWEST 2010).

Tinelli, E., Cascone, A., Ruta, M., Noia, T. D., Sciascio,
E. D., and Donini, F. M. (2009). I.m.p.a.k.t.: An in-
novative semantic-based skill management system ex-
ploiting standard sql. In Cordeiro, J. and Filipe, J.,
editors, ICEIS (2), pages 224–229.

Uschold, M. and Gruninger, M. (2004). Ontologies and
semantics for seamless connectivity. SIGMOD Rec.,
33(4):58–64.

Vysniauskas, E., Nemuraite, L., and Paradauskas, B.
(2011). Hybrid method for storing and querying on-
tologies in databases. Electronics and Electrical En-
gineering, 115(9).

Wiederhold, G. (1992). Mediators in the architecture of fu-
ture information systems. Computer, 25(3):38 –49.

Wiesner, A., Morbach, J., and Marquardt, W. (2011). In-
formation integration in chemical process engineering
based on semantic technologies. Computers & Chem-
ical Engineering, 35(4):692–708.

Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., and Pan, Y.
(2006). Minerva: A scalable owl ontology storage and
inference system. In ASWC, pages 429–443.

A�Systematic�Comparison�of�Semantic�Integration�Data�Storage�Architectures�for�Multidisciplinary�Systems

197

