
WebRTC using JSON via XMLHttpRequest and SIP over WebSocket
Initial Signalling Overhead Findings

Michael Adeyeye1, Ishmeal Makitla2 and Thomas Fogwill2
1Department of Information Technology, Cape Peninsula University of Technology, Cape Town, South Africa

2The Next Generation Network and Architecture Research Group, CSIR, Pretoria, South Africa

Keywords: WebRTC, IMS, SIP, Browser Communication.

Abstract: Web Real-Time Communication (WebRTC) introduces real-time multimedia communication as native capa-
bilities of Web browsers. With the adoption of WebRTC the Web browsers will be able to use WebRTC to
communicate with one another (peer-to-peer), and with WebSocket servers such as Mobicents SIP Servlets
and other server technologies that support WebSocket communication to enable SIP-to-WebRTC commu-
nication. This position paper discusses the two common methods of doing real-time communication in Web
browsers through WebRTC. The methods are JavaScript Object Notation (JSON) via XMLHttpRequest (XHR)
and Session Initiation Protocol (SIP) via WebSocket. A three-user WebRTC video chat prototype application
was developed and used to evaluate both methods. Additional signalling overhead introduced into a browser
by each method was determined. The results showed WebRTC-SIP/WS has more overhead than WebRTC-
JSON/XHR. This signalling overhead findings are useful in informing the WebRTC working groups in terms
of additional overhead introduced by proposed WebRTC methods, the finding could also help application de-
velopers make decision on their choice of technologies and protocols when developing WebRTC-supported
applications.

1 INTRODUCTION

The Internet Engineering Task Force (IETF) and the
World Wide Web Consortium (W3C) are currently
tasked with bringing WebRTC among browsers to
an acceptable level in both the industry and the
academia. WebRTC is an open framework that of-
fers web application developers the ability to write
rich real-time multimedia applications (e.g. video and
gaming applications) on the web without requiring
plugins or extensions. Its purpose is to help build
a strong Real Time Communication (RTC) platform
that works across multiple web browsers and plat-
forms. In an implementation, the WebRTC API will
abstract several key components for real-time audio,
video, networking and signal (WebRTC. (2011a); We-
bRTC. (2011b)). While the IETF is standardizing
the signalling protocols and media technologies (e.g.
codecs) required in WebRTC, the W3C is standardiz-
ing the APIs and browsers for real time communica-
tion.

There are many implementations of RTC among
web browsers (Linner et al., 2010; SIP on the Web,
2012; SIP-JS, 2012; The Phono WebRTC, 2012;

Adeyeye et al., 2012) and the WebRTC itself (Eric-
sson WebRTC, 2012; Chrome WebRTC Implementa-
tion, 2012; RTCWeb-SIP, 2011). The standard sig-
nalling protocol for WebRTC is JavaScript Session
Establishment Protocol (JSEP), however, Remote Ob-
ject Access and Replication (ROAR) has also been
used in some existing implementations. The reason
JSEP is the preferred protocol is because it moves
control or negotiations from a browser to JavaScript
(in an application). In addition, there is a need to
make the WebRTC implementation look similar to
the SIP Offer and Answer. Although the VP8 codec
seemed to be the preferred codec for WebRTC, it is
faced with royalty problems. Hence, codecs for the
WebRTC are also being addressed.

WebRTC is built on the PeerConnection API and
represents what browser vendors will implement and
expose to web application developers. Web applica-
tion developers can choose an underlying protocol de-
pending on their project requirements. The underly-
ing protocols, also called the sub-protocols, include
SIP and XMPP (with Jingle). The Libjingle library,
like a SIP stack, supports (Session Transversal Util-
ities for NAT (STUN) and Transversal Using Relays

119Adeyeye M., Makitla I. and Fogwill T..
WebRTC using JSON via XMLHttpRequest and SIP over WebSocket - Initial Signalling Overhead Findings.
DOI: 10.5220/0004317901190124
In Proceedings of the 9th International Conference on Web Information Systems and Technologies (WEBIST-2013), pages 119-124
ISBN: 978-989-8565-54-9
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



and NAT (TURN). Both these Interactive Connectiv-
ity Establishment (ICE) techniques, namely STUN
and TURN, make communication possible when the
communicating endpoints are behind a firewall.

The motivation for this work is that applica-
tion developers will soon begin to create innovative
WebRTC-supported applications with little or no con-
sideration on the total cost of usage of their applica-
tions. An application with a high signalling overhead
would incur more cost with poorer quality of experi-
ence for users having low Internet bandwidth and pay-
ing high cost for Internet access. This work examined
the additional signalling overhead introduced by We-
bRTC applications. The contribution of this research
is therefore the development of a three-user WebRTC
video chat application with a report on the signalling
overheads introduced by the two common methods of
doing WebRTC.

The remainder of this paper is arranged as fol-
lows: Section II discusses the common methods of
doing WebRTC within compliant Web browsers and
the current ways of implementing video streaming us-
ing WebSocket. Section III presents the three-user
WebRTC vide chat prototype which was used to eval-
uate the resultant signalling overhead. Section IV
then presents and discusses the resultant signalling
overhead of the two commond methods of doing We-
bRTC. In Section V the paper is concluded.

2 WEB REAL-TIME
COMMUNICATION (WebRTC)
METHODS AND ISSUES

The two prominient ways of doing WebRTC are
using pure SIP via websocket (WebRTC-SIP/WS)
and JavaScript Object Notation via XMLHttpRe-
quest (WebRTC-JSON/XHR). While the former uses
a WebRTC-SIP proxy/gateway as its application en-
gine and SIP over websocket for signalling, the latter
uses a custom engine (e.g. the Google App. Engine)
as its application engine and JSON over XHR for sig-
nalling. For the Google App. Engine, the JSON/XHR
signalling is done via its Channel API. However, both
approaches are based on JSEP, which mimics the SIP
Offer and Answer signalling.

There are however other implementations devel-
oped to meet specific requirements. An example is
the Ericsson WebRTC implementation (Ericsson We-
bRTC, 2012), which uses ROAR. In this example,
some changes were made to the webkit libraries in
the Epiphany web browser in order to support We-
bRTC. There are other kinds of implementation in the

form of an extension to a browser. An example is
the IEWebRTC extension (which uses ChromeFrame)
for Internet Explorer (webrtcie ext, 2012). As web
browsers are being extended, the number of WebRTC
applications and frameworks, such as SIPML5 (which
uses SIP over websocket) (sipml5, 2012) and SIP-
JS (with support for Flash-network) (SIP-JS, 2012),
are rapidly increasing. At the time of this research,
Google Chrome is taking the lead in the WebRTC im-
plementation. Mozilla Firefox is yet to have a version
that has the PeerConnection or getUserMedia API. A
SIP stack (called SIPCC) is now being integrated into
it (Ikran - FF as SIP endpoint, 2012). Hence, it does
not currently support WebRTC. Other browser mak-
ers, such as Microsoft and Opera, are also contribut-
ing to the WebRTC standadization.

Figure 1 shows the signalling between two UAs
(User Agents) or devices; the sequence of events
starts from top to bottom. Some of the processes (such
as PeerConnectionFactory, ProcessSignalingMessage
and OnSignalingMessage) are peculiar to Google
Chrome, which uses the libjingle. A caller first cre-
ates a new peerconnection and adds stream using the
PeerConnection API as shown in Figure 1. In ad-
dition, a local session description (for audio and/or
video) is applied. ICE is then started in order to get
available IP (Internet Protocol) address and port num-
ber for media transfer (these additional processes are
not shown for simplicity). A peerconnection and re-
mote session description (for the callee) are later cre-
ated. When a callback at the callee’s notifies that a
stream is added (via a channel), an offer is created.
It is sent and processed by the caller. An answer is
then sent back and a local session description (for the
callee) is created. The answer, which contains the re-
mote session description and some hints, is sent to the
callee. A local session description (for audio or/and
video) is then set and applied in the callee’s browser.
Lastly, ICE is also started in order to get available IP
(Internet Protocol) address and port number for media
transfer. The caller later applies the remote session
description in order to present video/audio from the
callee. Encryption of WebRTC media in Google Ap-
pEng is achieved by sending the UDP (User Datagram
Protocol) data via SCTP (Stream Control Transmis-
sion Protocol) and DTLS (Datagram Transport Layer
Security).

On the other hand, there are still NAT and fire-
wall issues in the WebRTC. In addition, SBCs (Ses-
sion Border Controllers) could be required to handle
connections between two or more domains. ICE tech-
niques (STUN and TURN) are likely to increase du-
ration to set-up a call. Security of media and per-
missions are also hot issues in the WebRTC, though

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

120



Figure 1: The WebRTC Signalling in a Call Session.

there are a couple of solutions that can be used. Other
issues of interest include recording video, support-
ing other SIP/SIMPLE features, such as presence and
messaging, and doing multi-user video chat using the
WebRTC framework.

As of this writing, and whereas the issues men-
tioned above are receiving sufficient attention, the is-
sue of additional overhead introduced by WebRTC
methods has not been investigated. The next section
describes a prototype application which was used to
investigate additional signalling overhead.

3 A THREE-USER WebRTC
VIDEO CONFERENCE
PROTOTYPE

To determine the additional signalling overhead in-
troduced by WebRTC applications, a three-user We-
bRTC video chat application was developed as a pro-
totype for this research using the PeerConnection
API. The prototype application used both WebRTC
communication methods discussed in Section III
namely WebRTC-SIP/WS and WebRTC-JSON/XHR.

Google Chrome Web browser which integrated libjin-
gle (with XMPP) was used for experimentation as it is
the only browser with an acceptable level of WebRTC
support required for this research. As at the time
of writing, this is the only work that has considered
signalling overhead introduced by the two WebRTC
methods, In addition, the three-user WebRTC video
chat application is one of the few WebRTC video
chat applications that support three or more users.
Most WebRTC video chat applications are only for
two users, since WebRTC is currently being standard-
ized. The Three-user WebRTC video chat is depicted
in Figure 2.

Although the application was built for no more
than three users (as shown in Figure 2), the signalling
between two users is shown here (Figure 1) for sim-
plicity reasons. The application in-between the two
User Agents (UAs) acts as a B2BUA and is com-
mon feature among multi-user conference applica-
tions. The video conference application was first de-
veloped and deployed in Google AppEngine (i.e. the
WebRTC-JSON/XHR). It used the Channel API in
the Google AppEngine for WebRTC signalling and
the getUserMedia and PeerConnection APIs in the
Google Chrome browser for media streaming. Since

WebRTC�using�JSON�via�XMLHttpRequest�and�SIP�over�WebSocket�-�Initial�Signalling�Overhead�Findings

121



Figure 2: The Three-user WebRTC demo.

the PeerConnection API only works for two devices,
each device created two instances of “webkitPeer-
Connnection00” and each instance was used to set-up
a peer-to-peer connection with the other device. In
order to demonstrate WebRTC-SIP/WS, a SIP servlet
application was modified and deployed into the Mo-
bicents AS (Application Server) as a SIP proxy in an
IMS. The Mobicents SIP Servlets AS used Apache
Tomcat 7.0, which supports WebSocket. The SIP
proxy acted as a B2BUA, which sets up a video chat
among the three users. The source of the application
is published on the Internet for contributions from in-
terested parties and the Open Source (OS) community
[project-source]. It is one of the few WebRTC works
on the Internet that support more than two users. Fig-
ure 2 also shows the signalling in a browser using the
browser’s developer tools.

4 WebRTC-JSON/XHR AND
WebRTC-SIP/WS SIGNALLING
OVERHEAD

As stated in Section II, the issue of signalling over-
head introduced by the two WebRTC methods has
not been studied before. Therefore, in order to report
the performances and differences between WebRTC-
JSON/XHR and WebRTC-SIP/WS method of doing
WebRTC, an experiment was performed using each
method. The signalling overhead in a peer-to-peer
connection was measured. The upload and download
speed for the network were 0.15Mbps and 0.81Mbps,
respectively. The test was carried out on a Lo-
cal Area Network (LAN), and the WebRTC-SIP/WS
application played the role of both a WebRTC-SIP

proxy/gateway and a SIP Registrar. Hence, there
were no outbound connections. Like every applica-
tion, its QoS (Quality of Service) depends on the net-
work speed. Connection time (latency) and signalling
overheads are two factors that can be used to evaluate
the performance of the two WebRTC methods. The
connection time and delay were determined by run-
ning Network Time Protocol (NTP) on all machines
used in the experiment. While connection time among
peers in a video chat was infinitesimal or not notice-
able (being a test performed on a LAN), the signalling
overhead was noticeable. As a result, this work fo-
cuses on the signalling overheads of each WebRTC
method. The payload of each application was not in-
cluded in the values of signalling overheads. Table
1 shows the signalling overheads in a web browser
when the browser runs the WebRTC prototype appli-
cations for the three-urse video chat. In addition, the
values were compared with overheads introduced by
a regular SIP client - PJSIP. The result shows the sig-
nalling overheads as they increases in both WebRTC
approaches. The experiment was repeated multiple
times in order to report mean values and, for each
value, its variance in brackets for the overheads.

As reported on Table 1, all results show a limited
variance. A basic HTTP request-response (with no
payload) is 150B. The HTTP overhead is higher than
the WebRTC-JSON/XHR overhead for a completed
session (104B) because the HTTP server (Apache) re-
sponded with some additional information in its re-
sponse header. It is however possible for a devel-
oper to compress HTTP response headers or reduce
the response information to the essential ones. The
WebRTC-SIP/WS overhead can affect quality of ex-
perience, where access to the Internet is costly and the
Internet connection speed is low.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

122



Table 1: Signalling Overhead in WebRTC via JSON/XHR and SIP/WS.

WebRTC-JSON/XHR WebRTC-SIP/WS A SIP
Client (PJSIP)

On Register 13B (0.58) 34B (1) 2.5kB (1.1)
On Invite 39B (0.58) 204kB (0.88) 4.9kB (1.02)

During Call 78B (0.78) 204kB (1) 9.6kB (1)
Session

Ending Call 104B (0.78) 275kB (1) 10.4kB (1.02)
Session

Shown in Table 1 are initial signalling over-
head findings from the experiment that was con-
ducted. These results open up a number of issues
such as why is there such a big difference (i.e. 39B
versus 204KB) between WebRTC-JSON/XHR and
WebRTC-SIP/WS. Could this be the fact that SIP is
XML based and that XML uses too many bytes sim-
ply to structure its content (i.e opening and closing
tags) which may account for this big difference in
byte-sizes? These and many other issues we hope to
investigate as part of our continued WebRTC experi-
mental research.

5 CONCLUSIONS

A three-user WebRTC video chat has been developed
and released to the OS community and researchers
exploring WebRTC. In addition, the signalling over-
heads for the two WebRTC approaches have been
reported.The support for WebRTC would create an
additional ways of communicating between two de-
vices. Voice services in existing telecommunication
networks may likely drop as customers will pay more
for data services in order to use WebRTC. Like there
are unique attributes in CSS for different browsers,
developers may need use some browser-specific fea-
tures, most notably in JavaScript, after the standard-
ization effort. They would have to choose what ap-
proach they want to use to develop their applications,
and one of their considerations would be the sig-
nalling overhead.

With a Web browser becoming a real-time com-
munication application, its installer file size is ex-
pected to drastically increase as it will now support
new features, such as WebRTC and WebGL. While
libjingle (with XMPP) is integrated into Google
Chrome, a SIP stack is integrated in Mozilla Fire-
fox to implement WebRTC. The integration of these
protocols would open enormous opportunities for de-
velopers. On one hand, web developers can develop
websites and applications that would run in a browser
using HTML5 with the APIs exposed to webpages.
On the other hand, application developers can develop
applications that work with a browser internals (e.g.

a XULRunner or Chrome Application) thereby di-
rectly communicating with the underlying protocols
and mechanisms in that browser.

Interoperability between WebRTC and current SIP
servlets and VoIP services have great potential to cre-
ate new markets. Necessarily current efforts within
IETF and other working groups for WebRTC seek
to address WebRTC-SIP interoperability. This means
that further experiments and analyses of potential sig-
nalling overhead that this will introduce are very cur-
cial to inform the direction taken by these WebRTC
working groups.

REFERENCES

WebRTC, http://www.webrtc.org, accessed on October 13,
2011.

IETF WebRTC, http://tools.ietf.org/wg/rtcweb, accessed on
October 13, 2011.

David Linner, Horst Stein, Ulrich Staiger and Stephan
Steglich, “Real-time Communication Enabler for Web
2.0 Applications,” in: Proceedings of the Sixth In-
ternational Conference on Networking and Services
(ICNS ’10), Cancun, Mexico, March 7-13, 2010, pp.
42 - 48.

SIP on the Web, http://sip-on-the-web.aliax.net, accessed on
June 11, 2012.

SIP-JS, http://code.google.com/p/sip-js, accessed on June
11, 2012.

The Phono WebRTC, http://phono.com/webrtc, accessed on
June 11, 2012.

Michael Adeyeye, Neco Ventura and Luca Foschini,
“Converged Multimedia Services in Emerging
Web 2.0 Session Mobility Scenarios ,” in: the
Springer Wireless Networks (WINET) Journal. DOI:
10.1007/s11276-011-0394-z.

Ericsson WebRTC, https://groups.google.com/group/ericsson-
labs-web-rtc, accessed on June 11, 2012.

Chrome WebRTC Implementation, http://www.w3.org/
2011/04/webrtc/wiki/images/7/7f/Webrtc-chrome-
impl-status.pdf, accessed on June 11, 2012.

IETF RTCWeb-SIP WG, http://tools.ietf.org/html/draft-
kaplan-rtcweb-sip-interworking-requirements-01, ac-
cessed on October 13, 2011.

The IMS World Forum Summary, http://
www.alanquayle.com/blog/2012/04/the-ims-world-

WebRTC�using�JSON�via�XMLHttpRequest�and�SIP�over�WebSocket�-�Initial�Signalling�Overhead�Findings

123



forum-summary-pa.html, accessed on June 11,
2012.

WebRTC for IE, http://code.google.com/p/webrtc4ie/, Ac-
cessed on January 17, 2012.

SIPML5, http://www.sipml5.org/, accessed on June 11,
2012.

FF as SIP Endpoint, https://github.com/ethanhugg/ikran,
Accessed on January 17, 2012.

Three User WebRTC Chat Source, https://github.com/
micadeyeye/three-user-webrtc, Accessed on August
3, 2012.

Vijay K. Gurbani, Xian-He Sun and A. Brusilovsky, “In-
hibitors for Ubiquitous Deployment of Services in
the Next-Generation Network,” in: the IEEE Com-
munications Magazine, Vol. 43, No. 9, pp. 116-121,
September 2005.

Karim Sbata, Houda Khrouf, Sabine Zander and Monique
Becker, “Converging Web and IMS Services: Stakes
and Solution Proposals,” in: Proceedings of the Inter-
national ACM Conference on Management of Emer-
gent Digital EcoSystems (MEDES ’09), Lyon, France,
October 27-30, 2009.

Haruno Kataoka, Masashi Toyama, Yoshiko Sueda, Osamu
Mizuno and Kenji Takahashi, “Demonstration of Web
Contents Collaborative System for Call Parties,” in:
Proceedings of the 7th IEEE Consumer Communica-
tions and Networking Conference (IEEE CCNC ’10),
Las Vegas, Nevada, USA, January 9-12, 2010.

Google Chrome Frame, http://www.google.com/
chromeframe?quickenable=true, Accessed on
January 17, 2012.

Google WebRTC Samples, http:// code.google.com/p/
webrtc-samples/, Accessed on January 17, 2012.

Google AppRTC, https://apprtc.appspot.com, Accessed on
January 17, 2012.

Hideo Nishimura, Hiroyuki Ohnishi and Miki Hirano, “Ar-
chitecture for Web-IMS Co-operative Services for
Web Terminals ,” in: Proceedings of the 13th Interna-
tional Conference on Intelligence in Next Generation
Networks (ICIN ’09), Bordeaux, France, October 26 -
29, 2009, pp 1-6.

The PJSIP Project, http://www.pjsip.org, April 12, 2012.
The Mozilla Firefox Web browser, http://www.mozilla.org,

April 12, 2012.
M. Handley and V. Jacobson, “SDP: Session Description

Protocol,” IETF RFC 2327, April 12, 2012.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

124


