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Abstract: The landscapes of e-marketplaces are changing profoundly, evident in the phenomenal growth and potential 
of online services, consumers, and enabling mobile technologies. However, it is unleashing grave concerns 
about sustainability due to the fierce competitions, fuzzy dynamics and rapidly shifting powers. While it is 
attributed to the game-theoretic economics and computation complexities of the decentralized combinatorial 
allocation problem, this work establishes, denying e-traders expressing fair strategic choice is unfounded of 
adverse strategic risk. In fact, free market dynamics realize impact of smart learning on strategic conduct. 
The fact strategic rules enable faster consumer-to-market bidding lifecycle is another compelling factor. 
Hence, the work introduces the novel rule-based bidding language and GSPM double auction for the smart 
exchange that facilitates expressions of strategic rules, while uniquely exploits forward and reverse GSP 
auctions for efficient, tractable, stable, and budget balanced e-marketplace. The e-marketplace deliberates 
on rules for effective preference elicitation, while bringing self-prosperity in socially efficient ecosystem.  

1 INTRODUCTION 

Emerging e-marketplaces as in online advertising 
are undergoing seismic changes, quite evident in the 
phenomenal growth and potential of online services, 
engaged e-users, and enabling mobile technologies. 
However, it is unleashing serious concerns about its 
sustainability due to the fierce competitions, fuzzy 
dynamics and rapidly shifting powers. In fact, the 
striking impact of digital markets is stirring industry 
to diligently fetch more viable service delivery and 
revenue models that thrive in a e-market ecosystem 
(Moore, 1996). Hence, the enduring power struggle 
amongst rivals is polarizing towards fetching more 
efficient and sustainable ecosystem friendly dynamic 
mechanisms for trading of services and information 
liquidity. While it is attributed to the game-theoretic 
economics and computational complexities of the 
decentralized combinatorial allocation problem 
(CAP) of services amongst self-interest rational e-
traders (i.e. agents), who may strategize on private 
preferences, this work establishes, denying e-traders 
expressing fair strategic conduct is unsubstantiated 
of adverse strategic risk. In fact, the emerging trend 
of real-time bidding on user attentions increases the 
complexity of economically inspired decentralized 

CAPs. While this work investigates and realizes the 
complexities of e-marketplaces, formally, it reveals 
and examines, also, few strategic overlooked issues.          

The first issue relates to the fact present e-
marketplaces restrain scope of strategic conduct thru 
mechanisms that grant incentives for non-strategic 
acts or, rather, penalize levies to be paid to losing 
bidders due to strategizing. For instance, the VCG 
(Vickrey, 1961) (Clarke, 1971) (Groves, 1973) 
mechanisms, penalize for strategizing, by reporting 
non truthful preferences to align payoffs with social 
welfare, rather than the desirable self-prosperity. 
Ironically, truthful mechanisms often benefit the 
revenue maximizing intermediaries (marketplaces), 
rather than their alleged computation efficiency. In 
fact, trading restrictions, often, promote adverse 
strategic natural reactions of rational smart agents 
that may extend to incomplete or false information 
revelation, given higher expected payoffs. Adverse 
strategies may be manifested by fraud, deception, 
collusion, shilling, free riding, shading, snipping or 
hidden actions. In fact, e-marketplaces are more 
vulnerable to adverse strategies than classic markets. 
Software agents might collude by submitting 
untruthful reduced bids for false partial requirements 
or form coalitions that benefit from super-agent 
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power. Traders may, also, unleash several agents 
with multiple identities for false name bidding. 
Hence, this work establishes, denying e-traders (e-
buyers and e-sellers) expressing strategic conduct, 
allegedly, to improve computation efficiency as in 
Google DoubleClick, Microsoft AdECN, Yahoo 
Right Media, and Facebook FBX, is unsubstantiated 
of dire business impact, given modern enabling hi-
tech is transforming computation into commodity.  

Indeed, the flexible expressions of fair strategic 
conduct that bring self-prosperity would, ultimately, 
mitigate adverse strategies that may defy markets, 
considering, often, higher risks and lower expected 
returns (Fair vs. adverse strategies to be examined in 
a coming work), given the dynamics of smart 
learning thru social interactions and repetitive trades. 
In fact, Adam Smith envisions traders interacting in 
free markets act as if guided by “invisible hand” that 
leads to desirable outcomes (i.e. efficiency and 
stability) due to markets’ inherent flexibility of 
natural free choice and smart interaction. In fact, 
free market dynamics promote realizing impact of 
continuous learning on strategic conduct. However, 
free market efficiency would, often be realized with 
market thickness, uncongested interaction, and safe 
privacy (Roth, 2007). This work extends it, also, to 
applying fair rules of game-theoretic encounter (i.e. 
no enforced monopolistic rules). However, while 
online services gold rush and thriving technologies 
have tilted trader tactics to conceding to e-market 
restrictions, apparently, at the expense of strategic 
benefits, for the direct gains of easy access to the 
wealth of inventories and information liquidity, 
sustainability would be exposed, at which priorities 
align with the natural expression of strategic conduct 
higher returns, and better quality of service.  

In the second issue, the work establishes the lack 
of rapid consumer-to-marketplace automation during 
bidding lifecycles is another compelling challenge to 
expressing strategic conduct. In fact, the time wasted 
in bidding processes at e-marketplaces like eBay, 
Amazon, etc. is an irritating engagement experience. 
For instance, a bidding lifecycle may take days, for 
an e-Bay auction, with rather manual configurations. 
Hence, the work introduces the concept of “bidding 
lifecycle”, examine it effectiveness in divers trades 
and establishes, the flexible expressions of strategic 
rules (i.e. sub-programs) during the bidding process 
that are collected, stored and exploited by the smart 
exchange (SX), to deliver rapid bidding lifecycles. 

The third challenge relates to the mounting 
combinatorial complexity of online ad problem 
evident in the emerging real-time bidding (RTB) of 
single users’ attentions. RTB allows advertisers bid 
for single impressions, using user profiles, cost 
thresholds, and campaign goals to optimally assign 
bid values at real-time. RTB provides more liquidity, 

visibility, and competitive bidding, essential for the 
sustainable growth. In fact, contemporary e-markets 
are exploiting the complex multichannel engagement 
user experiences of online services that facilitate 
better market openness, and transparency. However, 
the combinatorial complexity (i.e. cherry-picking) of 
user level trades lack of efficient control, massive 
growth, and fierce competition are main concerns 

Finally, a common issue in the decentralized e-
markets relates to the implemented computation 
mechanism design for SX-CAP. The game-theoretic 
economics and computation complexities of the SX-
CAP are observed in the GSP auction (Varian, 2007) 
(Edelman, Ostrovsky, & Schwartz, 2007), while it is 
allocative efficient (AE), it is not incentive 
compatible (IC) and often, maximizes auctioneer’s 
revenue, rather than traders’. Conversely, while 
VCG auction is efficient and stable it is, often, 
intractable and runs at deficit. The iterative models 
(Ausubel & Milgrom, 2006) (Parkes, 2006), take 
longer time to converge with no guarantees of either 
AE or stability, an issue tackled, for instance, by 
iterative VCG (Parkes, 2001).The work, hence, 
targets a SX model that delivers an efficient, stable 
and tractable e-trading allocation for self-interested 
rational traders with independent private information 
and strategic conduct of rather conflicting goals.  

This work examines and reflected on overlooked 
issues and, ultimately, develops a novel “rule-based” 
bidding language (RBBL) for smart exchange (SX) 
that allows for flexible expressions of smart strategic 
rules formulae. The RBBL is fully symmetric that 
enables flexible and rapid e-trading while unlocking 
the natural expressions of strategic conduct, not only 
for e-buyers, but, also, for e-sellers, often, confined 
with the reserved values. The RBBL empowers the 
SX to deliberate smart rules for rapid preference 
elicitations and valuations that ultimately, delivers 
rapid bidding lifecycle. The inherent game-theoretic 
economics and computation complexities of SX and 
the emerging combinatorial complexity of e-trading 
of user attentions, inspire designing the GSP based 
double auction (DA) matching (GSPM) that 
uniquely blends forward and reverse GSP auctions 
to achieving self-prosperity (i.e. max utility), social 
efficiency, strategic stability and computational 
tractability. The GSPM exploits the recent business 
successes and endorsements of the efficient, yet 
simple GSP auction (Edelman, Ostrovsky, & 
Schwartz, 2007) (Varian, 2007) and the theoretical 
Nash stability of GSP repeated best response auction 
(Nisan, Schapira, Valiant, & Aviv, 2011). The 
RBBL and GSPM, ultimately, empower bidders and 
SX with flexible expressions of smart rules and 
interaction pattern, smart preferences elicitation and 
efficient winner determination. The SX would, 
eventually, provide a timely seamless access to the 
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ever growing inventory and information liquidly 
with stability self-prosperity, and social efficiency, 
while reducing friction and refining transparency. 
Thus, sustainability is secured the win-win dynamics 
of the naturally free e-market ecosystem. Section 2 
presents a formal model of online ad problem and 
pertaining issues. Section 3 introduces the rule based 
bidding language, while the formal GSPM double 
auction model is investigated in section 4. Section 5 
concludes with a remark on the ongoing work.  

2 ONLINE PROBLEM MODEL 

2.1 The Online Problem Description 

This work targets a class of multiple-unit, multiple-
attribute CAP of online services (i.e. impressions) 
amongst self-interest rational e-trader agents with 
conflicting goals that motivate strategic conduct, 
expressed as smart rules for, indeed, maximizing 
their expected utilities, given their belief about other 
trader preferences. The GSPM DA for SX-CAP 
assumes, however, truthful states of choices for a 
sound mixed integer program (MIP) and winners’ 
determination (WD) matching problem. For online 
ad problem, the commodity of the e-marketplace is 
ad impression, (i.e. a single viewing of single ad by 
a single user). The SX allows symmetric bidding of 
both e-buyers and e-sellers with rather expressions 
of smart rules on factor-groups (FG).  FG may, for 
instance, be an age group, location, interest, etc. 
Hence, an ad impression is designated by specific 
factors (i.e. webpage, user profile, service content, 
etc.) within a time period.  Considering time is a set 
of discrete decision periods during which multiple e-
services are allocated to multiple winners, the work 
assumes allocation and pricing decisions are taken 
off-line at the end of any decision period	τ. The SX-
CAP manifests sequence of events, as fairly tabled 
in (Mansour, Muthukrishnan, & Nisan, 2012) for ad 
exchange. Followed is a formal description of the 
online ad problem in the ad SX during period	߬:  

1. Upon online users browsing of	݉ publishers	ܲ 
(e-sellers) webpages,	∀ ܲ ∈ ܲ ൌ ൛ ଵܲ … ܲ … ܲൟ, 
forms ݉	 impressions, ܫ

 ൌ ൛	ܫ
ଵ … ܫ

 … ܫ
ುൟ 

of user, publisher and webpage profiles.	ܫ
 ൌ

ቄሺ ଵ݂
ೕ, ଵ݃

ೕሻ… ሺ ݂
ೕ, ݃

ೕሻ… ሺ ݂ೕ

ೕ, ݃ೕ

ೕሻቅ, ad 

asset has ݉  distinct FG attributes	∀	ܫ
 ∈ ܫ	

.  

2. ܲ, bids ⋃ቀ൫ܫ
, ݒ

, ݎ
൯, ߬ቁ“asks” on impression 

assets ܫ
 .  ൫ܫ

, ݒ
, ݎ

൯	, is sets of ܲ 	 ask-bids, 

ܫ
	∋ ܫ

 is impressions set, 	ݒ
	∋ ݒ

 is 

associated ask-prices set and 	ݎ
	∋ ݎ

 is smart 

rules set.	An ask-bid price is sum of factor-
group values of		ܫ

impression asset in	ܫ
: Let 

ቄݒଵ
ೕ ݒ…

ೕ ೕݒ…

ೕቅ	ask values of	ܫ
; then 

ܫ
ask-bid price is	ݒ

 ൌ ܫ	൫ݒ
൯ ൌ ∑ ݒ

ೕೕ
ୀଵ . 

The pricing model may exploit cost per-factor 
(cpf), per-group (cpg) or per-impression (cpi). 

3. The SX announces impressions contextual info 
and quality scores⋃൫ܳܵ௫

ሺ. ሻ, ܫ
, ߬൯ to advertisers 

ܣ ൌ ሼܣଵ ܣ… ∀ሽܣ… ܲ	ܳܵ௫
 ቀݓೕ, ܳܵ

, ܳܵ௨
	, ߬ቁ, 

is SX quality scores (QS) on webpage publisher 
and user at τ as derived by SX intelligence and 
deliberation. The SX stores bidding rules ݎ

 of 
publishers while hiding prices ݒ

	to mitigate 
strategic impact of exposure problem.,  	ܫ

ఛ ൌ
൛ܫ
ଵ … ܫ

 … ܫ
ൟ is  publishers’ impression assets, 

while	ܳܵ௫ ൌ ቄܳ௫ଵ …ܳ௫
ௌೕ …	ܳ௫

ௌቅis SX QS set. 

4. Advertisers,ܣ ∈ ,collect ܵܺሺܳܵ௫ ,ܣ ܫ	
ఛ, ߬ሻ  info 

and returns request-bids that target either user 
attentions or segment	⋃൫	ሺܫ

 , ܾ
 , ݎ

ሻ, ܤ
 , ݀ܣ

 , ߬൯	 
for ݀ܣ

 	asset.	ܤ
 , is allocated budget.ሺܫ

 , ܾ
 , ݎ

ሻ  
is request bid with	 ܾ

 , bid values and	ݎ
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associated rules of ܫ
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൛ݒଵ

ೖ ݒ…
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ೖൟ set of best bid-price values 
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	is 

ݒ
 ൌ ܫሺݒ

ሻ ൌ ∑ ݒ
ೖ

ୀଵ ݒ bid for, given		ܣ ,
 

ݒ≤
 if matched else no bid returned. RBBL is 

used for bid choices, valuations and smart rules. 
5. The SX applies GSPM double auction (DA) 

matching allocations and payments for winners 
using forward and reverse GSP auctions, fter 
collecting all request and ask bids. The SX 
computes efficient allocations and payments. It 

returns	ቀܫ
, ೕߨ

∗ , ܤ
 , ݀ܣ

∗ ቁ to wining 	 ܲ , ∀ ܲ 

and	൫ܫ
, ߨ

∗ , ݀ܣ
∗ ൯ to wining	ܣ, ܫ ܣ∀

 ൌ ܫ
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ೕߨ	
∗ , ߨ
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 ൌ ܫ
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be dispatched and ܤ
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ad ݀ܣ
∗  at	τ for ad impression	ܫ

.	 ܲ, allocates 
the dispatched ݀ܣ

∗  to a specific location that 
fulfils the impression- request as matched with 
impression-asset.  

Example: An advertiser wish to bid ad impressions 
at Segment level	ܫ
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ሼሺ ସ݂
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ೖൟ	and total 

ݒ
 ൌ ܫሺݒ

ሻ ൌ ∑ ݒ
ೖ

ୀଵ . Figure 1, depicts the 
online ad problem model in smart exchange.   
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Figure 1: The Online ad problem Model in Smart 
Exchange. 

2.2 The SXCAP AE Matching Problem 

The SX computes an efficient-trade rather than 
optimal- revenue-trade, as there are many competing 
e-traders and networks, so it is unfeasible to exercise 
monopoly power. The work assumes e-trader agents 
act exclusively as either service providers or service 
consumers. The SX computes an efficient outcome 
allocations and payments from agents’ reported 
valuations, or smart rules preference elicitation that 
usually, involve solving an NP-hard CAP. In fact, 
the WDP in CAs (and thus also in CEs) is NP-hard 
(Rothkopf, Pekec, & Harsrad, 1998). Generally, the 
objective of the SX is to implement a trade ߣ∗ for the 
SX-CAP at period	߬	 that delivers social efficiency. 
The SX selects then payment rule that drives IC, 
individual rationality (IR) (i.e. agent expected payoff 
 payoff of non‐participating), with budget balance 
(BB) (i.e. total cross SX payments =0, or non‐
negative). Formally, assume	ݒሺ∅ሻ ൌ 0 with free 
disposal (i.e. agents have weakly increasing values 
for servicesݒ൫ܫ

൯  ܫ൫ݒ
ᇲ൯∀ܫ

ᇲ ⊃ ܫ
ሻ. Let e-

trade 	ߣ൫	ܫ
, ܫ	

൯ =ߣ ൌ 1, points to impressions 

ܫ	
	and	ܫ

 are matched (i.e. 	ܫ
	=	ܫ

ሻ for same FG 
attributes, and the request-bid on ܫ

 and ask-bid on 
ܫ
are eligible for trade;	ߣ൫	ܫ

, ܫ	
൯ ൌ ߣ ൌ 0,	 

otherwise. ∀ e-trader agents of quasi-linear utilities 
,ߣሺሻ൫ݑ	 ൯ ൌ ൯ߣሺሻ൫ݒ െ ߣ∀ ∈  ߣ
∀clearing price,  ∈ Թ. , is negative, if 
bidder receives a payment for the trade. Bidders are 
modeled as being risk neutral (i.e. agent pays as 
much as the expected value of an item) with budget 
constraints (i.e.	ܤ

 ) for ad campaign (e.g. frequency 
of playback of ad	݀ܣ

 ሻ. The SX-CAP is limited by 
constraints (bids and budgets), rules, objectives, and 
mechanism. Given instance ܵܺሺݒ, ,ߣ ߬	ሻ	at period	߬	, 
the efficient ߣ∗ is, then, given as follows:  
Definition 1: Given instance	ܵܺሺݒ, ,ߣ ߬ሻ	of true bids 
at	߬, 	ߣ ൌ 1 if	ܫ
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,ߣ ൌ 0	 otherwise, 

then efficient trade	ߣ∗ solves: 
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									ሺݕݐ݈݅ܽݎ݃݁ݐ݊ܫሻ		ሺ7ሻ	 
Constraint (C7) ensures integrality, while (C2, C3) 
restrict a request-bid on specific unique impression 
to be assigned at most to one ask bid of the same 
unique ad impression, and restrict an ask-bid on an 
offered unique impression to be assigned at most 
one request- bid of the same. The SX-CAP, hence, 
turns into the generalized assignment problem 
known to be NP-Hard; (C4, C5) ensure budget 
balance (BB), and restricts budget boundaries 
(i.e.	ܤ

 ), while (C6) impose strict balance in items’ 
supply-demand by free disposal. The above SXCAP 
problem is an instance (i.e. reduction) of set-packing 
problem (SPP) (deVries & Vohra, 2003). In fact, the 
SPP is a functional reduction of the SXCAP 
transformed in polynomial time (i.e. SPP  
SXCAP). The SPP is NP-Hard, but the recognition 
version is NP-complete (deVries & Vohra, 2003). 
Thus, the SXCAP is NP-complete and can’t be 
solved using exact approaches (i.e. branch and 
bound, Cutting planes etc.). Due to the decentralized 
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nature of the problem, however, this work adopts an 
economic based approach for SX-CAP modeling.  

3 THE RBBL SMART BIDDING 

3.1 Expressing Strategic Conduct  

Economists often advocate free markets as the right 
way to organize economic activities, in which 
economic social welfare is not a priority, but rather 
self-prosperity. However, free markets have proven 
successful in organizing economic activities for the 
social well-being (Mankiw, 2012), despite their 
inherent flexibility that enables traders to exploiting 
strategic conduct. However, present e-marketplaces 
restrain scope of strategic conducts, due to alleged 
computation limitations. This work argues, denying 
users expressing their natural strategic conduct, 
while limiting preference space would have a dire 
impact on business sustainability. In fact, the tight 
restrictions on strategic behaviour and e-trading 
practices, often, promote adverse strategic reactions 
that disrupt social efficiency. Hence, this work 
envisions a sustainable SX e-marketplace empowers 
consumers with strategic conduct on e-trading and 
interaction patterns using a flexibly expressive 
bidding language (BL). The SX should deliberate on 
smart rules for effective preference elicitation, while 
computing efficient allocations and payments. The 
SX, should, eventually, provide a seamless access to 
the ever increasing online services, inventories and 
information liquidly, for the benefit of consumers 
and e-marketplaces, the result of win-win dynamics 
in naturally free markets ecosystem.   

3.2 Bidding Lifecycle Analysis  

An inspiring drive to developing the RBBL is to 
improving consumer-to-marketplace performance by 
extending the bidding “lifecycle” and exploiting 
distributed computing. The bidding lifecycle relates 
to the period bid can be active throughout diverse 
trades before it get expired and dropped off the 
trading platform. The work realizes the performance 
impact of frequent biddings that might require 
frequent manual setups (i.e. eBay, Amazon, etc.). 
While irrelevant in classic markets, it has a major 
impact on digital e-markets, considering the huge 
number of online transactions. Hence, minimizing 
bidding lifecycle would have a crucial impact on 
designing effective SXs another compelling for 
applying smart rules. For instance, iterative bidding 
of indirect mechanisms (i.e. English auction), has 
short multiple round bidding lifecycles to each trade 
and requires extra time for bid formulation. Hence, 

clock auction mitigates impact by enforcing time 
constraint for rapid response. The proxy iterative 
bidding shortens the bidding lifecycle using proxy 
agents (see (Parkes, 2006)) with valuation bounds 
and provisional allocation that works until market 
clears, for single e-trades. On the other extreme 
there are the bidding programs (Nisan, 2000), in 
which the complete formal problem model is sent to 
and solved by the e-marketplace. However, bidding 
programs are not feasible due to core computation, 
valuation and privacy problems. Direct mechanisms 
(i.e. GSP auction) use complex bidding, with short 
lifecycle that ends each e-trade with the execution of 
WD. This work develops, hence, the RBBL for 
distributed multiple trades. The RBBL enables rapid 
bidding lifecycle by using complex rules stored in 
the SX for smart preference elicitation on multiple e-
trades that enables rapid performance. The RBBL 
enables, also, distributed computation between e-
trader software agents and SX engine (see Figure 2).  

Figure 2: Rule Based Bidding (Distributed for Multiple 
Trades). 

3.3 The Rule Based Bidding Language 

This work presents the SX computation model to 
managing online trading using an expressive bidding 
structure that empower consumers with complex 
rational interaction patterns, and flexible level of 
strategic freedom. In that vein, the work introduces 
the RBBL that generalizes and blends the TBBL in 
(Cavallo, et al., 2005), logical	ॷீ	and	ॷ	(Boutilier 
& Hoos, 2001), that include ॷ

ைோ, ॷ
ைோ, ॷீ	, OR‐of‐

XORs, XOR‐of‐ORs, and ॷ
ைோ∗ with Nisan’s bidding 

programs (Nisan, 2000), and various preference 
elicitation models in (Sandholm & Boutilier, 2006), 
while facilitating expressions of strategic conduct 
with flexibility,  expressiveness,  consciences for a 
computationally tractable, efficient and stable.  The 
RBBL is symmetric that allows e-traders to bidding 
buys and sells in single tree structure that exploits 
“complex rule” operators (ܴܥ) for smart preference 
elicitation, formulation, and efficient WD.  

An instant of the RBBL bid tree structure is 
shown Figure 3. The gray blocks refers to the ܴܥ‘s 
that may be expressed using propositional logic 
(PL), first order logic (FOL), temporal logic (TL), 
etc. (not shown in this work) that reflects the 
dynamic constraints applied to a given situation. The 
   may represents campaign duration, if “Ask bidsܴܥ
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Figure 3: RBBL bid structure. 

active time	 	  ௫”); tactics, “At lost trade, increaseݐ
value of factor by	ߝ for next trade, stop at upper 
bounds	 	ܷ௫ ”; “When number of win trades	 2, 
reduce value by	ߜ, stop at lower limit  ௫ ”; “CNNܮ
ad impressions? Increase value by ߙ for next trade, 
stop at upper bound	 	ܷ௫”; logic operators “”, 
“If, then, else” rule; ܥܫ௫

௬ TBBL, AND, OR, XOR, 
OR*, etc.	ܴܥ′ݏ , reduce the complexity of dynamic 
choices. The SX stores ܴܥ′ݏ for smart deliberation 
and effective preference elicitation, rather than 
solving complete bidding programs. The SX 
descripts	ܴܥ′ݏ, then, rather than full enumeration; it 
deliberates 	ܴܥ′ݏ to elicit preferences and 
valuations. In fact, the diverse types of	ܴܥ′ݏ, add 
smart filters to reducing combinatorial complexity 
by narrowing down the feasible solution space. Bids 
are expressed as annotated bid trees of either e-sell 
or e-buy nodes. RBBL has 	ܴܥ′ݏ on internal nodes 
for propagating values within the tree. Leaves of the 
tree are annotated with traded items and nodes are 
annotated with changes in values. RBBL facilitates 
direct (one-shot) and indirect (iterative) mechanisms 
and is captured as MIP, while facilitating effective 
rules deliberation and smart preference elicitation 
for efficient winner determination.  

3.4 The RBBL Properties 

Followed are propositions on the RBBL that briefly 
define related game-theoretic and computational 
properties. Analyses, formal proofs and verification 
of which, though, are found in another work: 
Proposition 1: RBBL generalizes pervious bidding 
languages (i.e. ॷோ, 	ॷீ	and	ॷ	 ॷ

ைோ, ॷ
ைோ, ॷீ	, OR‐

of‐XORs, XOR‐of‐ORs, and ॷ
ைோ∗, TBBL, extended 

TBBL) and extends to complex rules, constrains and 
valuations for direct and indirect mechanismsis.  
Proposition 2: RBBL facilitates direct (one-shot) and 
indirect (iterative price-taking) mechanisms. 
Proposition 3: RBBL captured as MIP, facilitates 
effective preference formation and elicitation for 
efficient winner determination. The SX stores and 
descripts complex rules of all bids, then, rather than 
full enumeration; it applies smart learning heuristics 
to elicit dynamically preferences and valuations.  
Proposition 4: RBBL is scalable, allows for sub-bids 
that can be analyzed by multiple processors. RBBL 
prevent the exposure problem by hiding budgets, 
using XOR like substitutable bids.        

4 THE GSPM DOUBLE AUCTION 

Double auctions are, often, used in exchange 
markets, such as stock exchange (i.e. NYSE), 
commodity markets (i.e. CME), etc. While the work 
targets desirable IC, AE, etc. for the DA design of 
SX, it is, often hard for a DA to have them all. In 
(McAfee, 1992) and (Wurman, Walsh, & Wellman, 
1998) , for instance, there is no DA that is both AE 
and IC. This work , however, introduces a unique 
GSP based DA the exploits the fact while GSP is not 
IC, GSP repeated best response strategies converge 
to Nash equilibrium with VCG AE IC outcomes and 
payments, as analyzed and validated in (Edelman & 
Ostrovsky, 2007) (Varian, 2007) and (Nisan, 
Schapira, Valiant, & Aviv, 2011). Hence, the GSP 
based DA for SX achieves desired properties with 
repeated best repose strategies. While at IC, traders 
maximize their utilities with truthful revelation of 
private choices, AE assures maximizing aggregate 
valuations of buyers and sellers. Other desired 
proprieties are BB (i.e. total surplus generated equal 
available surplus at NE), SX profit maximization 
(i.e. max sum of differences between request and ask 
bid prices of all matched pairs) and IR, where the net 
benefit to each e-trader from using the DA is less 
than the net benefit of any alternative.  

4.1 The GPM Double Auction Model 

The DA equilibrium matching (EM) (Wurman, 
Walsh, & Wellman, 1998) is a common sealed-bid 
matching that is IC, in which clearing price does not 
depend on matching bid prices, but externalities. EM 
finds uniform equilibrium prices ∗ that balances 
request and ask bids so all eligible requests with 
price    and asks with ∗   are matched ∗
using 4‐Heap algorithm that implements the IC last 
matched ܯ௧	auction for single‐unit sellers and first 
unmatched ሺܯ  1ሻ௦௧	auction for single‐unit buyers. 
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However, EM IC is not applicable to multi‐unit bids 
or symmetric buys and sells. In fact, EM DA can be 
IC or AE but not both (McAfee, 1992). To maximize 
matches, it is essential to allow price discrimination 
in which different matches cleared at different 
prices. IC is hard to achieve, also, in dynamic DA 
(e.g. stock exchange), where bids are entering or 
leaving over time and there is more than one 
matching to search sequentially (Parkes, 2007). The 
work in (Zhao, Zhang, & Perrusse, 2010), presented 
maximal matching (MM) DA that maximizes market 
liquidity, allocations, and profit, yet, is not IC.    

As stated earlier, to tackle the combinatorial 
complexity of RTB, this work introduces the GSPM 
DA, GSP discriminatory pricing model. As shown 
Figure 4, GSPM exploits the GSP forward auction  
for e-buyers, while proposes a reverse-GSP auction 
for e-sellers. At time	߬, given requests	ܫ

 ∈ ܫ	
ఛ	 and 

ask bids	ܫ
 ∈ ܫ

ఛ, the GSPM algorithm: (1) Qualifies 
eligibility by identifying and grouping eligible pair 
matches (i.e.	ܫ

 ൌ ܫ
ሻ w.r.t. factor-groups, (2) 

Sorts eligible ask (request) bids in ascending order 
of forward GSP (descending of reverse GSP) auction 
w.r.t. bid values; (3) Process Matching, start at the 
top, add ask‐request pairs to the matching list, if ask-
bid price		request-bid price as per definition 2; (4) 
Computes Allocations, based on results, assign 
matched pair	൫ܫ

, ܫ
൯to advertiser ܣ	and publisher 

ܲ; and (5) Assigns prices, following definition 3.  

4.2 The GSPM Properties 

The development of GSPM model is inspired by the 
analysis of (Edelman, Ostrovsky, & Schwartz, 2007) 
for envy-free Nash equilibrium, (NE) that is 
equivalent to the “Symmetric NE” (Varian, 2007) as 
well as the findings in (Nisan, Schapira, Valiant, & 
Zohar, 2011), in which, while truth telling is not 
dominant strategy under GSP, the full information 
repeated best response strategy (BRS) GSP has NE 
with VCG AE IC outcomes.  Followed are brief 
definitions and theorems that briefly define the 
GSPM game-theoretic economics and computation 
properties. However, the analyses, formal proofs and 
verification of which are detailed in another work:  
Definition 2: [GSPM DA Matching and Allocation 
Rules]: Let ܲ ∪ ܲ	the set of traders, and	ܣ ∩ ܣ ൌ ∅, 
for exclusive trade, as per problem assumption. Let 
ी ൌ ी ∪ ीset of request and ask bids. Let ask-bid 
ܾ
ሺܫ

, ݒ
ሻ=ܾ ∈ ी and request bid	 ܾ

ሺܫ
, ݒ

ሻ 
= ܾ

 ∈ ी. Sort eligible ask ܾ (request	 ܾ
) bids in 

ascending order of forward GSP (descending of 
reverse GSP) auction w.r.t. bid values. Then, the 
ordered set of matched ask-request pairs ै ൌ
൛൫ܾଵ, ܾ

ଵ൯… ൫ܾ, ܾ
൯… ൫ܾெ, ܾ

ெ൯ൟ  is a GSPM DA 
matching set, if ∀	matched ordered pair൫ܾ, ܾ

൯, 

prices	ሺܾሻ  ሺ ܾ
ሻ, ∀	ܾ ് ܾ

, ܾ
 ് ܾ

 	, ݅ ് ݆. 
Then	ै, is a GSPM list of eligible ordered pairs.  
Definition 3 [GSPM DA Pricing Rule]: the ask-price 
for	݉≤ܯ matched pair is	ሺܾ, ܾ

ሻ ൌ  ,ሺܾାଵሻ
the ask price of 2nd matched pair	൫ܾାଵ, ܾ

ାଵ൯. The 
request-bidder price for ݉ ൏  matched pair ܯ
is	൫ܾ, ܾ

൯ ൌ ሺ ܾ
ାଵሻ, the request-price of 2nd 

matched pair	ሺܾାଵ, ܾ
ାଵሻ. For last match	݉ ൌ  ,ܯ

traders pay their request and ask bid values, 
,൫ܾெ ܾ

ெ൯ ൌ ,ሺܾெ	;൫ܾெ൯ ܾ
ெሻ ൌ ሺ ܾ

ெ).  

 

Figure 4: GSPM double auction model for ad impressions. 

Proposition 5 [GPSM DA AE]: The GSPM DA 
mechanism that implements AE social choice (SC) 
function, maximizes total payoffs by maximizing 
total valuations of e-buyers, while minimizing total 
cost of e-sellers given IR e-trader agents, hence, 
maximizing  the total profit the SX marketplace.  

Theorem 1: The GSPM DA with BRS is AE  
Theorem 2: The GSPM DA maximizes SX revenue. 
Theorem 3: The GSPM with repeated BRS is IC.  
Theorem 4: GSPM DA is ex post weak BB.  
Theorem 5: GSPM DA is ex-post IR.  
Definition 4 [locally envy-free NE]: Equilibrium 
(“Symmetric NE” (Varian, 2007)) of the GSP 
simultaneous-move game is locally envy-free if 
bidder cannot improve payoff  by switching bids 
with the bidder ranked one position above her” 
(Edelman, Ostrovsky, & Schwartz, 2007) 
Theorem 5: GSPM has NE with repeated BRS. 

5 CONCLUSIONS 

This work presents formal analysis and modeling of 
the GSPM, GSP based double auction and RBBL, 
rule-based bidding language for smart exchange. 
The work argues denying traders free expressions of 
fair strategic conduct, challenges sustainability and 
provokes adverse strategic reactions. This work 
establishes, also, lack of consumer-to-marketplace 
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rapid bidding cycles is another compelling factor to 
realizing the strategic choice. The work examines 
the bidding lifecycle model and establishes strategic 
bidding delivers more efficiency, better automation 
and fairly distributed computing. Hence, the RBBL 
enables the flexible expressions of strategic conduct 
using smart rules. The smart exchange exploits the 
smart rules to deliberating on effective preference 
elicitation. The GSPM tackles inherent and evolving 
combinatorial complexities by uniquely exploiting 
both forward and reverse GSP auctions, for a 
truthful, efficient, stable and tractable matching that 
delivers rapid automation, self-prosperity, and social 
efficiency with a seamless access to the massively 
growing inventories and information liquidly. The 
smart exchange e-marketplace secures, ultimately, 
the business sustainability, by reducing friction and 
improving transparency, in the win-win dynamics of 
the naturally free e-markets ecosystem.  The work is 
ongoing, however, on game-theoretic economics and 
computation efficiency of the GSPM and RBBL 
with focus on sound empirical validation and results. 
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