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Abstract: Several spatial filters applied to images are available in technical and scientific literature. Besides the 
reduction of the noise level, some of them also aim at the preservation of edges and details. Those filters are 
commonly applied to the processing of X-ray medical image sequences, which are usually noised due to the 
low doses of radiation suitable for medical procedures but where the loss of any detail may impair a 
diagnosis. In this context, the bilateral filter is well suited. However, an adequate calibration of the bilateral 
filter is required for reaching the best cost benefit between reducing the noise level and preserving the image 
edges. Calibration procedures are still underexplored in the literature thereby, this paper proposes a new 
method that allows in-field calibration of the bilateral filter embedded into a piece of equipment for 
angiography, which uses a flat panel X-ray detector. The proposed method can be applied to images with 
any spectral resolution and surpasses the performance of the calibration method presented in the literature.  

1 INTRODUCTION 

The acquisition of X-ray images is carried out under 
strict conditions of exposure time of the patient to 
radiation and X-ray dosage. However, decreasing 
the dose implies increasing the image noise level 
suppressing important details and thus hindering the 
diagnosis. Therefore, denoising of medical X-ray 
images is of great importance as there is also the 
concern to preserve the characteristics of the image 
(Zhang et al., 2009). 

In those cases, temporal filtering techniques are a 
good tool for preserving image details, beyond of its 
low complexity of implementation. However, in 
sequences of images where some movement is 
present, e.g. digital angiography for hemodynamic 
tests, the classic temporal filtering techniques cannot 
be applied, because they cause trails in the motion 
direction. Thus, spatial filters may be used instead. 

These filters are accomplished with convolution 
masks applied to the pixels of the image. As a result 
they reduce the noise level but also cause edge 
smoothing usually. This shortcoming precludes their 
use for medical purposes since losses are not 
commonly allowed in accurate diagnosis. However, 

some spatial filters are more likely to preserve 
edges. A suitable example is the bilateral filter, 
which combines a domain filter to a range filter. The 
first takes into account the spatial distance between 
neighboring pixels to calculate the mask weights, 
while the second is concerned about the difference 
between their gray intensities (Tomasi and 
Manduchi, 1998).  

In (Gabiger-Rose et al., 2011) a procedure to 
calculate the parameters of the bilateral filter for 
grayscale images with spectral resolution of 8 bits 
was proposed. However, there are few works in the 
literature that carry out studies on the application of 
the bilateral filter to medical images with high 
spectral resolution, e.g., 14 bits. 

In this paper, major concerns of the authors are 
to guarantee an industrial in-field calibration method 
for bilateral filter embedded into medical apparatus 
of angiography that are built with an X-ray flat panel 
detector. Nowadays the denoising process applied in 
this kind of equipment to process sequences of 
moving images is the same as 50 years ago, i.e., 
consisting of same classical spatial filters, such as 
the averaging filter. Firstly our study proposes a 
slight modification into the equations for the filter`s 
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parameters presented in Gabiger-Rose et al., (2011) 
in order to extend the adjusting method of the 
parameters to images with any bit resolution. 
However, the largest contribution is the change in 
that calibration methodology itself which results in 
major gains in quality metrics when comparing to 
the method of Gabiger-Rose et al., (2011). 

This paper is organized as follows. After a brief 
introduction of the bilateral filter in Section 2, a 
short overview of the calibration method described 
in Gabiger-Rose et al., (2011) is given in Section 3. 
The proposed contributions that allow the in-field 
calibrating method can be seen in Section 4. Section 
5 shows experimental results already obtained and in 
Section 6 one can find the conclusion of this work. 

2 BILATERAL FILTER 

The bilateral filter was firstly proposed by Tomasi 
and Manduchi (1998) consisting of a discrete filter 
applied in the spatial domain by using a convolution 
mask, according to the Equation (1), 
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where W(k,n) weighs the contribution of each 
neighboring pixel x(k-n) inside the mask regarding 
the calculation of the value of the processed pixel 
x(k), k is the location of the central pixel of the mask 
and n is the distance between the central pixel and 
its neighbor. The two-dimensional filtering can be 
performed in two one-dimensional steps.  

In the bilateral filter, the contribution W(k,n) of 
each neighboring pixel corresponds to the product of 
the weight Wd(n) of a domain filter that depends on 
the spatial distance between the two pixels and on 
the weight Wr(k,n) of a range filter that depends on 
the difference between the intensities of both 
(Giraldo et al., 2009). The weights Wd(n) and 
Wr(k,n) are determined by Equations (2) e (3), in 
which σd and σr are adjusting parameters of the 
decay curve of the filters weights in function of the 
spatial distance n and of the difference of intensities 
x(k-n) and x(k), respectively. The idea is that even 
neighboring pixels very close, but very different in 
intensity, provide a small contribution in the result 
of the spatial filtering. Thus, the image edges are 
better preserved and the noise level is reduced 
mainly in the regions in which intensity levels are 
more uniform. 
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The calibration of the bilateral filter consists of 
determining the parameters ߪௗ and ߪ௥. It is 
necessary to reach the best-cost benefit between 
reducing the noise level and preserving the image 
edges, objectives that are conflicting in nature. 

3 ADJUSTMENT 

3.1 Domain Filter 

In Gabiger-Rose et al., (2011) it was presented a 
method for the adjustment of the parameter σd, 
which depends only on the size of the convolution 
mask. In order to approximate an ideal low-pass 
filtering, the authors claim that the weighting 
coefficients that would be outside the mask have to 
be smaller than or equal to 10-3. This condition is 
expressed in Equation (4), in which the size of the 
one-dimensional mask is 2N+1. 
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For a convolution mask of dimension 7x1, which 
proved to be in our experiments the most appropriate 
for filtering purposes, the calculated value for the 
parameter σd obeying Equation 4, with N=3 and n=4, 
was 1.08. 

 
Figure 1: Weights of masks 5x1 and 7x1 using σd=1.08. 

However, if ߪௗ is equal to 1.08 in the 7x1 mask, 
the value of the last coefficient inside the mask 
(n=3) is very close to zero. Our first criticism of the 
method refers to the mask 7x1 behaving very 
similarly to the mask 5x1 as it can be observed in 
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Figure 1, which depicts the weights Wd(n), for n 
varying from –N to +N, for masks 7x1 (blue circles) 
and 5x1 (red bars). 

3.2 Range Filter 

The parameter σr must be adjusted based on the level 
of noise present in the image in order to reach the 
best-cost benefit between reducing the noise level 
and preserving the image edges. 

Thus, in Gabiger-Rose et al., (2011) it was 
proposed the determination of the parameter ߪ௥	as 
the product of the noise standard deviation and a 
factor R (Equation 5) which must be determined in 
order to maximize either of the quantitative 
performance metrics. The suggested metrics are the 
PSNR (Peak Signal to Noise Ratio) and the MSSIM 
(Mean Measure Structural Similarity) (Wang et al., 
2004), as a means of gaining perceptual proximity 
with the Human Visual System (HVS). While PSNR 
is measured in dB, MSSIM varies between 0 and 1 
and evaluates quantitatively how close the output 
image is of a reference image, in terms of intensity, 
structure and contrast. Best results reflect on values 
of MSSIM near 1. 

 

*r noiseR   (5)
 

To check the dependence of R in relation to the 
statistical characteristics of noise, Gabiger-Rose et 
al., (2011) used a test database composed by 50 
images of 8-bit whose pixels were not normalized, 
where it was included an additive Gaussian noise of 
zero mean and variable standard deviation noise 
(variation in the range of 1 to 64, in steps of 4). 
Images were filtered using a bilateral filter with 
fixed ߪௗ (calculated using Equation 4) and with ߪ௥ σr 
calculated according to Equation (5), trying values 
of R in the range of 0.5 to 16, in steps of 0.5. The 
metrics PSNR and MSSIM are calculated separately 
for each image, and finally, the average of these 
metrics, considering all the images for each pair 
(noise , R) is determined. These mean values then 
become the characteristic values of the metrics for 
each  specific  pair (noise , R). The idea is to choose 
the parameter R that maximizes both characteristic 
metrics, for each value of the parameter noise. 

In order to highlight the differences among the 
characteristic metrics obtained by using different 
values of R, the characteristic metrics which refer to 
a specific noise are normalized in relation to the 
maximum value of that same set, in accordance with 
Equation 6. Thus, the highest value of the 
characteristic metrics for a specific noise is mapped 
to the value 0 and its null value is mapped to the 

value 1. If we generate a grayscale image aiming at 
easier viewing and interpretation of these values, the 
dark line at this image corresponds to the best 
performance for different noise. Figure 2 shows the 
visualization of data relating to the normalized 
characteristic PSNR.  
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Figure 2: Normalized characteristic PSNR as a function of 
R and noise (Gabiger-Rose et al., 2011). 

4 SENSITIVITY ANALYSIS OF 
THE BILATERAL FILTER AND 
THE IN-FIELD CALIBRATION 

Unlike Gabiger-Rose et al., (2011), that found the 
most presumably suitable parameter d according to 
Equation 4 and kept this value invariant while 
seeking the optimal R for different noise, our method 
consists in applying a sensitivity analysis of the filter 
regarding the parameters d and R, in order to 
improve the adjustment of these parameters aiming 
at optimizing either of the metrics, at a specific level 
of noise. 

Furthermore, the calibration method presented in 
Gabiger-Rose et al. (2011) was applied only to 8 bits 
grayscale images. However, medical images are 
generally encoded with 14 bits. Thereby, in order to 
make the calibration procedure independent of 
spectral resolution, we first normalize the image 
pixels between 0 and 1. 

In the calibration procedure, an industrial 
phantom acquired in real conditions of medical 
procedures must be used due to the need for having 
sequential multiple still images in order to find a 
reference image, presumably noise-free, for the 
calculation of the metrics. This procedure is not 
possible with real medical images since it would 
submit the patient to long exposures to X-rays. The 
calibration phantom must have density 
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characteristics that simulate different tissues of the 
human body as well as frequency components that 
simulate structures present in the medical procedures 
such as blood vessels, bone structures, calcifications 
and catheters. The phantom image is processed by 
bilateral filter and the filtered image is compared to 
the reference image in order to compute the metrics. 
The reference image is obtained from a temporal 
average of 8 frames of the calibration phantom, 
acquired at different times. The value of noise, 
necessary to compute r in accordance with 
Equation 5 is estimated from the histogram of the 
difference between one of the noisy image frames 
and the reference image after normalizing their 
pixels. 

In our experiments, the calibration phantom 
image shown in Figure 3 was acquired with the 
equipment AngiX III FD, manufactured by Brazilian 
company Xpro. The estimated value for noise was 
0.026. The sensitivity analysis with respect to the 
filter parameters was performed by varying both σd 
and R. The first varied from 0.5 to 5, in steps of 0.5 
and the second varied from 0.5 to 10, in steps of 0.5. 
The metrics PSNR and MSSIM were calculated for 
the calibrating phantom image for each (ߪௗ, R) pair. 

 

 

Figure 3: Calibrating phantom image. 

Figures 4 and 5 provide visualization of PSNR 
and MSSIM gains for helping with the analysis of 
filter sensitivity to the parameters adjustment in 
which the hot colors correspond to positive gains 
while the cold colors correspond to negative gains, 
respectively. The metrics gain refers to the 
difference between the metrics for the filtered image 
and the metrics for the noisy image, before the 
application of the filter. The graphs in Figures 6 and 
7, in turn, correspond to the metrics (PSNR and 
MSSIM, respectively) normalized in accordance 
with Equation (6), where metricsmax corresponds to 
the maximum value of each metrics for a fixed value 
of ߪௗ. These figures do not intend to compare the 
performance of the filter to each (ߪௗ, R) pair. 
Instead, they just give an insight into the 
determination of the optimum R for a specific value 

of ߪௗ,	since they assign, with a zero value in the z-
axis, the value of R that optimizes the filter 
performance at each ߪௗ. 

From Figures 4 and 5, it can be noticed that the 
best performance of the bilateral filter is achieved 
for larger values of d, which contradicts the choice 
of the parameter d proposed in Gabiger-Rose et al. 
(2011). 

 

 

Figure 4: PSNR gains (dB) as a function of d and R using 
the calibrating phantom. 

 

Figure 5: MSSIM gains as a function of d and R using the 
calibrating phantom. 

From Figures 6 and 7, it can be verified that the 
lower the value of d, the larger the expected value 
of R aiming at optimizing performance. However, 
for values of d greater 2.5, the optimum R does not 
change and it is equal to 2 for the calibration 
phantom. 
 

 

Figure 6: Normalized values for PSNR (dB) as a function 
of σd and R using the calibrating phantom. 
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It is worth noticing that the classic average filter 
is equivalent to the bilateral filter with the highest 
values of d and R. In other words, it corresponds to 
the worst performance of the bilateral filter.  

It is concluded from the proposed calibration 
method and using the shown calibration phantom, 
we choose to adjust the two parameters of the 
bilateral filter with values ߪௗ ൌ 3 and R=2, using a 
7x1 convolution mask. 
 

 

Figure 7: Normalized values for MSSIM as a function of 
σd and R using the calibrating phantom. 

5 RESULTS 

The in-field calibrated bilateral filter (implemented 
in Matlab) was then used to reduce the noise level at 
the image of a test phantom, shown in Figure 8, also 
acquired by AngiX III FD in equivalent conditions 
of real medical procedures. The achieved gains of 
PSNR and MSSIM are shown in Table 1 at three 
different conditions: first, ߪௗ ൌ 1.08 and R=5 which 
are the values found through the method presented 
in Gabiger-Rose et al., (2011); second, ߪௗ ൌ 3 and 
R=2 which are the optimum values found by our 
calibrating method; and third, ߪௗ ൌ 3 and R=10 
which corresponds to the classic average filter for 
which the PSNR presented a decrease of 0.231dB. 

Table 1: PSNR and MSSIM gains using the test phantom. 

 ௗ R PSNR gains MSSIM gainsߪ
Gabiger-Rose et al. (2011) 

1.08 5 2.7093 0.0948 
Our in-field calibratin method 

3 2 3.0753 0.1085 
Classic average filter 

3 10 -0.231 -0.0327 
 

Making a subjective analysis on images of 
Figure 8, it is noticed that with ߪௗ ൌ 3 and R=10 the 
image is plainly blurry, that is, visible losses occur at 
the edges. With the method presented in Gabiger-
Rose et al., (2011), ߪௗ ൌ 1.08 and R=5, the noise 

level is not reduced as expected. 
The bilateral filter was also applied on a real 

medical image with 14 bits, shown in Figure 9. 
Although the metrics PSNR and MSSIM cannot be 
calculated due to the lack of the reference image, we 
compared the performance of our in-field calibration 
procedure to the performance of the method 
presented in Gabiger-Rose et al., (2011) by 
analyzing the visual quality of the filtered images.  

Visual inspection of the image obtained from the 
classic average filter is also performed. It can be 
noted that the perceptual analysis carried out for the 
real medical image leads to the same achievements 
gotten for the test phantom.  

6 CONCLUSIONS 

The bilateral filter is used in several recent papers 
and it is notable for owning the feature of preserving 
edges. However, the literature lacks a clear and 
efficient procedure to calibrate the parameters of this 
filter. The majority of papers that process grayscale 
images encoded with 8 bits only mentions the values 
of the used parameters of the filters and do not show 
the way they were determined. Fortunately, from the 
calibration procedure presented in Gabiger-Rose et 
al., (2011) for 8 bits images, we were able to 
generalize the original proposal to the case of 
images with any spectral resolution. Besides that, we 
present a more accurate industrial in-field procedure 
to find the values of the parameters of the filter that 
optimize either PSNR or MSSIM using a phantom 
image acquired by the X-ray flat panel equipment 
itself. The denoising process of X-ray images using 
the bilateral filter properly calibrated gave us a 
superior result in terms of noise level reduction and 
edge preservation, when comparing to works 
presented in recent literature. This was verified not 
only from metrics calculated from phantom images 
but also from visual inspection of filtered real 
medical images. It is important to stress that our 
proposal is that this industrial in-field calibration 
procedure can be applied in practical operation 
conditions of medical pieces of equipment of 
angiography that use X -ray flat panel detector. The 
method intends to provide X-ray images with higher 
quality independent of flat panel manufacturer, as 
well as of total harmonic distortion of the network 
power distribution and of other parameters that 
influence the quality of the acquired images, like 
local temperature and humidity. 
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                         (a)                                                   (b)                                                  (c)                                                  (d)      

Figure 8: Test phantom (a) noisy image (b) denoised image: ߪௗ ൌ 1 and R=5 (c) denoised image: ߪௗ ൌ 3  and R=2 (d) 
denoised image: ߪௗ ൌ 3 and R=10. 

 
                         (a)                                                   (b)                                                  (c)                                                  (d)      

Figure 9: Medical Image (a) noisy image (b) denoised image: σd=1 and R=5 (c) denoised image: σd=3 and R=2 (d) denoised 
image: σd=3 and R=10. 
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